
Assessing Modular Structure of Legacy Code

Based on Mathematical Concept Analysis

Christian Lindig, Gregor Snelting

Technische Universität Braunschweig

Abteilung Softwaretechnologie

Bültenweg 88

D-38104 Braunschweig, Germany

+49 531 391 7577

lindig@ips.cs.tu-bs.de
to appear in Proc. International Conference on Software Engineering, Boston 1997

ABSTRACT

We apply mathematical concept analysis in order to
modularize legacy code. By analysing the relation be-
tween procedures and global variables, a so-called con-
cept lattice is constructed. The paper explains how
module structures show up in the lattice, and how the
lattice can be used to assess cohesion and coupling be-
tween module candidates. Certain algebraic decompo-
sitions of the lattice can lead to automatic generation
of modularization proposals. The method is applied
to several examples written in Modula-2, Fortran, and
Cobol; among them a >100kloc aerodynamics program.

Keywords

Reengineering, Modularization, Concept Analysis

INTRODUCTION

Analysing old software has become an important topic
in software technology, as there are millions of lines of
legacy code which lack proper documentation; due to
ongoing modifications, software entropy has increased
steadily. If nothing is done, such software will die of old
age — and the knowledge embodied in the software is
inevitably lost. As a first step in “software geriatrics”,
one must reconstruct abstract concepts from the source
code (called “software reengineering”). In a second step,
one might try to transform the source code such that the
structure of the system is improved and obeys modern
software engineering principles.

One particular problem is modularization of old code.
Old systems have not been developed by today’s mod-
ularization criteria. Therefore, static information like
control and data flow, access to nonlocal objects, or in-
terface information must be extracted in order to guide
restructuring. Modularization can then be achieved by
manual changes or automated program transformation
or both (see e.g. [4]). In particular, the relation be-

tween procedures and (global) variables has long been
recognized important for restructuring [8]. Indeed, an
abstract data object is characterized by a set of proce-
dures operating on a common set of (hidden) variables.
Legacy systems written in FORTRAN or COBOL how-
ever make abundant use of global variables, as there
is no syntactic support for modules. Thus one impor-
tant step in restructuring such old systems is to dis-
cover candidates for modules or abstract data objects.
Among other information sources, the relation between
variables and procedures must be examined, and if pos-
sible, module candidates must be identified.

In earlier work, we have shown that mathematical con-

cept analysis [10, 13] is a useful tool for analysing old
software. As a particular reengineering problem, we
have chosen the analysis of configurations in UNIX
source files. We have shown how configuration spaces
can be extracted from old source code, and how depen-
dencies and interferences between configurations can be
detected using a concept lattice [5]. More recent work
described how to automatically detect interferences, and
how source files can be simplified according to lattice-
generated information [9].

In this paper, we investigate the relation between pro-
cedures and global variables in legacy code. Based on
this relation, we want to find module candidates and
assess the module structure. We first formalize module
structures, and give formal definitions for coupling, co-
hesion, and interference. We then apply mathematical
concept analysis to the problem of modularizing legacy
code. By analysing the relation between procedures
and global variables, module candidates are identified
and arranged in a so-called concept lattice. Hierarchi-
cal clustering of local modules or procedures shows up
as sub-/superconcept relation in the lattice. Specific
infima (so-called interferences) correspond to violations
of modular structure, and proposals for interference res-
olution can be automatically generated. Furthermore,
module candidates can be generated from certain alge-
braic decompositions of the lattice.

1

FORMALIZATION OF MODULE STRUC-

TURES

It is our goal to find modules in legacy code by analysing
the relation between procedures and global variables.
We begin with some basic definitions.

Definition. Let a program consist of a set of proce-
dures P and a set of variables V . The variable usage

table is a relation C ⊆ P × V . If (p, v) ∈ C, procedure
p uses variable v.

The variable usage table is constructed by a frontend;
it is based on actual usage of global variables in pro-
cedures. Procedures and variables are assumed to be
globally unique; if necessary, the frontend must provide
unique names.

Definition. An abstract data object (ADO, or mod-
ule) consists of a set of procedures P ⊆ P and a set of
variables V ⊆ V such that ∀v ∈ V , p ∈ P : (p, v) ∈ C ⇒
v ∈ V and ∀p ∈ P , v ∈ V : (p, v) ∈ C ⇒ p ∈ P .

Thus in an ADO (P, V) all procedures in P use only
variables in V and all variables in V are only used by
procedures in P . This captures the fact that in an ADO,
a set of procedures operates on a set of state variables,
while the state variables are invisible outside the ADO.
The above definition can be expressed slightly more el-
egant by introducing some functions.

Definition.

1. For P ⊆ P , cv(P) = {v ∈ V | ∀p ∈ P : (p, v) ∈ C}.
For V ⊆ V , cp(V) = {p ∈ P | ∀v ∈ V : (p, v) ∈ C}.

2. For P ⊆ P , let uv(P) =
⋃

p∈P cv({p}).
For V ⊆ V , let up(V) =

⋃

v∈V cp({v}).

In particular, cv({p}) (or cv(p) for short) are the vari-
ables used by procedure p, and cp({v}) (or cp(v) for
short) are the procedures which use variable v. uv(P)
are all variables used by procedures in O, while cv(P)
are the commonly used variables – up and cp are to be
interpreted analogeously. Then (P, V) is a module iff
uv(P) ⊆ V and up(V) ⊆ P holds.

Some programming languages permit procedures to be
nested. Each local procedure introduces its own set of
state variables, which cannot be used by the top-level
procedures. Thus, procedure p2 is local to procedure
p1 iff cv(p2) ⊆ cv(p1). Sometimes there are not only
nested procedures, but also nested ADOs, where the
state variables in the inner ADO are not used outside
(indeed, C++ supports this kind of nesting).

