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ABSTRACT
In a C compiler, function calls are difficult to implement
correctly because they must respect a platform-specific call-
ing convention. But they are governed by a simple invariant:
parameters passed to a function must be received unaltered.
A violation of this invariant signals an inconsistency in a
compiler. We automatically test the consistency of C com-
pilers using randomly generated programs. An inconsistency
manifests itself as an assertion failure when compiling and
running the generated code. The generation of programs is
type-directed and can be controlled by the user with com-
posable random generators in about 100 lines of Lua. Lua
is a scripting language built into our testing tool that drives
program generation. Random testing is fully automatic, re-
quires no specification, yet is comparable in effectiveness
with specification-based testing from prior work. Using this
method, we uncovered 13 new bugs in mature open-source
and commercial C compilers.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Reliability, Measurement, Experimentation, Languages

1. INTRODUCTION
C compilers have been around virtually forever and build-
ing them is so well understood that it is taught in compiler
classes. The truth is, specifically function calls in C are
difficult to implement correctly. The reason is that gener-
ated machine code must adhere to a strict regime of calling
conventions. These are issued by hardware vendors to en-
sure interoperability between compilers. For each supported
platform a compiler must implement such a calling conven-
tion, of which typical programs only exercise a small part.
This makes the implementation of function calls a source for
latent compiler bugs even in mature compilers.

For example, the code in Figure 1 on the following page
uncovers a bug1 in the GNU C compiler 3.3 that is part of
Apple’s MacOS X 10.3 operating system for the PowerPC.
Function main passes the values of four global variables to
variadic function callee, which checks that it indeed re-
ceives the right values. This fails for the fourth argument i:

$ gcc -O2 -o bug bug.c

$ ./bug

bug:23: failed assertion ‘y.f == i.f’

Abort trap

We found several compiler bugs of this kind using randomly
generated programs in the style of Figure 1. These pro-
grams are designed to test a simple invariant: a value passed
to or from a function must be received unaltered. We call
this property consistency of functional calls, which must be
guaranteed by a compiler.

Testing compilers for consistency is fully automatic since the
generated programs encode the consistency tests themselves.
Running such a program fails an embedded assertion in case
of an inconsistency. Therefore, testing consistency requires
no specification or test oracle and dramatically simplifies
testing of C compilers compared to prior work (Bailey and
Davidson, 1996).

Our generation of programs is type driven: a test case is
constructed around the declaration of a function (Section 2).
But to be effective, the statistical distribution of test cases
must be controlled. Claessen and Hughes (2000) proposed
composable random generators to test functional Haskell
programs; we applied their idea and designed composable
test-case generators for Lua (Ierusalimschy et al., 1996), a
scripting language that drives our testing tool.

We claim the following contributions:

• Composable random generators provide a concise way
to control the distribution of test cases. The genera-
tor for ANSI C is specified in about 100 lines of Lua
(Section 3).

• Random testing of calling conventions is effective. We
found 13 new bugs in production-quality compilers on

1Reported as GCC bug #18742.



1 #include <stdarg.h>

2 #include <assert.h>

3 union A {float a; double b;}
4 c = { 52.54 };
5 struct B {double d; int e;}
6 h = { 78.01, 834 };
7 union C {short int f; char g;}
8 i = { 68 };
9 struct D {char j; double k;}

10 n = { ’c’, 31.01 };
11 struct E {long long l; double m;}
12 o = { 167L, 17.2 };
13

14 union A

15 callee(struct D a, struct E b, ...)

16 {
17 va_list ap;

18 struct B x;

19 union C y;

20 va_start (ap, b);

21 x = va_arg (ap, struct B); /* 3rd */

22 y = va_arg (ap, union C); /* 4th */

23 assert (y.f == i.f); /* fails */

24 va_end (ap);

25 return c;

26 }
27 int main( int argc, char **arg ) {
28 union A r;

29 r = callee (n, o, h, i);

30 return 0;

31 }

Figure 1: GCC 3.3 on MacOS X 10.3 passes union

C i incorrectly to variadic function callee; the asser-
tion in line 23 fails. The code was generated by our
testing tool Quest and is slightly simplified for pre-
sentation. In a variadic function, extra arguments
must be accessed using macro va arg, which receives
the argument’s type and returns its value.

