
JTACO: Test Execution for Faster Bounded Verification

Alexander Kampmann2, Juan Pablo Galeotti1, and Andreas Zeller1

1 Software Engineering Chair, Saarland University, Saarbrücken, Germany
lastname@cs.uni-saarland.de

2 Saarbrücken Graduate School of Computer Science
Saarland University

Saarbrücken, Germany
kampmann@st.cs.uni-saarland.de

Abstract. In bounded program verification a finite set of execution traces is ex-
haustively checked in order to find violations to a given specification (i.e. errors).
SAT-based bounded verifiers rely on SAT-Solvers as their back-end decision pro-
cedure, accounting for most of the execution time due to their exponential time
complexity.
In this paper we sketch a novel approach to improve SAT-based bounded verifi-
cation. As modern SAT-Solvers work by augmenting partial assignments, the key
idea is to translate some of these partial assignments into JUNIT test cases during
the SAT-Solving process. If the execution of the generated test cases succeeds in
finding an error, the SAT-Solver is promptly stopped.
We implemented our approach in JTACO, an extension to the TACO bounded
verifier, and evaluate our prototype by verifying parameterized unit tests of sev-
eral complex data structures.

1 Introduction

Bounded verification [5] is a fully automatic verification technique. Given a program
P and its specification 〈Pre, Post〉, a bounded verification tool exhaustively checks
correctness for a finite set of executions. In order to constrain the number of program
executions to be analyzed, the user selects a scope of analysis by choosing: (a) a bound
to the size of domain (e.g., LinkedList, Node, etc.), and (b) a limit to the number
of loop unrollings or recursive calls.

Bounded verification tools [3,5,8,10,12,16] rely on translating P , precondition Pre
and postcondition Post into a propositional formula ψ such that

ψ = Pre ∧ P ∧ ¬Post.

If an assignment of variables exists such that ψ is true, ψ is satisfiable, and the satis-
fying assignment represents an execution trace violating the specification 〈Pre, Post〉.
On the other hand, if ψ is unsatisfiable (i.e. there is no satisfying assignment for ψ),
the specification holds within the user-selected scope of analysis. However, a violation
might still be found if a greater scope of analysis is chosen. In order to decide on the
satisfiability of ψ, the bounded verifier relies on a SAT-Solver, a program specialized in
solving the satisfiability problem for propositional formulas.

lastname@cs.uni-saarland.de
kampmann@st.cs.uni-saarland.de


1 public static void testRemove(int v1, int v2, int v3) {
2 BinarySearchTree t = new BinarySearchTree();
3 t.add(v1);
4 t.add(v2);
5 t.add(v3);
6 assert t.find(v2);
7 t.remove(v2); // should remove all occurrences
8 assert !t.find(v2);
9 }

Fig. 1: A parameterized unit test for a binary search tree class.

TACO [8] targets the bounded verification of sequential Java programs. For exam-
ple, for the parameterized unit test shown in Figure 1, TACO will search for values for
the integer parameters v1, v2 and v3 to falsify any of the assertions. Apart from check-
ing regular assert statements, TACO also verifies more complex program specifica-
tions written in behavioural formal languages such as JML [2] or JFSL [17]. Although
TACO is specially tailored for verifying complex specifications in linked-data struc-
tures (such as the well-formedness of red-black trees), the burden of writing such speci-
fications is by no means small. As a light-weight alternative, applying bounded verifiers
to parameterized unit tests might still help finding errors, but requires less effort from
the user.

Fig. 2: A high-level view of the TACO architecture

Figure 2 presents a high-level overview of the TACO architecture. In order to trans-
late the Java program into a propositional formula ψ, TACO uses the ALLOY language
[11] as an intermediate representation. The analysis starts when the target Java program
and its specification are translated into an ALLOY model. The ALLOY analyzer is then
invoked to check the correctness of the model. This is done by translating the ALLOY
representation into a propositional formula that is later solved using the MINISAT SAT-
Solver. In case MINISAT [7] finds a solution to ψ, the satisfying assignment is returned
to the ALLOY analyzer, that builds an ALLOY instance as a counterexample to the vio-
lated property. Finally, TACO translates the ALLOY counterexample into a JUNIT test
case for later inspection by the user.

Given n propositional variables, there are 2n possible assignments of values to those
variables. SAT-Solvers are programs designed for efficiently deciding the satisfiability

2



of a formula (i.e., either it is satisfiable or it is unsatisfiable). Nevertheless, as the worst-
case time complexity of SAT is exponential on the number of propositional variables
in ψ, it is often the case that most of the verification budget is spent in the execution
of the SAT-Solver. On many occasions, when the time bound or the resources at hand
are exhausted, the verification effort has to be cancelled. This leads to the unpleasant
situation that significant computational resources might have been spent, while the user
obtained no feedback from that investment.