Definition. Let (P1, V), (P2, V) be modules where
P2 ⊆ P1. (P2, V) is local to (P1, V) iff uv(P1 \ P2) ⊆
uv(P2).

Hence a local module has its own procedures, which also

may use the global variables – but the global procedures
are not allowed to use the variables of the local module.

In software engineering, cohesion and coupling are im-
portant modularization criteria. Cohesion means that
the elements of a module are related strongly, while cou-
pling measures interdependence between modules. This
motivates the following definitions.

Definition. An ADO (P, V) has maximal cohesion,
if ∀p ∈ P, v ∈ V : (p, v) ∈ C. An ADO has regular

cohesion, if ∃p ∈ P∀v ∈ V : (p, v) ∈ C and ∃v ∈ V ∀p ∈
P : (p, v) ∈ C.

Maximal cohesion in an ADO means that all procedures
use all variables, and all variables are used by all pro-
cedures: cv(P) = V and cp(V) = P . Regular cohe-
sion means that at least one variable is used by all pro-
cedures, and at least one procedure uses all variables:
uv(P) ⊆ cv(p) and up(V) ⊆ cp(v). Maximal cohesion is
almost never found in practice. Even regular cohesion
cannot always be identified in existing, well-modularized
programs. Both notions are introduced for theoretic
reasons.

Definition.

1. Let P1, P2 ⊆ P be two sets of disjoint procedures,
let v ∈ V be a variable. We say that P1,2 are coupled

via v, iff v ∈ uv(P1) ∩ uv(P2).

2. Let V1, V2 ⊆ V be two sets of disjoint variables, let
p ∈ P be a procedure. We say that V1,2 interfere

via p, iff p ∈ up(V1) ∩ up(V2).

This definition means that two sets of procedures (resp.
their modules) are coupled if they use the same global
variable(s). Similarly, two sets of variables (resp. their
modules) interfere, if they are used by the same pro-
cedure. Although coupling via global variables is un-
desirable, in a reengineering setting coupling might be
acceptable if there are nested local modules or proce-
dures. Interferences however prevent a modularization,
as there is a procedure which uses variables from two
different modules – a violation of the information hid-
ing principle.

BASIC NOTIONS OF CONCEPT ANALYSIS

Mathematical concept analysis starts with a relation C
between a set of objects P and a set of attributes V ;
the triple C = (P, V, C) is called a formal context. In
our case, the objects are procedures, and the attributes
are global variables.

For any set of procedures P ⊆ P we can determine their
common variables by cv(P) = {v ∈ V | ∀p ∈ P : (p, v) ∈
C}. Similarly, for a set of variables V ⊆ V , the common
procedures are cp(V) = {p ∈ P | ∀v ∈ V : (p, v) ∈ C}.
A pair (P, V) where V = cv(P) and P = cp(V) is called

SUBROUTINE R1(...)

COMMON /C1/ V1,V2

...

END

SUBROUTINE R2(...)

COMMON /C2/ V3,V4

COMMON /C3/ V5

...

END

SUBROUTINE R3(...)

COMMON /C2/ V3,V4

COMMON /C4/ V6,V7,V8

...

END

SUBROUTINE R4(...)

COMMON /C2/ V3,V4

COMMON /C3/ V5

COMMON /C4/ V6,V7,V8

...

END

V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8
R1 × ×

R2 × × ×

R3 × × × × ×

R4 × × × × × ×

V3,V4

V6,V7,V8
R3

R4

V5
R2

V1,V2
R1

Figure 1: A small source text, its variable usage table and its concept lattice

a formal concept. Such formal concepts correspond to
maximal rectangles in the context table, where of course
permutations of rows or columns do not matter. For a
concept c = (P, V), P = ext(c) is called the extent and
V = int(c) is called the intent of c.1

G. Birkhoff discovered in 1940 that the set of all for-
mal concepts for a given formal context c is in fact
a complete lattice, the concept lattice L(C) [1]. The
partial order in this lattice is given by c1 ≤ c2 ⇐⇒
ext(c1) ⊆ ext(c2) (⇐⇒ int(c1) ⊇ int(c2)). The infi-
mum of two concepts is computed by intersecting their
extents and joining their intents: c1 ∧ c2 =

(

ext(c1) ∩

ext(c2), cv(cp(int(c1) ∪ int(c2)))
)

.2 The supremum is
computed by intersecting the intents and joining the
extents of two concepts: c1 ∨ c2 =

(

cp(cv(ext(c1) ∪

ext(c2))), int(c1)∩int(c2)
)

. Hence the infimum describes
the common procedures for two sets of variables, while
the supremum describes the common variables for two
sets of procedures.

Figure 1 gives a very small example of a formal context
and its concept lattice. The context table is generated
from a (fictious) FORTRAN source file and captures the
use of global variables by subroutines. The labelling of
elements allows for an easy interpretation of the lattice;
it is achieved as follows. For p ∈ P , the smallest concept
c where p ∈ ext(c) is c = sc(p) =

∧

{c | p ∈ ext(c)}, and
for v ∈ V , the largest concept c where v ∈ int(c) is
c = lc(v) =

∨

{c | v ∈ int(c)}. sc(p) is labelled with p,
and lc(v) is labelled with v. All concepts greater than
sc(p) have p in its extent, and all concepts smaller than
lc(v) have v in its intent.