Unix systems (Section 4, Table 3). Finding such bugs
takes typically a few minutes.

• Manually coded C programs exercise only a small part
of a calling convention. This explains why users (and
developers) haven’t tripped over the bugs we found
(Section 5).

We investigated random testing of calling convention with
Quest, a new tool that generates programs in the style of
Figure 1. We discuss prior and related work in Sections 6
and 7, and provide our conclusions in Section 8.

2. TEST GENERATION SCHEME
The generation of test cases is type-driven: we generate
function declarations randomly and generate a test case for
each declaration. For example, the declaration

char f(int, short*)

is enough to generate a function f(int, short*) and a func-
tion void g(void) that calls it, both shown in Figure 2.

int x = 6362; /* all random */

short *y = (short*) 6328282U;

char z = ’q’;

char f(int a, short* b) {
assert(a == x);

assert(b == y);

return z;

}
void g(void) {

char c;

c = f(x,y);

assert(c == z);

}

Figure 2: Code generation scheme for a function
char f(int, short*): function g calls f and passes
values of global variables, which are checked by f;
likewise for the return value of f.

Function g passes values to f, which checks that it receives
the right values, and returns a value, which in turn is checked
by g.

Given a declaration, we generate for each parameter and re-
turn type a global variable that we initialize with a random
value. Function g passes these values to f, which uses asser-
tions to check that each value it receives is indeed the one
of the corresponding global variable. Likewise, to test the
return value, f returns the value of a global variable, which
is checked by g. Function main (not shown) finally calls g.

This code generation scheme extends to all simple and com-
pound C types that can be passed to a function or be re-
turned by it: floating-point types, pointers, arrays, struc-
tures, and unions. A pointer is treated as an unsigned inte-
ger; we only compare a pointer’s value but do not allocate
a value to point at. The value of a compound global vari-
able like an array, structure, or union can be defined with a
C initializer; this also works for a hierarchical type, like an
array of structures.

Two compound values, like two structures, cannot be com-
pared directly. We unfold them recursively and generate a
sequence of assertions that compare values component by
component.

The values we use to initialize global variables are selected
randomly, without special attention to extremal values. This
is sufficient since we don’t apply any operations to them but
test them for equality only.

Our Quest tool can generate variadic functions, whose best-
known instance is printf(char *fmt,...): such a function
takes regular named arguments like fmt, plus extra argu-
ments. A variadic function must access the unnamed ex-
tra arguments one by one using the va arg macro from the
〈stdarg.h〉 header. This is demonstrated in the code in
Figure 1.

Finally, Quest can emit the called function f (the callee)
and the calling function g into two different files. This way
they can be compiled by two different compilers to test their



consistency. For code generation this means that global
variables and functions defined in one file must be declared
extern in the other.

3. RANDOM DECLARATIONS
In principle it would be enough to generate function decla-
rations (and from them programs) that use all legal ANSI-C
features. But from a practical point of view it is desirable
to control the statistical distribution of declarations: some
compilers, like GCC, accept C programs beyond the ANSI

standard, others support only a subset. Section 5 below also
presents reasons why we believe that the distribution of test
cases has a strong impact on their ability to uncover bugs.
We therefore want distributions to be user-programmable
and provide composable random generators as a solution
(Claessen and Hughes, 2000). Readers not interested in the
details of test-case generation and customization may safely
skip this section.

The composition of test generators is expressed in Lua, a
scripting language embedded in Quest that drives the gen-
eration of test cases. Lua is a Pascal-like scripting language
that is designed to be embedded into applications to make
them scriptable by the user (Ierusalimschy et al., 1996; Ram-
sey, 2004). Lua’s most prominent data type is table, an as-
sociative array that is used in Lua to model lists, arrays,
and modules. Quest, which is implemented in the ML di-
alect Objective Caml (Leroy et al., 2004), contains a Lua
interpreter that provides random generators as Lua func-
tions. By writing small Lua functions, a user can define
generators, which in turn define test cases.