In previous work [6], we already explored the idea of profiting from observing the
internal state of the SAT-Solver during its execution. By assuming the ψ is unsatisfi-
able we approximate an UNSAT core [15] by measuring the activity of the SAT-Solver
during the progress of the SAT-Solving process. In this paper, we aim at optimizing
the bounded verifier when the underlying ψ is satisfiable. More specifically, we try to
lift a partial assignment collected from the SAT-Solver into a JUNIT [1] test case. If
the execution of the JUNIT test case leads to a violation of the specification, the whole
SAT-Solver could be stopped. The intuition behind this is that in some cases the SAT-
Solving process might not be as performant as executing the code in order to check the
validity of ψ.

The contributions of this article include:

– An approach to combine SAT-Solving and JUNIT test case execution based on
monitoring the internal state of the SAT-Solver.

– JTACO, an extension to the TACO bounded verifier implementing the aforemen-
tioned approach.

– An evaluation of the JTACO approach on a small benchmark of parameterized unit
tests handling several complex data structures.

2 From Partial Assignments to JUNIT test cases

Most modern SAT-Solvers (like MINISAT) are based on variants of the Davis-Putnam-
Logemann-Loveland (DPLL) algorithm [4]. The DPLL algorithm maintains and ex-
tends a partial assignment of the propositional variables to binary values. Each propo-
sitional variable can be assigned (meaning the algorithm has determined a provisional
binary value for this variable), or unassigned.

In Figure 3 we show the pseudocode of the DPLL algorithm. It starts by calling
procedure search_new_value() to extend the current assignment by deciding a
new binary value for an unassigned variable. The function propagate() applies
boolean constraint propagation (BCP) until no more values for variables can be inferred
or the current decisions led to an unsatisfiable clause (namely, a conflict). The function
analyze_conflict() determines the set of variable assignments that implied the
conflict, returning the highest level of decision for all the variables involved (i.e., the
conflict_level variable). Finally, backtrack() undoes the current assignment
to the conflict level. This is usually referred to as back jumping.

Any partial assignment that led to a conflict during the propagate() phase is
known to be unsatisfiable. In our previous work [13], we observed that only a fraction of
the propositional variables of ψ are actually modelling the initial state of the execution
trace. This is due to the fact that, given the static nature of the ALLOY language, TACO

3



1 while (true) {
2 search_new_value();
3 propagate();
4 if (status==CONFLICT) {
5 conflict_level = analyze_conflict();
6 if (conflict_level==0) {
7 return UNSAT;
8 } else {
9 backtrack(conflict_level);

10 }
11 } else if (status==SAT) {
12 return SAT;
13 }
14 }

Fig. 3: A sketch of the Davis-Putnam-Logemann-Loveland (DPLL) algorithm

models field and variable updates by introducing several versions of the same variable
(much like in a SSA-like form3).

JTACO extends MINISAT by dumping the partial assignment whenever a conflict
occurs (line 5 of Figure 3). Then, JTACO tries to lift the obtained partial assignment to
a JUNIT test case. In order to lift a partial assignment v, JTACO first removes all those
variables in v that are not used to model the initial state of the execution trace. However,
the resulting filtered partial assignment might be insufficient for generating a JUNIT test
case if any of the propositional variables modelling a given initial value is missing. For
example, consider the argument v1 of the parameterised unit test shown in Figure 1. If
k propositional variables model the initial value of v1 (namely v10, v11, . . . , v1k−1)4,
we need to know the value of all the propositional variables to conclude the initial value
of v1.

1 @Test
2 public void test1() {
3 int int0 = -8;
4 int int1 = -8;
5 int int2 = 0;
6 try {
7 BinarySearchTree.testRemove(int0, int1, int2);
8 } catch (AssertionError err) {
9 fail("An assertion did not hold:" + err);

10 }
11 }

Fig. 4: A failing JUNIT test case generated by JTACO.

3 In the Single Static Assignment (SSA) form, each variable is assigned exactly once.
4 Alloy encodes integer values using two’s complement.

4



If all the propositional variables encoding the initial state (i.e., arguments and field
values) are assigned, then JTACO writes a JUNIT test case by decoding the values from
the partial assignment (as the one shown in Figure 4). Subsequently, JTACO compiles
the written test case and executes it. By construction, if the test case fails then the initial
state led to a violation of the specification (in this case, failing the assert statement
in line 8 of Figure 1). We refer to the original partial assignment that led to a failing test
case as a failing partial assignment. The importance of finding such a partial assignment
relies on the fact that, as soon as it is detected, the entire SAT-Solving process can be
stopped.