In the lattice in figure 1, all subroutines below lc(V3)
(namely R2, R3, R4) use V3 (and no other subroutines
use V3). All variables above sc(R4) (namely V3, V4,
V5, V6, V7, V8) are used by R4 (and no other vari-

1In fact, cv and cp form a Galois connection, and both cv ◦ cp

and cp ◦ cv are closure operators.
2cv and cp are needed because ext(c1)∩ ext(c2) can have more

attributes than just int(c1) ∪ int(c2).

ables are used by R4). Thus the concept labelled R4
is in fact c1 = sc(R4) = ({R4}, {V3,V4,V5,V6,V7,V8}).
The concept labelled V5/R2 is in fact c2 = lc(V5) =
sc(R2) = ({R2,R4}, {V3,V4,V5}). Hence c1 ≤ c2, as c1

has less procedures and more variables. This can be read
as an implication: “Any variable used by subroutine
R2 is also used by R4”. Similarly, lc(V5) ≤ lc(V3) =
lc(V4), which translates to “All subroutines which use
V5 will also use V3 and V4”. The infimum of V5/R2
and V6,V7,V8/R3 is labelled R4, which means that R4
(and all subroutines below sc(R4),3 but no other) uses
both V5 and V6,V7,V8. The supremum of the same
concepts is labelled V3,V4, which means that V3 and
V4 (and all variables above lc(V2), but no other) is used
by both R2 and R3.

The original relation can always be reconstructed via
(p, v) ∈ C ⇐⇒ sc(p) ≤ lc(v). Thus formal concept
analysis is similar in spirit to Fourier Transformation.
Computation of the lattice has typical time complexity
O(n3) (n = max(|P |, |V |)), but can be exponential in
the worst case [13].

THE CONNECTION BETWEEN MODULES

AND CONCEPT LATTICES

Our work is based on the key observation that a module
or abstract data object corresponds to a formal concept
or a small set of concepts. In this section, we will explain
how typical module structures show up in a concept
lattice. Later, our insight will be used for reengineering
modules from unstructured source code.

Modules with maximal cohesion

We first assume that a program is a collection of mod-
ules or ADOs with maximal cohesion. Furthermore we
assume there are no nested modules, no global variables,
no global procedures. These severe restrictions will be
dropped later.

Under the assumption of maximal cohesion, an ADO
(P, V) corresponds to a (maximal) rectangle in the vari-

3there are none in the example

V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 . . .

R1 × × ×

R2 × × ×

R3 × × ×

R4 × × × ×

R5 × × × ×

R6 × ×

R7 × ×

R8 × ×

R9 × ×

.

.

.

V1,V2,V3

R1,R2,R3

V4,V5,V5,V6,V7

R4,R5

V8,V9

R6,R7,R8,R9

Figure 2: Maximal cohesion corresponds to flat lattices

able usage table: cv(P) = V and cp(V) = P . Thus a
module corresponds to a formal concept of formal con-
text C = (P, V, C). Furthermore, absence of coupling or
interferences leads to a particular simple concept lattice
L(C). As there are no procedures which use variables
from different ADOs, the intersection of the extents of
two ADO’s concepts must be empty. Hence the infimum
of two concepts must be the bottom element. As there
are no variables which are used in different ADOs, the
intersection of the intents of two ADO’s concepts must
be empty. Hence the supremum of two concepts must
be the top element. Such lattices are called flat. Figure
2 shows a variable usage table and its flat lattice.4

Nested procedures and modules

For nested procedures or modules, we assume every pro-
cedure uses all variables visible to it.5 Thus, if proce-
dure p2 is local to procedure p1, p2’s row in the vari-
able usage table contains more entries than p1’s row:
cv(p1) ⊆ cv(p2) ⇐⇒ int(sc(p2)) ⊇ int(sc(p1)). In
the lattice, the corresponding concepts thus form a two-
element chain: the “is-local-to”-relationship in the pro-
gram corresponds exactly to the “is-subconcept-of” re-
lationship in the lattice, as sc(p2) ≤ sc(p1). In particu-
lar, variables in the outermost scope show up as labels
of the top element. Hence nested procedures produce
tree-like concept lattices, which corresponds to tradi-
tional nesting hierarchies.6

For nested modules (P1, V), (P2, V), we also obtain tree-
like lattices, because – under the assumption that all

4Remember that row and column perlcotations do not influ-
ence the lattice.

5Again, this restriction will be dropped later.
6Tree-like lattices are trees with an additional bottom element.

V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 V 10 V 11 V 12

R1 × × ×

R2 × × ×

R3 × × × × ×

R4 × × × ×

R5 × × × ×

R6 × × × × × ×

R7 × × × × × ×

R8 × × × × × ×

R9 × × × × × ×

R10 × × × × × ×

R11 × × × × × ×

V1,V2,V3
R1,R2

V4,V5
R3

V6
R4,R5

V7,V8 V11,V12
R10,R11R6,R7 R8,R9

V9,V10

Figure 3: Nested procedures or modules correspond to
tree-like lattices

procedures use all variables visible to them – the con-
figuration table will contain the same entries for differ-
ent procedures. Therefore the definition from section 2
simplifies to cv(P1 \ P2) ⊆ cv(P2). If a lattice element
is labelled with only one procedure, it corresponds to
a local procedure; otherwise, it corresponds to a local
ADO.

As an example, consider figure 3. Here, we find ADOs
M1, M2, M3, M4, M5, M6, which correspond to the
lattice elements 6= ⊥. M1 consists of procedures R1,
R2 and variables V1, V2, V3. M2 adds procedure R3
and variables V4, V5. M3 adds procedures R4, R5 and
variable V6. M4, M5, M6 each introduce two local pro-
cedures and variables likewise. Thus M2 and M3 are
local to M1, and M4, M5, M6 are local to M3. Note
that M2 is a one-row ADO, hence its one and only pro-
cedure R3 can as well be considered a procedure local
to R1 or R2.