The sole rôle of Lua is to let the user control test case gen-
eration. The design of the test case generators itself is inde-
pendent from Lua—we could have used any other scripting
language, or none at all, if we had decided to provided only
hard-coded generators.

A function declaration, which is the base for a test case, is
characterized by three components: (1) a list of argument
types, (2) a list of types for values passed as extra arguments
to a variadic function, and (3) a return type. We generate
test cases by using three generators, one for each component
of a declaration.

A generator in general is a composition of simpler genera-
tors. The most basic generators provide a source for ran-
domness; they are complemented by a set of generators for
C types. These follow the abstract syntax for C types cap-
tured by the grammar c in Figure 3. Together they may
be combined into generators for complex types, like a list of
structures.

3.1 Type Generators
To characterize generators as they are available to the user
in Lua, we give ML-style types to them: a generator that
produces a C type has type c gen, a generator that produces
values of type α has type α gen. The most basic generators
produce the same simple C type in every run. These are
listed at the top of Table 1: generator char produces type
char, generator long type long, and so on.

A generator can take another generator as argument, for in-

width ::= char | short | int |
long | long long

fwidth ::= float | double | long double

sign ::= signed | unsigned

member ::= (name, c)

c ::= void

| int(sign,width)

| float(fwidth)

| array(c, length)

| pointer(c)

| struct(name,member, . . . )

| union(name,member, . . . )

Figure 3: Abstract syntax for C types.

Generator Generator Type C Type

char c gen char

long c gen long int

unsigned c gen → c gen unsigned type
float c gen float

pointer c gen → c gen pointer type
array c gen× num gen → c gen array, n mem’s
structure c gen× num gen → c gen struct, n mem’s
union c gen× num gen → c gen union, n mem’s

Table 1: Some generators for C types. They are
available as Lua functions to compose high-level gen-
erators.

stance unsigned, which makes it a function of type c gen →
c gen: unsigned(char) produces the type unsigned char

from the generator for the char type. Likewise, a generator
producing pointer types is obtained by applying pointer to
any type generator.

The flexibility gained from composing complex generators
from simple generators becomes more evident with arrays:
the array generator takes two generators: one for types and
one for numbers. The type generator determines the ele-
ment type of the array, the number generator the length of
the array. Every time the array generator is run, it runs
the two generators as well. These could produce, for ex-
ample, unsigned char and 3 in the first run, and double*

and 2 in the second. This leads to two different array types:
unsigned char[3] and double*[2].

A generator for a structure (or union) type also takes two
generators as arguments, one for the type and one for the
number of members. Here however, the number generator is
run first and returns how often the type generator is to be
run to produce a list of member types. The type generator
may return a totally different type in each run, which leads
to a structure (or union) type with diverse member types.



Generator Generator Type Value generated

number num → num gen pick number from 0, . . . , n− 1
choose num× num → num gen pick number from m, . . . , n
list num gen× α gen → (α list) gen list with n members
elements α list → α gen pick value from list
oneof (α gen) list → α gen pick generator from list
unit α → α gen constant generator

iszero bool gen indicate end of recursion
smaller (α gen) list → α gen like oneof, limits recursion
bind α gen× (α → β gen) → β gen monadic bind operator

Table 2: Primitive random generators; they are available as Lua functions.

3.2 Basic Generators
To build a generator whose output varies in every run we
need some source of randomness. It is provided by the prim-
itive generators shown in Table 2.

Generator number provides a random number, choose a num-
ber from an interval. Given a generator for a value, list cre-
ates a generator that produces a list of values whose length
depends on a number generator. Given a list of values,
elements produces a generator that picks one value at ran-
dom in every run. This idea is raised to the next level with
oneof: it takes a list of generators and picks a generator at
every run.

3.3 The ANSI C Generator
The default generator for ANSI-compliant declarations in
Quest is composed in about 100 lines of Lua code, from
which we show a subset in Figure 4.