To conclude, whenever a conflict occurs during the execution of the MINISAT’s
DPLL algorithm, JTACO filters those variables from the partial assignment that are
not modelling initial values of the execution trace. If all the variables of the initial state
are assigned in the resulting filtered partial assignment, a JUNIT test case is written,
compiled and executed. If the JUNIT test case fails, then a violation to the specification
has been found, and the verification process is stopped. In any other scenario (i.e., unas-
signed initial variables, JUNIT execution succeeding) the DPLL algorithm resumes.

3 Evaluation

We ran our prototype of JTACO on an Intel Core Duo T6600 with a scope of analysis
of 4 elements per domain and 3 loop unrollings. We selected a benchmark of con-
tainer classes taken from [8]. Since all these classes have already been verified using
TACO, we wrote 9 additional faulty parameterized unit tests that are expected to fail
(like asserting an AVL tree is empty after an insertion). Additionally, we add a faulty
implementation of binary search trees plus a parameterized unit test capable of exhibit-
ing the failure. The rationale behind these decisions is twofold: first, by aiming at the
case where the formula ψ is satisfiable, we focus on the scenario in which our approach
could make gains. Secondly, by resorting to parameterized unit tests (instead of regular
JML or JFSL specification violations) we avoid the problem of synthesizing runtime
predicates for asserting the validity of the specifications.

We evaluate our approach by addressing the following research questions:

– RQ1: During the MINISAT execution, when does the first failing partial assign-
ment occur (i.e. the first partial assignment leading to a failing JUNIT test case)?

– RQ2: Does JTACO outperform TACO in terms of execution time?

Experimental Results: Figure 5 presents the average results of 10 executions of
TACO and JTACO on the subjects of the selected case study. The first and second
column list the subject name and the parameterized unit test. The third column shows
the average time for verifying the program using TACO (only MINISAT time is con-
sidered). The fourth column presents the point in time when the first failing partial
assignment was found during the MINISAT execution. The fifth column shows the to-
tal JTACO time (i.e. MINISAT time plus the time for collecting partial assignments,
lifting them to JUNIT test cases and executing them). The last column presents the
speed-up of JTACO with respect to TACO.

5



Subject parameterized TACO 1st Failing Partial JTACO Speed-up
Unit Test time (ms) Assignment (ms) time (ms)

SinglyLinkedList testRemove 144.7 81.1 (56.0%) 1545.7 0.09x
DoublyLinkedList testRemove 496.2 202.4 (40.0%) 1940.3 0.25x

testIndexOf 167.8 17.7 (10.0%) 408.4 0.41x
NodeCachingLinkedList testIndexOf 1065.5 16.7 (1.5%) 150.5 7.07x

testRemove 1823.9 20.7 (1.1%) 172.6 10.56x
BinaryTree testRemove 567.4 7.9 (1.3%) 101.0 5.61x
BuggyBinaryTree parameterized 315.2 10.4 (3.3%) 176.9 1.78x

parameterizedSmall 136.5 9.0 (6.5%) 163.0 0.83x
AvlTree testFindMax 3886.3 1072.5 (27.0%) 12928.9 0.30x

testIsEmpty 2743.9 16.0 (0.5%) 146.2 18.76x
BinaryHeap testFindMinDecrease 679.3 10.7 (1.5%) 100.0 6.76x

Fig. 5: Average execution times for 10 runs of TACO and JTACO on the benchmark

In all cases the failing partial assignment occurs very early during the MINISAT ex-
ecution: ranging from 0.5% to 56% of the total solver time. Under these circumstances,
the fundamental idea of lifting these partial assignments into JUNIT test cases seems
validated.

Regarding the performance of TACO and JTACO, surprisingly JTACO is outper-
formed on half of the subjects. A closer inspection revealed that, although a failing
partial assignment was indeed found very quickly, the MINISAT process was mostly
delayed by JTACO’s generation and execution of test cases. In other words, the cost
of generating and executing JUNIT test cases was higher than the benefit of stopping
the SAT-Solver execution sooner, at least in a single-core environment. Observe that
JTACO was faster if the first failing partial assignment occurred within the first 5% of
the MINISAT execution time.

4 Conclusions and Further Work

Given the exponential complexity of the SAT-solving process, techniques for decreas-
ing the execution time of bounded verification tools are paramount. In this work we
presented an approach for generating JUNIT test cases from partial assignments col-
lected during the SAT-Solver execution.

Besides general improvements such as robustness and maturity for the JTACO tool,
our future work will focus on the following issues:

– Runtime-checking of JML/JFSL specifications: The current prototype of JTACO
only handles properties that are expressed as assert statements. In order to fully
support JML and JFSL specifications we need to automatically synthesize runtime
predicates for a significant fragment of the specification language (e.g., handling
the runtime-checking of all the constructs used in [8]). Additionally, we also need
to extend the lifting mechanism (introduced in Section 2) for handling initial values
that do not satisfy the precondition of the method under analysis.