Note that the analysis of legacy code may propose a
procedure or module nesting which is in contrast to the
actual program (for example, FORTRAN does not of-
fer local procedures). It might even be that according
to the lattice, a procedure p2 is considered local and
invisible to a procedure p1, but in the code, p1 in fact
calls p2. In this case, the lattice shows that the pro-
cedure nesting or call graph should be revised, or that
there is an implicit hierarchical structure which cannot
be expressed syntactically.

Modules with non-uniform variable use

Until now, we have assumed maximal cohesion, which
leads to particular simple lattices. In practice, this as-
sumption is of course not true: the lattices obtained
from legacy code are much more complicated. In this
section, we investigate the effects of non-uniform vari-

R

a b

R

a b

Figure 4: A horizontal decomposition and an interfer-
ence

able usage in flat module structures. Figure 4 shows a
variable usage table which is still segmented into rectan-
gles, but where the rectangles itself are not completely
filled. Instead some entries are missing: not all proce-
dures in an ADO use all ADO’s state variables. Such
tables produce lattices which are horizontally decompos-

able. The example also contains a simple interference:
procedure R uses variables a and b, which are from two
different ADOs.

A horizontal decomposition is the the inverse to a hor-
izontal sum. The horizontal sum of summand lattices
L1, L2, . . . , Ln is

∑n

i=1 Li = {⊤,⊥}∪
⋃n

i=1 Li\{⊤i,⊥i}.
That is, the local top and bottom elements are re-
moved from each Li, and new global top and bottom
elements are added. Conversely, a lattice L is hori-
zontally decomposable, if it is a horizontal sum. The
module corresponding to a horizontal summand Li is
(Pi, Vi) = (ext(⊤i), int(⊥i)).

Of course, flat and tree-like lattices are horizontally
decomposable. Note that for programming languages
which enforce encapsulation syntactically, the resulting
lattice will always be horizontally decomposable.7

In legacy code however, modules are not enforced and
hence not clearly separated. In particular, there might
be interference between module candidates. Interfer-
ences can easily be detected in the lattice: procedures
which use variables from different ADOs show up as
infima between horizontal summands. If the lattice is
horizontally decomposable after some interferences have
been removed, the system structure is still good.

Horizontal decomposition is achieved by removing top
and bottom elements from the lattice graph and deter-
mining the connected components; interference detec-
tion is based on higher-order graph connectivity. Ac-
cording to the number and “badness” of interferences,
the overall quality of the system structure can be mea-
sured. [9] and [2] contain a more detailed discussion

7As row and column permutations in the table do not matter,
horizontal decomposition in the table has exponential complexity,
while in the lattice it has only linear complexity.

a
n
g
el
eg
t

g
el
ö
sc
h
t

sp
ei
ch
er
v
er
b
ra
u
ch

co
lo
rs

m
a
x
st
rl
en

g
th

n
a
m
eh

a
sh
ta
b

p
h
o
n
eh

a
sh
ta
b

h
a
sh
ta
b
si
ze

er
ro
r1

er
ro
r2

es
c

allocate ×

init × ×

analyse × ×

initsp ×

ausgabesp ×

fuegespein ×

changeadr ×

readdata ×

readline ×

lookup ×

exists ×

rlookup ×

remove × ×

insert × ×

calchasvalue ×

savehashtab × ×

partsearch × ×

clearhashtabs × ×

inithashtabs × × ×

printmessage × ×

setbackground ×

settextcolor ×

setattribute ×

clrsrc ×

gotoxy ×

Figure 5: Variable usage table of student Modula-2 pro-
gram (excerpt)

of horizontal sums and interferences between horizon-
tal summands, and provides numerical measures for the
“badness” of an interference.

CASE STUDY 1

Our first small case study is a Modula-2 program from a
student project8. It serves to illustrate the basic theory,
in particular horizontal decompositions. The program is
about 1500 lines long and divided into 8 modules; there
are 33 procedures which use 16 module variables. The
variable usage table was extracted (figure 5), and the
corresponding lattice computed (figure 6). The lattice is
of course horizontally decomposable9. We observe sev-
eral modules with maximal cohesion (lattice elements
3,4,5,6,7,14,15), a local module containing two proce-
dures (element 2), and a module with neither maximal
nor regular cohesion (elements 8,9,10,11,12,13). Note
that there are more horizontal summands than mod-
ules in the program! Thus the modularization proposal
generated from the variable usage does not agree with
the actual module structure in the program. Indeed,
manual inspection shows that some modules have low
cohesion and should be splitted, and the lattice says
which ones.

MODULARIZATION BY INTERFERENCE

RESOLUTION

We have seen that horizontal summands are natural
module candidates – if the lattice is horizontally de-
composable. The i-th horizontal summand generates
module (Pi, Vi) = (ext(⊤i), int(⊥i)). In practice, how-
ever, legacy code contains interferences. If there are
not too many interferences, they can be automatically

8Source code available upon request
9Remember that for languages which enforce modules syntac-

tically, this is a consequence of the theory.

0

1

2

34 5 67 89

10

11

12

13

1415

16
Procedures Variables

0
1 allocate angelegt
2 init, analyse geloescht

3 initsp, ausgabesp, fuegespein speicherverbrauch
4 ermittelsp, loeschenicht, loeschealles, pointerliste

loesche, einfuegen, erzeuge, elemanz
5 addressinput done, helpadr, help,

eingabe
6 changeadr colors
7 readdata, readline maxstrlength

8 lookup, exists namehashtab
9 rlookup phonehashtab

10 remove, insert
11 calchashvalue hashtabsize

12 savehashtab, partsearch, clearhashtabs
13 inithashtabs
14 printmessage error2, error1

15 setbackground, settextcolor, esc
setattribute, clrscr, gotoxy

16

Figure 6: Module structure of a student Modula-2 pro-
gram

removed; the source code is transformed accordingly.