The test-case generator is defined by ANSI.test, which re-
turns a table—denoted by curly braces—that binds three
generators for arguments, extra arguments (for variadic func-
tions), and the result type. Several simple generators for
sizes and lengths are bound to names at the top of Figure 4.

The generator ANSI.arg for argument types is recursive. It
considers two cases: in the base case it returns an integer
or float type, otherwise it selects with smaller from a list
a generator that itself uses ANSI.arg. The two cases are
necessary to ensure that recursion terminates.

3.4 Taming Recursion
The grammar for C types in Figure 3 is recursive, which
leads to recursive generators. Without care, recursive gen-
erators could fail to terminate when run. To avoid this we
limit the depth of recursion and therefore the size of a type.

The function that runs a generator takes two arguments:
the generator, and the maximum recursion depth (which is
2 by default). The parameter for the depth is only passed
behind the scene between generators and does not clutter
their interface; three functions cooperate to ensure termina-
tion:

• Function smaller ((c gen) list → c gen) takes a list of
generators and selects one in every run. In addition,

ANSI.members = choose(1,3) -- for structs

ANSI.argc = choose(1,10) -- argv length

ANSI.vargc = choose(0,3) -- var args

ANSI.array_size = choose(1,3)

function ANSI.arg_ (issimple)

if issimple then

return oneof { any_int, any_float }
else

return smaller -- like oneoef (c.f. 3.4)

{ any_int -- signed/unsigned

, any_float -- all sizes

, pointer(ANSI.arg)

, array(ANSI.arg,ANSI.array_size)

, struct(ANSI.arg,ANSI.members)

, union(ANSI.arg,ANSI.members)

}
end

end

ANSI.arg = bind(iszero,ANSI.arg_)

function ANSI.test () return

{ args = list(ANSI.argc,ANSI.arg)

, varargs = list(ANSI.vargc,ANSI.varg)

, result = ANSI.result

}
end

Figure 4: The test generator for ANSI C in Lua.
The generators ANSI.result for return types and
ANSI.varg for extra arguments are omitted. Curly
braces denote tables.

it decrements the depth before passing it to subordi-
nated generators. Hence, only recursion going through
smaller counts towards maximum the depth.

• Generator iszero (bool gen) generates true if the ac-
tual depth is zero.

• Function bind (α gen× (α → β gen) → β gen) defines
a generator and takes two arguments: a generator (like
iszero) and a function. It passes the generated value
to the function which returns a generator depending
on the value. In our case, the generator returned by
ANSI.arg depends on the depth of the recursion.

The generator abstraction is implemented as a monad. This



makes it easy to pass values like the depth behind the scene
while maintaining full composability (Wadler, 1997). The
monad also hides sources for member names like they are
required for the implementation of struct and union.

4. EVALUATION
To evaluate the effectiveness of random testing we tried to
find inconsistencies in function calls translated by Unix C
compilers. We focused on production-quality commercial
and open-source compilers but also included two compilers
still under development. In particular:

• GCC, the GNU C compiler, including the experimental
development version 4.0.0 (FSF, 2003).

• LCC, a retargetable ANSI C compiler (Fraser and Han-
son, 1995).

• TCC, a small and fast ANSI C compiler for the Linux/
x86 platform (Bellard, 2004). This compiler is under
early development.

• PathCC, a commercial compiler from PathScale Inc.
with a special focus on performance and the genera-
tion of 64-bit code on the x86 architecture (PathScale,
2004).

• MipsPro, the ANSI C compiler for SGI workstations
running the IRIX operating system (SGI, 1999).

• PGCC, a commercial compiler from with a special fo-
cus on performance on the x86 architecture (Portland
Group, 2004).

• ICC, the commercial Intel C compiler for Linux on the
x86 platform (Intel, 2004).

We tested these compilers on a number of platforms where
the selection of platforms was influenced foremost by our
access to them. As a consequence, we have tested more
compilers on Linux/x86 than on any other platform.