6



– Bounded verification of correct programs: If ψ happens to be unsatisfiable, all
the overhead invested in dumping partial assignments is lost. Due to this fact,
JTACO could become a practical approach only if the SAT-Solver’s overhead is
reasonable in case the formula is unsatisfiable.

– A multi-core JTACO: In a multi-core environment, several processes could be
spawned for lifting different partial assignments without blocking the main MI-
NISAT process. We expect that a multi-core JTACO might boost JTACO per-
formance. Our future work will include a comparison against other parallel SAT-
solving tools [9,14].

The current prototype of the JTACO tool, as well as all subjects required to replicate
the results in this paper are publicly available. For details, see:

http://www.st.cs.uni-saarland.de/jtaco/

Acknowledgments

This work was funded by an European Research Council (ERC) Advanced Grant “SPEC-
MATE – Specification Mining and Testing” and MEALS 295261. Eva May provided
helpful comments about this work. We thank the anonymous reviewers for their com-
ments and suggestions.

References

1. Bech, K., Gamma, E.: JUnit: A programmer-oriented testing framework for Java (May 2014),
http://junit.org

2. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced specification
and verification with JML and ESC/Java2. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.P. (eds.) FMCO. Lecture Notes in Computer Science, vol. 4111, pp. 342–363.
Springer (2005)

3. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen,
K., Podelski, A. (eds.) TACAS. Lecture Notes in Computer Science, vol. 2988, pp. 168–176.
Springer (2004)

4. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-proving. Com-
mun. ACM 5(7), 394–397 (1962)

5. Dennis, G., Yessenov, K., Jackson, D.: Bounded verification of voting software. In: Shankar,
N., Woodcock, J. (eds.) VSTTE. Lecture Notes in Computer Science, vol. 5295, pp. 130–
145. Springer (2008)

6. D’Ippolito, N., Frias, M.F., Galeotti, J.P., Lanzarotti, E., Mera, S.: Alloy+HotCore: A fast
approximation to unsat core. In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves,
S. (eds.) ASM. Lecture Notes in Computer Science, vol. 5977, pp. 160–173. Springer (2010)

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT. Lecture Notes in Computer Science, vol. 2919, pp. 502–518. Springer (2003)

8. Galeotti, J.P., Rosner, N., Pombo, C.L., Frias, M.F.: Analysis of invariants for efficient
bounded verification. In: Tonella, P., Orso, A. (eds.) ISSTA. pp. 25–36. ACM (2010)

9. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: a parallel SAT solver. JSAT 6(4), 245–262
(2009)

7

http://www.st.cs.uni- saarland.de/jtaco/
http://junit.org


10. Ivancic, F., Yang, Z., Ganai, M.K., Gupta, A., Shlyakhter, I., Ashar, P.: F-Soft: Software ver-
ification platform. In: Etessami, K., Rajamani, S.K. (eds.) CAV. Lecture Notes in Computer
Science, vol. 3576, pp. 301–306. Springer (2005)

11. Jackson, D.: Software Abstractions: Logic, Language, and Analysis (Revised Edition). The
MIT Press (2012)

12. Near, J.P., Jackson, D.: Rubicon: bounded verification of web applications. In: Tracz, W.,
Robillard, M.P., Bultan, T. (eds.) SIGSOFT FSE. p. 60. ACM (2012)

13. Parrino, B.C., Galeotti, J.P., Garbervetsky, D., Frias, M.F.: TacoFlow: optimizing sat program
verification using dataflow analysis. SoSyM: Software and Systems Modeling (2014)

14. Rosner, N., Galeotti, J.P., Bermúdez, S., Blas, G.M., Rosso, S.P.D., Pizzagalli, L., Zemı́n,
L., Frias, M.F.: Parallel bounded analysis in code with rich invariants by refinement of field
bounds. In: Pezzè, M., Harman, M. (eds.) ISSTA. pp. 23–33. ACM (2013)

15. Torlak, E., Chang, F.S.H., Jackson, D.: Finding minimal unsatisfiable cores of declarative
specifications. In: Cuéllar, J., Maibaum, T.S.E., Sere, K. (eds.) FM. Lecture Notes in Com-
puter Science, vol. 5014, pp. 326–341. Springer (2008)

16. Xie, Y., Aiken, A.: Saturn: A scalable framework for error detection using boolean satisfia-
bility. ACM Trans. Program. Lang. Syst. 29(3) (2007)

17. Yessenov, K.: A light-weight specification language for bounded program verification. Mas-
ter’s thesis, MIT (2009)

8


	JTACO: Test Execution for Faster Bounded Verification