The trick for interference resolution is very simple. In
functional programming, it is called lambda-lifting. The
basic idea is to turn global variables into additional pa-
rameters. By doing so, they disappear from the variable
usage table and become part of the module interface. In
the example from figure 1, we can make V5 an additional
parameter of procedure R4. Doing so removes the de-
pendency of R4 on V5 from the variable usage table and
breaks the edge R2-R4 in the lattice. Afterwards, the
lattice is tree-like.

But why not make V6,V7,V8 additional parameters of
R4 in figure 1, instead of V5? The reason is that the
edge R2-R4 has “weaker coupling power” than R3-R4.
This notion can be made precise as follows. Let c = a∧b
be an interference. If |int(c)| − |int(a)| > |int(c)| −
|int(b)|, c inherits more variables from b than from a.
In this case the connection to a should be broken, as
lambda-lifting will add less parameters than in the sym-
metric case. If |int(c)| − |int(a)| < |int(c)| − |int(b)|, the
edge to b should be broken. This leads to high cohe-
sion. The “weakest coupling” rule can be generalized to
interferences of more than two elements.

Formally, an edge a − c is broken as follows. Let
b1, . . . , bk be the elements directly above c (thus a = bj).
In the configuration table, the set of entries to be re-

moved is then given by {(p, v) | p ∈ ext(c), v ∈

int(a) \
⋃k

i=1

bi 6=a

int(bi)}. For each removed entry (p, v),

v is made an additional parameter of p.

In figure 1, R4 inherits more variables from R3 than
from R2: |int(sc(R2))| = 3, |int(sc(R3))| = 5, while
|int(sc(R2) ∧ sc(R3))| = 6. Therefore, V5 is made an
additional parameter to R4 (and not V6,V7,V8). Ac-
cording to the above formula, only the entry (R2,V5) is
removed from the configuration table, as V3 and V4 are
also in the intent of sc(R3).

Note how the lattice guides restructuring: First, hor-
izontal summands are detected. If the obtained mod-
ules are too big, one can apply horizontal decomposi-
tion recursively to the summands. If the lattice is not
decomposable, interferences will be detected automati-
cally. The algorithm from [9] guarantees that a minimal
number of interferences must be removed to make the
lattice decomposable, thus minimal changes to the code
are required. For each interference, a lambda lifting
is proposed in order to resolve it; the “minimum cou-
pling rule” based on the size of the involved intents is
used to select the global variables to be transformed into
parameters. In figure 4, the analysis will immediately
detect the interference and propose to make variable b
an additional parameter of procedure R.

MODULARIZATION VIA BLOCK RELA-

TIONS

In this final technical section, we want to propose a more
general method for automatic modularization, for which
there are no successful case studies at the moment, but
which might turn out useful in the future.

Usually procedures do not use all visible variables, while
procedures or ADOs are nested. For legacy code, this
leads to a hierarchy of overlapping sublattices, which
prevent horizontal decomposition. The tremendous
amount of interferences often makes their automatic
resolution unfeasible. In this chapter, we will demon-
strate that in some cases, modularization proposals can
be generated anyway. The method will only work if
regularly cohesive modules can be extracted from the
source code.

The basic idea of the method is to determine the shape

of rectangles in the table, as indicated in figure 4. While
non-overlapping shapes lead to horizontally decompos-
able lattices, overlapping shapes are more complicated
to detect. But once a rectangle shape is computed, we
can fill in the missing entries and compute a lattice from
the “enriched” table. The resulting lattice can be con-
sidered a skeleton of the original one, as it contains one
concept for each original sublattice.

The skeleton of a horizontally decomposable lattice is a
flat lattice. Each concept in the skeleton (that is, each

rectangle shape in the table) is a candidate for an ADO.
Of course, only infima in the skeleton are considered in-
terferences between modules – fine-grained interferences
inside a rectangle shape come from non-maximal cohe-
sion and are considered harmless. This is consistent
with the modularization method from section 4.

We will now formally define what a rectangle shape is.
Due to space limitations, we cannot present the full the-
ory (see [13] for details).

Definition. Let a formal context C = (P ,V , C) be
given. A block relation is a formal context C′ =
(P ,V , C′) where C ⊆ C′, and for p ∈ P , cvC′(p) is
an extent in L(C), and for v ∈ V , cpC′(v) is an intent in
L(C).

The three conditions together make sure that a block re-
lation is indeed the shape of a rectangle in the original
table. The sides of such a rectangle are extents resp. in-
tents, thus they must either occur as horizontal or ver-
tical “lines” in the original table, or be suprema/infima
in L(C) of such “elementary” rectangles. This explains
why at least elementary rectangle shapes correspond to
modules with regular cohesion, while these can be com-
bined to bigger modules without regular cohesion.

Block relations can also be characterized through con-
cept lattices via the following isomorphism theorem:

Theorem. [13] Let C′ be a block relation to C. Then
L(C′) ≃ L(C)/Θ, where Θ is a reflexive and symmetric
relation on the lattice elements which is compatible with
supremum and infimum. Each block of C′ corresponds
to a Θ-class.

If Θ is also transitive, it is a lattice congruence. It is re-
markable that the factor lattice L(C)/Θ exists even for
non-transitive “congruences”. It is even more remark-
able that the Θ-classes correspond to rectangle shapes.
Note that the set of block relations (resp. their “con-
gruences”) form itself a lattice, and that there is an
algorithm to effectively compute all block relations for
a given table. For any block relation resp. its corre-
sponding Θ, its skeleton is just L(C)/Θ.