Compilers GCC, ICC, and TCC support the C language be-
yond the ANSI standard. They support empty structures
and unions, as well as arrays of length zero. When testing
GCC, ICC, and TCC we generated programs that used these
features. All other compilers we tested with ANSI-compliant
code.

To find inconsistencies, we executed a loop for 15 minutes
that generated code using Quest, compiled it using the
compiler under test, and ran it. Each generated program
contained 20 test cases, that is, pairs of a calling and a
called function. The loop was left immediately when either
the compiler failed, or an inconsistency in the compiled code
was found. As far as compilers supported them, we tried dif-
ferent optimization options (none, -O, -O2, -O3) but did not
try options unrelated to optimization.

The essence of our test procedure fits in one long line of
shell commands; we often used it to quickly test compilers
for bugs:

while true; do

quest > test.c # generate test

cc -o test test.c || break

./test || break # run test

echo -n . # progress indicator

done

The infinite loop is left when the compiler fails, or, more
likely, the program test raises an assertion failure. This
would leave test.c as a test case to report to the developers.
Most bugs showed up within a few minutes of testing, which
inspired the title of the paper.

Table 3 shows our results. We found bugs2 in all compil-
ers except PGCC, and TCC. The 13 bugs that we found
constitute two classes: 4 bugs that crashed a compiler and
9 bugs that showed up as inconsistencies. The three com-
piler crashes of GCC involved languages extensions, in par-
ticular the usage of empty structures. It is not clear what
caused PathCC to crash.

We believe that the 3 crashes of GCC on Linux result from
the same bug; we uncovered it with different test cases in
different compiler versions. We could identify the bug by its
distinctive error message from the register allocator. The
same probably applies for one inconsistency found in GCC

on MacOS X.

The 9 bugs that showed up as inconsistencies involve ad-
vanced function declarations: 4 bugs showed up in variadic
functions, 2 bugs involved a struct- or union-typed param-
eter, and the bug where PathCC fails to pass a float the
test function had the following declaration:

union A f(double a, union B b,

struct C c, float d, struct E e)

Here we suspect that not the fourth parameter float d

caused the problem but the other compound parameters.

4.1 Consistency Between Compilers
Two functions, one calling another, may be compiled by dif-
ferent compilers. When both compilers adhere to a platform-
specific calling convention values should pass unaltered from
one function to another. Quest can generate appropriate
test cases and we used this for a small experiment. We
refrained from a more systematic test because they would
be affected by the inconsistencies we had found already. It
would be difficult to attribute an inconsistency to a partic-
ular compiler knowing that it had shown internal inconsis-
tencies before.

We conducted two experiments with GCC 4.0.0, TCC 0.9.22,
and LCC 4.2 on Linux/x86. We found that GCC and TCC

agreed perfectly—we did not find any inconsistencies. On
the other hand, GCC 4.0.0 and LCC 4.2 showed more incon-
sistencies than we expected from the one bug we found in
LCC.

The inconsistencies between LCC and GCC could be ex-
plained with the lack of standards for calling conventions.

2The programs that uncovered these bugs are available at
http://www.cs.uni-sb.de/~lindig/quest/bugs/



Compiler and Options Platform Symptoms and Comments

MipsPro 7.3.1.3m, -O3 Irix 6.5/MIPS struct not passed correctly
GCC 2.95.3, -O2 SunOS 5.8/Sparc double as var arg not passed correctly
GCC 2.95.4, -O Linux/x86 compiler crashes, reported as bug #16819, fixed in GCC 3.4
GCC 3.2.2 -O3 Linux/x86 same as bug#16819?
GCC 3.3, none Irix 6.5/MIPS union as var arg not passed correctly, reported as bug #19268, fixed in