As an example, consider figure 7. A variable usage ta-
ble and its lattice are shown; the lattice does not reveal
any modularization proposal at a first glance. The table
contains also a block relation, which consists of the orig-
inal ×-entries and the additional •-entries. The bullets
have been chosen such that the block relation consists of
only three blocks (i.e. three rectangle shapes in the orig-
inal table) and corresponds to a skeleton lattice which
is a three-element-chain. This indicates there are three
module candidates. Figure 7 (right part) displays an
isomorphic copy of the lattice, but now the Θ-classes
which correspond to the rectangle shapes are visible, as
well as the skeleton itself.

V 1 V 2 V 3 V 4 V 5 V 6

R1 • × × × × ×

R2 × • × × • ×

R3 × • × • × ×

R4 × × × • • ×

R5 × • × × ×

R6 • × × •

19

18 17 16

14 15 13 11 12

9 10 8 6 7

5 4 3 2

1

R1R2R3R4

R5

R6

V1

V2 V3

V4V5V6

18 17 16

19

18

15

1213 1114

13 14 12 6

6

1

815 9 7

28 9 710

4 5 3 2
R2 R1R3 R4

R5

R6

V6 V5 V4

V3

V2

V1

Figure 7: A context table, its lattice, a block relation,
and its corresponding Θ-classes

Thus the modularization proposal consists of three mod-
ules. The first module corresponds to the top toler-
ance class. It contains procedure R6 and variables V2,
V4,V5,V6. Indeed, there is a corresponding rectangle
shape in the table. The next module is local to the
first one. It corresponds to the middle tolerance class
and introduces local procedure R5 and local variable
V3. The last module is local to the second one. It cor-
responds to the bottom tolerance class and introduces
procedures R1, R2, R3, R4 as well as local variable V1.
In this fictious example, the resulting module structure
is interference free. A human restructurer would have a
hard time to generate such a proposal from the original
lattice!

In case there is more than one block relation, the re-
structurer must decide which one is best. Note that
a generalization of the method to non-regular cohesive
modules is not known today, and is unlikely to exist.

CASE STUDY 2

Our next real-world example is a legacy code written in
FORTRAN. The program is an aerodynamics system
used for airplane development in a national research in-
stitution. The system is about 20 years old, and has
undergone countless modifications and extensions. The
source code is 106000 lines long, consists of 317 sub-
routines, and uses 492 global variables in 46 COMMON
blocks. One of the goals of the analysis is to reshape
COMMON blocks such that each ADO corresponds to
one COMMON block.

After the variable usage table was built, the lattice was
constructed. It containes no less than 2249 elements!
The number of elements in itself is not the problem (af-

Figure 8: Variable usage structure of aerodynamics sys-
tem

ter all, it is a large program), but unfortunately the
lattice is so full of interferences that it is impossible to
reveal any structure (figure 8). There is no way to make
the lattice horizontally decomposable by removing just
a small number of interferences.

Several experiments tried to analyse just part of the
system. The program contains a particular intricate
COMMON block called “CNTL”, which contains 26
variables. These variables are used in 192 subroutines,
and the resulting lattice does not look very encouraging
either: it has 194 elements (figure 9). Another experi-
ment examined the “OUTPUT”-subsystem, which con-
sists of 50 subroutines using 278 global variables from
26 COMMON blocks; the resulting lattice still has 259
elements and is full of fine-grained interferences.

Of course, we tried to determine block relations. Un-
fortunately, neither the lattice for the whole system nor
the lattice for the “CNTL” COMMON block had usable
block relations, hence no automatic modularization was
possible. We also tried to apply subdirect decompo-
sition [11] and subtensorial decomposition [12] to the
lattice, as described in [2]. These decomposition tech-

CNTL_MBL

TOPSING TFLSING RTESTCM RTEST RESSING GEOSING CPSFF

CNTL_IPARA

OUTFORCE OUTCONV

GETRST DISTFACE DISIJK

CNTL_IPRINT

READVAR

READLOGOUTPUT COORDCM

ZERONORM

CNTL_LEVEL

THIRDDP SYMR SYM SPECT3DC SPECT3D SPECT2DC SPECT2D SENSORP SCALRK NEWIND MODCY6 MODCY5 MODCY4 LDSING LDDIM GHOSTS FRESTFMU FILTERV FARFFMU CUTNSS

WALLUVS WALLUV TURBWALL TURBCUT TURB1 SETCRBC SETCMPBC RES0RQ RES0 REAFF PUTCUT FFSING CHCONTNT BCPAR BCP2 BCP1 BCONDFMU BCFPAR2 BCFPAR1 BCF2 BCF1

CNTL_NWB

CUTRMCUTMFMU

WRIGI CUTM

CNTL_LEVEL0

WRIFI REAFI

CNTL_MBLM

CHECK1

SUBSING SINGINFO PARENTH GETLOG EXVISP EXVARP EXGPAR EXFFPA DEFSADDR DEFLEVS CONSING CCTSING

CNTL_LIO

STEP5C STEP5B STEP1 STEP0 ST5CPAR ST1PAR ST0PAR EXVISQ EXVARS EXFFSQ

CNTL_MRK

CNTL_NSTCNTL_IMODE

PHYBC

WRIBDS

CNTL_NLEVEL

UNPACKR SWAPF INPCMPCT FILOPN

PREGRI MODCY2 MODCY1 INPBLOCK

GETGEO GINPBL DEFPNT

WRIBDGEO REDSING DEFSIZE DEFLEV DEFADSG CHSIZE

WRIBDFMU WRIBDF WRIBD

CNTL_MEMU

FREEMEMF

WALLOC

SAVFI METRICCM

VISCOS STEP6B STEP5D OUTSURF

CNTL_IFLAG

UPDATE FILTER

MGEND LDLEV

CNTL_MODCY

UPSING

CNTL_ISTART

TURB1IJK

CNTL_IDISS

CNTL_MAXLEVCNTL_NGIT2CNTL_NGIT1

CNTL_NSAVECNTL_ISTEPOUT

INPLEVEL

CNTL_ITEST

UNPACKI

SYMGR2D SYMGR

READPLTMAP

TESTGH SINGVOL SETGH READGRU4 READGRU READGRF MKCOSE INITGH

CNTL_IVIS

INBCIFCV FLUXVFTL FIRSTDNL FARF CALCSURF

STEPBC

STEP5A

RESTR

STEP4

CNTL_NCYC

GLOPAR

STEP3

CNTL_NSTEP

STEP2A

STEP2ST4PAR ST2APAR

ST2PAR

MGBEG

INICML

SOLUTN

SOLIPAR

FLTPNT

SOLINIT

RKSTPAR RKSTP

PRTIME

PRCONV

INIFILE

PARAM

INPSCHEM

INPLU

OUTSTD OUTRST

NORMALCM NORMAL METRIC INDVEL

OUTPLAN

FLOWER

LDSCAL

INPUTN

INPUTINPCNTL

INITFI

GETGRDFORCTCM FORCT DEFIJKS DEFIJKCONOUT

CHTYPE

INITIAL FTERMDEFSING CHINP

BCOND

Figure 9: Variable usage structure for COMMON block
“CNTL”

niques are motivated by algebraic rather than software
engineering issues, and failed also. It seems there is
little hope for this program.

CASE STUDY 3

Our final example is a system written in COBOL,
namely an accounting system developed for a North-
German car manufacturer. We have analyzed two pro-
grams of this relatively new system.

The first program contains about 500 executable state-
ments. In COBOL, there are no procedures, but there
are so-called sections, which are a kind of parameterless
procedures. Hence the relation between sections and
variables was analysed, there were 11 sections and 88
variables (the variables being complex records). Figures
10 and 11 show the result: a lattice with 32 elements.
The lattice is not horizontally decomposable, and there
are too many interferences to try automatic interference
resolution. In fact, the interference detection algorithm
found several simple interferences, which – after removal
– however not produced horizontal summands, but only
isolated mini-lattices. For example, removal of element
8 (interference between elements 1 and 7) isolates ele-

0

1

2

3

4

5

6

7

89

10 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Figure 10: Variable usage structure of a commercial
COBOL program

ment 7, but this doesn’t lead us anywhere. The lattice
has no block relations either. Still, one could argue that
this program is too small to be modularized, and that
all the “interferences” just demonstrate high cohesion.

We therefore tried a larger program of the same system,
consisting of more than 5000 source lines. It contained
165 variables and 44 sections. The resulting lattice has
144 elements (figure 12). Again, countless interferences
and missing block relations prevent automatic modular-
ization. Another, even larger program produced a lat-
tice with several hundred elements and was not decom-
posable either. As the system is only a couple of years
old, we suspect it to be characteristic for contemporary
COBOL programming style. Note the numbered vari-
able names in figure 11, and note the number of global
variables in both programs!

CONCLUSIONS

“Die Grenzen meiner Sprache sind die Grenzen meiner
Welt”10 said Ludwig Wittgenstein, and our case studies
show that he was perhaps right. While Modula-2 pro-
grams of course lead to decomposable lattices, a variety
of FORTRAN and COBOL programs revealed no mod-
ular structure at all. Hence our modularization method
could not be applied to the two legacy systems we have
examined. Automatic modularization is possible only if
there is still some hidden structure, but fails on software
which is near entropy death.

10“The limitations of my language are the limitations of my
world”