GCC 3.4
GCC 3.3, none MacOS X 10.3 involves GCC extension, reported as bug #18742, see Figure 1
GCC 3.3.3, -O3 Linux/x86 same as bug #16819?
GCC 4.0.0, none MacOS X 10.3 same as bug #18742?
GCC 4.0.0 Linux/x86 no inconsistency found
LCC 4.2, none Linux/x86 double var arg not passed correctly
PathCC 1.4, -O2 -m32 Linux/x86 float not passed correctly, bug reported, fixed in Release 2.0
PathCC 1.4, -O2 -m32 Linux/x86 union with struct not passed correctly, fixed in Release 2.0
PathCC 2.0, -Ofast Linux/x86 compiler crashes with floating-point exception in “LNO” phase, reported as

bug #5273, fixed in upcoming Release 2.1
ICC 8.1, none Linux/x86 var arg not passed correctly, reported as bug #292019
TCC 0.9.22 Linux/x86 no inconsistency found
PGCC 5.2 Linux/x86 no inconsistency found

Table 3: Bugs found with Quest in compilers on Unix systems.

Architecture manuals like Intel (2003) typically specify a
calling convention for simple values but omit any discussion
how to pass structures or unions. Here, compiler writers are
left on their own or are forced to reverse-engineer existing
compilers.

5. NON-RANDOM C CODE
Surprised by the many inconsistencies we found we looked
for some explanation. For this we analyzed the function
definitions of real-world programs and programs in the GCC

test suite; we compared them to 200 programs generated by
Quest.

• As a representative collection of real-world programs
we looked at the SPEC CPU 2000 benchmark suite.
The SPEC benchmark suite is a standardized set of
programs to evaluate the performance of a computer’s
processor, memory architecture, and compilers (SPEC,
1999). The suite is intended to cover a range of typical
compute-intensive applications and we looked specifi-
cally at 12 programs3 written in C.

• The GCC 4.0.0 source code contains various test suites
that are used during development of the compiler. We
analyzed the gcc.c-torture test suite that contains
1,638 (short) C files; about 5% of them we could not
analyze due to syntactical problems.

As a fairly coarse measure, we analyzed the programs stati-
cally using CIL, a framework for analyzing C programs (Nec-
ula et al., 2002). On Apple MacOS 10.3 we measured in
particular for function definitions:

• the number of arguments;

3The SPEC CPU2000 suite contains 3 more programs writ-
ten in C that we could not analyze using CIL: perlbmk,
vortex, and equake.

• the number of variadic function definitions;

• the distribution of argument types;

• the distribution of return types.

The SPEC benchmark, the GCC test suite, and the Quest-
generated code contain 5,566, 5,055, and 4,200 functions, re-
spectively. From these, the following fractions were variadic:
14 (or 0.3%) in SPEC, 137 (2.7%) in GCC, and a substantial
985 (23.5%) in Quest-generated code.

Figure 5 summarizes the distribution of types and argument
numbers for our subjects. In the SPEC benchmark suite
over 80% of argument types are either int or a pointer,
and over 95% of functions either return no value, an int,
or a pointer. Types are similarly distributed in the GCC

test suite; pointer and int dominate the argument types,
and void and int the return types. Essentially no function
in the SPEC or GCC suite returns or receives a structure
or union. Even simple types like char or float are almost
absent among return types. This is very different for Quest-
generated programs: structures, unions, and floating-point
types constitute a sizeable part of the distribution.

The length of argument lists of programs in the SPEC and
GCC test suites are heavily skewed towards functions with
less than 3 arguments. There are, however, a curious 13.1%
percent of functions with 6 arguments in the GCC test suite.
The maximum argument length in the SPEC suite was 17,
and 32 in the GCC suite. Again, the programs generated
by Quest show a much more even distribution with up to
10 arguments. (There are 47.6% of functions with declara-
tion void f(): those call the function under test and are
somewhat misleading.)

Currently Quest does not generate functions with more
than 10 parameters. We chose this limit because we know
of no calling convention that puts more than 8 parameters



0% 50% 100%

Argument Type SPEC pointer int enum floats etc.

GCC pointer int
integer
& char

etc.

Quest pointer int enum float double union struct etc.

Return Type SPEC void int pointer etc.

GCC void int etc.

Quest void int pointer floats struct union etc.

Argument Number SPEC 0 1 2 3 4 5 etc.