Variables Sections

0

1 W8-IOPCB, W3-ZBER, S98-W00-PROTOKOL,

S96-P00-BATINFO, S22-P30-KONTFGRU,

S22-P22-BANKBDC, S22-P21-BANKIDC, S22-

P20-ZAHLPRUE,

S22-P10-LIEFUSER, S21-P30-LIEFFIRM, S21-

P20-LIEFNAME, S07-P10-BDLIEFFI, S06AX-

P10K-KEY, S06-P10-BILIEFFI, S02AX-P20K-

LIEFER, S02AX-P20K-KEY, S02AX-

P20K-FIRMNR, S02-P20-KFGLIFI, A96-P00U-

BATINFO, A22-P30U-KONTFGRU, A22-P22U-

BANKBDC, A22-P21U-BANKIDC, A22-P20U-

ZAHLPRUE,

A22-P10U-LIEFUSER, A22-P00U-LIEFFIRM,

A21-P20Q-LIEFNAME, A21-P30U-LIEFFIRM,

A07-P00Q-BANKBDC, A07-P10U-BDLIEFFI,

A06AX-P00Q-KEY, A06-P10U-BILIEFFI, A06-

P00Q-BANKIDC, A02-P20U-KFGLIFI,

A512-

AUFNEHMEN

2 A21-

EINGABE

3

4 Z1-ZAEHLER U01-SATZ-

ZAEHLER

5 S05BAX-P00D-KTOTYP, S05AAX-P00K-KEY,

S05-P00-FIRMREF, S03-P00-FIRMA, S02-P00-

KONTFGRU, EX1FIRMA, EX1-FIRMA,

A05AX-

P00Q1-SATZART, A05AX-P00Q1-RESTKEY,

A05AX-P00Q1-KEY, A05AX-P00Q1-FIRMNR,

A05-P00Q1-FIRMREF,

A03AX-P00Q-FIRMNR, A03-P00Q-FIRMA

A10-

VORLAUF

6 S22-P00-LIEFFIRM, A22-P00Q-LIEFFIRM A511-

AUFNEHMEN

7 EW1AX-LIEFER A51-

VERARBEITEN

8 S21-P00-LIEFER

9 P2-

XK901A, A02AX-P00Q-KONTFGRU, A02AX-

P00Q-FIRMNR, A02-P00Q-KONTFGRU

10

11 A21-P00Q-LIEFER

12 W2-FIRMA, K1-CALL-FKT

13 RETURN-CODE A90-

ABSCHLUSS

14

15 W0-FILE-STATUS, EW1LIEF

16

17 U1-SCHALTER A01-

GESAMT

18 U90-

DBSWITCH

19 LXK96-XKA96P

20 LXK22-XKA22P

21 LXK05-XKA05S, LXK05-XKA05P

22 P49-XK949A

23 PROBA-ID A91-

ABBRUCH

24 P1-ABEND

25 A00-BASIS

26 LXK98-XKA98P, LXK07-XKA07P,

LXK06-XKA06P

27 LXK21-XKA21P

28 LXK03-XKA03P

29 LXK02-XKA02P

30 LXKNN-XKC96P, LXKNN-XKC22P, LXKNN-

XKC05S, LXKNN-XKC05P, LXKNN-XKB96P,

LXKNN-XKB22P, LXKNN-XKB05S, LXKNN-

XKB05P, LXKNN-XKA96P, LXKNN-XKA22P,

LXKNN-XKA05S, LXKNN-XKA05P

31

Figure 11: Labels for lattice in figure 10

Still, mathematical concept analysis not only deter-
mines fine-grained dependencies between procedures
and variables, but also can be used to assess the overall
quality of a software system with respect to coupling,
cohesion and interferences. In contrast to other mod-
ularization methods (e.g. [8]) the underlying formulae
do not contain free parameters and therefore require no
tuning – the raw data can always be reconstructed from
the analysis results. Still, the restructurer has choices,
e.g. which interferences to remove or which modular-
ization proposal is best. Indeed, we do not consider
our method to be fully automatic: it should be consid-
ered and used as an intelligent assistant. In many cases,
more substantial changes to source code will be neces-
sary than just reshaping COMMON blocks or turning
global variables into interface parameters (see e.g. [4]).

0

12

3

4

5

6

7

8

9 10 11

12

13

14

1516

17

18

19

2021

22

23

24

25

26

27

282930

31

32 33

34 35

36

37

38

39

40 4142

43 44

45

46

47

48

4950

51 52

53

54

55

56

57

58

59

60

61

62

63

64

65 66

67

68

697071

72

73

74

75

76

77 78

79

8081

82

83

84

85

86

878889

90

91

92

93

94

95

96

97

98

99 100

101

102

103

104

105106

107

108

109110

111

112

113114 115

116

117118 119120121 122

123

Figure 12: Another program of the same COBOL sys-
tem

To discover modular structure, our method should be
applied together with other methods based on program
slicing [3, 6] or similarity measures [8, 7]. Empirical
studies must show how concept analysis compares with
these methods. We believe that complex reengineering
tasks cannot be tackled with one method alone, but that
in practice a method mix will be required – in particular
if semiautomatic modularization is to be achieved.

Acknowledgements

Uwe Tapper implemented the FORTRAN frontend.
Bernhard Ganter provided technical support for the
block relation algorithm. Andreas Zeller provided help-
ful comments on a preliminary version of this article.
Susan Deikman pointed out that “chemotherapeutics is
useful even though it does not cure every cancer”.

The work described in this paper is part of the inference-
based software environment NORA11.

REFERENCES

[1] G. Birkhoff: Lattice Theory. American Mathemati-
cal Society, Providence, R.I., 1st edition, 1940.

11NORA is a drama by the Norwegian writer H. IBSEN. Hence,
NORA is no real acronym.

[2] P. Funk, A. Lewien, G. Snelting: Algorithms for
concept lattice decomposition and their application.
Report 95-09, Computer Science Department, Tech-
nische Universität Braunschweig, 1995.

[3] K. Gallagher, J. Lyle: Using program slicing in soft-
ware maintenance. IEEE Transactions on Software
Engineering 17,8 (August 1991), pp. 751 – 761.

[4] B. Griswold: Automated Assistance for Program
Restructuring. ACM Transactions on Software En-
gineering and Methodology 2,3 (July 1993), pp 228-
269.

[5] M. Krone, G. Snelting: On the Inference of Con-
figuration Structures from Source Code. Proc. 16th
International Conference on Software Engineering,
Mai 1994, IEEE Comp. Soc. Press, pp. 49-57.

[6] L. Ott, J. Thuss: Slice based metrics for estimat-
ing cohesion. Proc. IEEE-CS International Metrics
Symposium (1993), pp. 78 – 81.

[7] S. Patel, W. Chu, R. Baxter: A measure for compos-
ite module cohesion. Proc. 14th International Con-
ference on Software Engineering, 1992, IEEE Comp.
Soc. Press, pp. 38-48.

[8] R. Schwanke: An Intelligent Tool for Reengineering
Software Modularity. Proc. 13th International Con-
ference on Software Engineering, 1991, IEEE Comp.
Soc. Press, pp. 83-92.

[9] G. Snelting: Reengineering of Configurations Based
on Mathematical Concept Analysis. ACM Transac-
tions on Software Engineering and Methodology 5,2
(April 1996), pp. 146-189.

[10] R. Wille: Restructuring Lattice Theory: An Ap-
proach Based on Hierarchies of Concepts. In: I. Ri-
val, (Ed.), Ordered Sets, pp. 445-470, Reidel 1982.

[11] R. Wille: Subdirect decomposition of concept lat-
tices. Algebra Universalis 17 (1993), pp. 275-287.

[12] R. Wille: Tensorial decomposition of concept lat-
tices. Order 2 (1985), pp. 81-95.

[13] B. Ganter, R. Wille: Formale Begriffsanalyse –
Mathematische Grundlagen. Springer Verlag 1996.