GCC 0 1 2 3 45 6

Quest 0 1 2 3 4 5 6 7 8 9 10

Figure 5: Distribution of declarations in C programs: types in argument positions, types in return position,
and length of argument lists. Shown are the distributions for 12 programs from the SPEC CPU 2000 bench-
mark, for the GCC 4.0.0 test suite gcc.c-torture, and for code generated by Quest. Declarations generated
by Quest are more varied than those found in the SPEC and GCC suites.

in registers. We thus are confident that 10 parameter suf-
fice to exercise all registers used for parameter passing, as
well as some stack positions. In any case, this could be eas-
ily changed by defining a different generator ANSI.argc in
Figure 4.

Our results are based on static analysis and don’t reflect how
often a certain function is actually used in a program run.
Theoretically, a statically rare declaration could dominate
the dynamic execution. However, early experiments suggest
that the statically dominant types in the SPEC benchmark
are even more dominant at run time.

In the SPEC and the GCC test suite simple types and short
argument lists are predominant. We suspect that they never
execute a large part of a calling convention implementation
in a compiler. Both users (good) and developers (bad) are
thus unlikely to find latent bugs in the implementation of
function calls. We believe that the decidedly wider spec-
trum of declarations generated by Quest is responsible for
uncovering bugs in otherwise mature compilers.

6. PRIOR WORK
Bailey and Davidson (1996) had previously tested the con-
formance of C function call implementations with calling
conventions. Conformance with a calling convention im-
plies consistency but requires a specification to test against.
Bailey and Davidson’s test methodology builds upon their
formalization of calling conventions (Bailey and Davidson,
1995).

A calling convention is intended to ensure interoperability
between compilers and libraries from different vendors. It
details which registers and stack locations to use when pass-
ing parameters between functions. Calling conventions are
defined in architecture manuals issued by hardware vendors,
which makes them platform-dependent. They are typically
informal and sometimes confusing to the degree that com-
pilers failed even on their examples, as noted by Bailey and
Davidson (1996). The especially arcane C calling conven-
tions are the main difficulty to implement C function calls
correctly.

Bailey and Davidson formalized calling conventions. Their
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Figure 6: Automaton for a simple calling convention
(Bailey and Davidson, 1995). Numbers inside nodes
denote allocated registers, numbers next to them
alignment. A parameter list (double, char) allocates
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model is based on automata, so-called P-FSA; an automa-
ton for a simplistic calling convention is shown in Figure 6.
They derive test cases from such an automaton to test the
conformance of a compiler with the modelled calling con-
vention.

An automaton models the allocation of registers and stack
locations for parameter passing. A state represents a set of
allocated resources, a transition is labeled with a parame-
ter type for which a resource is allocated in the next state.
Since the number of function parameters are unbound, an
automaton is infinite in principle. To make it finite, Bailey
and Davidson track only register resources precisely. Stack
locations, on the other hand, are grouped into equivalence
classes based on their alignment: for example, all 8 byte-
aligned stack locations are represented by the same node.
Nodes for stack locations are often reachable from each other
and lead to cyclic automata.

Every path in an automaton represents a declaration, each of
which is a candidate for a test case. In the presence of cycles
there are infinite many; looking at the finite many acyclic
paths, Bailey and Davidson found more than 108 of them



on some RISC architectures—still too many to test. They
devised a smart heuristic to derive a manageable number of
test cases.

Bailey and Davidson tested the conformance of compilers
on the MIPS platform, whose calling convention is notori-
ous for being confusing and difficulty to implement. They
found 9 bugs related to consistency and 13 bugs related to
parameter passing between functions compiled by different
compilers.

7. RELATED WORK
The test methodology of Bailey and Davidson (1996) val-
idates the conformance of a function call implementation
based on test cases derived from a model of a calling conven-
tion. The validation is almost as good as a verification since
the method guarantees a high degree of coverage. As its
main drawback it depends on a target-specific model or for-
mal specification, which is not readily available and the rea-
son why Bailey and Davidson’s methodology wasn’t widely
adopted.

Random testing is target-independent and requires no spec-
ification. Of course, we cannot argue for exhaustiveness: by
analogy, only random paths in Bailey-Davidson automaton
would be used as test cases. We cannot verify the confor-
mance with a calling convention directly. But testing ex-
ternal consistency against a conforming reference compiler
could detect violations of a calling convention. Overall, the
main attraction of random testing is simplicity.

Random testing in general is surrounded by a discussion
of its effectiveness in comparison to other methods (Duran
and Ntafos, 1984). It attracted a lot of theoretical attention
with the goal to measure its effectiveness, or to derive upper
bounds for remaining bugs after testing (Bernot et al., 1997;
Chen and Yu, 1996; Tsoukalas et al., 1993).

QuickCheck by Claessen and Hughes (2000) introduced the
idea of composable generators as first-class values. They
use composable generators to test Haskell programs. We
adopted this idea to create a domain-specific extension of
Lua (Ierusalimschy et al., 1996) for the generation of C dec-
larations.

Celentano et al. (1980) present a grammar-driven program
generator that covers the entire input language for a com-
piler. As such, it has to cope with many more context-
sensitive aspects than we do for C types. As the main dif-
ference, Quest-generated tests are self-evaluating because
they test consistency of a compiler.

The correct translation of function calls is only a small part
of a totally correct compiler. At least for optimizing com-
pilers, verified correctness is still a research problem. A
promising trend is proof-carrying code (Necula, 1997): in-
stead of verifying the entire compiler, verify the results of
an individual translation. For this a compiler augments the
code it emits with annotations that can be verified before ex-
ecuting the code. The successful verification of annotations
implies certain code characteristics. Because of its smaller
code base, a verifier is easier to implement correctly than an
optimizing compiler.

8. CONCLUSIONS
Random testing the consistency of function calls has re-
vealed 13 new bugs in mature C compilers (see Table 3).
This leads us to conclusions about both this specific prop-
erty of C compilers, and our test method.

Despite their long history C compilers still contain bugs in
the implementation of functions calls. These are provoked
by arcane C calling conventions that compilers must imple-
ment to ensure interoperability with existing code. By their
nature calling conventions are platform specific and thus a
compiler cannot implement a general solution—the problem
is therefore unlikely to vanish. This suggests an opportunity
for a framework to implement calling conventions more eas-
ily by providing common abstractions, for example for the
stack frame layout (Lindig and Ramsey, 2004).

Our analysis of typical C code shows that it is unlikely to
trigger a remaining inconsistency in a compiler. All bugs
that we found were in advanced aspects of calling conven-
tions, like structures passed by value to a variadic function.
These are almost absent in real-world code, but probably
also in compiler test suites. We therefore suggest compiler
developers to adopt our tool as a complement to existing
regression tests.

Random testing of consistency is as effective as specification-
based testing, yet easier; indeed it is so easy, that anyone
could use it in a few lines of shell code to automatically find
bugs in a compiler. The simplicity stems from a number of
sources: First, testing for consistency requires no specifica-
tion. Second, composable random generators are a power-
ful device to compose highly structured test data while still
controlling their statistical distribution. And third, tests
are self-evaluating: running a test is equivalent to running
code that the program under test generated. This suggests
that random testing of consistency is especially well suited
for compilers and interpreters and is the main result of this
paper.

An open problem is how to avoid finding the same bug again.
Distinct failing test cases might be caused by the same bug,
which is undecidable in general. It would be helpful to fin-
gerprint the execution of test cases such that similar execu-
tions lead to similar fingerprints which could identify bugs.

An idea for future work is to tie Quest, a compiler, and
the execution of generated code into a feedback loop. This
would allow for the automatic minimization of a failed test
using the Delta Debugging algorithm (Zeller, 2001): after a
failing test was found, the test generator would try to find a
minimal failing test case. Smaller test cases make it easier
for developers to locate a bug.

Quest is open source; the code and Quest-generated test
cases are are available from http://www.st.cs.uni-sb.de/

~lindig/src/quest/.
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