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Abstract. Unit test generation tools typically aim at one of two objec-
tives: to explore the program behavior in order to exercise automated
oracles, or to produce a representative test set that can be used to man-
ually add oracles or to use as a regression test set. Dynamic symbolic
execution (DSE) can efficiently explore all simple paths through a pro-
gram, exercising automated oracles such as assertions or code contracts.
However, its original intention was not to produce representative test
sets. Although DSE tools like Pex can retain subsets of the tests seen
during the exploration, customer feedback revealed that users expect dif-
ferent values than those produced by Pex, and sometimes also more than
one value for a given condition or program path. This threatens the ap-
plicability of DSE in a scenario without automated oracles. Indeed, even
though all paths might be covered by DSE, the resulting tests are usually
not sensitive enough to make a good regression test suite. In this paper,
we present augmented dynamic symbolic execution, which aims to pro-
duce representative test sets with DSE by augmenting path conditions
with additional conditions that enforce target criteria such as boundary
or mutation adequacy, or logical coverage criteria. Experiments with our
Apex prototype demonstrate that the resulting test cases can detect up
to 30% more seeded defects than those produced with Pex.

1 Introduction

Automated tools for structural testing are typically applied in one of two pos-
sible scenarios: 1) to exercise automated oracles, for example provided in terms
of partial specifications, code contracts, assertions, or generic properties such as
program crashes; or 2) to produce a representative test suite that needs to be
enhanced with test oracles by a developer. Dynamic symbolic execution (DSE)
[5] is one of the most successful approaches to exercising automated oracles,
and there are many successful applications ranging from parametrized unit test-
ing [23] to white-box fuzzing [12].
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However, the application of DSE in the alternative scenario where represen-
tative test suites are desired is less explored. Tools like Microsoft’s Pex [23] use
simple heuristics to filter the test cases explored during DSE to retain subsets
achieving branch coverage. However, there is no systematic way to produce sev-
eral values for an individual branch or path, so it becomes difficult to implement
other criteria such as boundary value analysis. This is problematic for regres-
sion testing: After changing a program a new DSE exploration would again just
exercise the current behavior with respect to automated oracles, yet to find re-
gression faults we need to execute the tests produced from an earlier version.
However, as the DSE exploration might miss important values, this may lead
to inferior regression test suites, potentially missing regression faults. Developer
feedback has shown that these additional values are also missed during “Pex
exploration”, where Pex summarizes what a function does. For example, Pex
always first tries to use 0 or null, and then uses values obtained from an SMT
solver, but developers would prefer to see values that they can relate to the code,
such as boundary values, and not null.

To overcome these issues, in this paper we present augmented dynamic sym-
bolic execution (ADSE) 4: This approach takes the path conditions generated
from a program during regular DSE and augments them with additional condi-
tions to make sure that the constraint solver returns interesting values, resulting
in a test suite satisfying a criterion underlying the augmentation. To determine
what constitutes an interesting value we consider boundary values, mutation test-
ing, logical coverage criteria, and error conditions. In detail, the contributions
of this paper are as follows:

Augmented DSE: We describe a generic approach to influence the test data
produced with DSE by transforming path conditions.

Instantiations of ADSE: We describe several instantiations of augmented
DSE; note that most of the underlying transformations have already been
used in the past, yet always in a problem-specific context. In particular, we
formulate the following transformations in terms of ADSE:

Boundary Value DSE: We instantiate augmented DSE such that bound-
ary value inputs are generated with dynamic symbolic execution.

Mutation Testing DSE: We instantiate augmented DSE such that test
cases that are good at killing mutants are derived with DSE.

Logical Coverage DSE: We instantiate augmented DSE such that test
cases that satisfy logical coverage criteria are derived with DSE.

Error Condition DSE: We instantiate augmented DSE such that error
conditions such as division by zero or overflows are triggered together
with regular values.

Evaluation: We have implemented the approach in our Apex prototype as an
extension to the popular Pex test generation tool, and present the results of
an evaluation on a set of path conditions extracted with Pex.

4 A preliminary version of this paper was published as a short paper discussing the
idea for mutation and boundary analysis without evaluation in [15]
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2 Background

The availability of efficient constraint solvers has made it feasible to apply them
to the task of generating test data. This is usually done by solving path conditions
generated with symbolic execution. Symbolic execution maps a program path to
a set of conditions on the inputs of the program. Branching conditions (e.g., if,
while) represent the individual conditions in these sets, and the conditions are
based on expressions on the input variables. Any input satisfying the conditions
will follow this path through the control flow graph.

Unfortunately, constraint solvers cannot reason about a program’s environ-
ment and run into scalability issues as programs become nontrivial in size. Dy-
namic symbolic execution (DSE) addresses these problems by using concrete
executions to derive path conditions for feasible paths, which are systematically
explored by negating individual conditions and deriving new inputs. Various
tools implement DSE (e.g., DART [10], CUTE [21], Symbolic JPF [2], Pex [23],
and others).

Apex is built on top of the Pex [23] tool, which performs DSE on the .NET
platform. The main intended application of Pex and other DSE-based tools is
to explore program paths with respect to automatically verifiable specifications
such as assertions. Whenever Pex finds a new branch during DSE that was not
covered before, a test case for this branch is added to the final test suite.

Many systematic test generation approaches are focused on branch condi-
tions and branch coverage. To apply existing tools to different target criteria, a
common approach is to transform these criteria to branch coverage problems.
This for example has been done for division by zero errors [4], null pointer excep-
tions [19], mutation testing [26], or boundary value analysis and logical coverage
criteria [18]. Here, additional test objectives are explicitly included in the pro-
gram code as new branch instructions, allowing for reuse of tools maximizing
branch coverage. There are several drawbacks to such an approach:

– A substantial, platform-dependent code manipulation architecture needs to
be implemented, considerably increasing the complexity.

– Applied transformations have to conform to underlying language syntax,
making them less flexible, harder to combine and cumbersome for dynamical
adaptation of exploration targets.

– The code with transformations incorporated is still a subject to optimizations
done by the underlying DSE engine, which can reverse or alter the applied
modifications in an unexpected way, possibly causing path explosion.

For sure there would be ways to work around these drawbacks. However, in sum
these are severe shortcomings threatening the practical applicability of source-
transformation based approaches in the context of DSE. In contrast, ADSE
performs all its transformations directly on the path conditions, avoiding these
issues.
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1 void methodUnderTest ( i n t x , i n t y ) {
2 i f ( x >= 3 && x <= 7) {
3 i f ( y − x <= 0 | | y >= 4) {
4 // block A
5 } e l s e {
6 // block B
7 } ;
8 } e l s e {
9 // block C

10 } ;
11 }

Fig. 1. Code example to illustrate DSE.

3 Augmented Dynamic Symbolic Execution

3.1 Generating Test Suites with DSE

Dynamic symbolic execution first executes a program using concrete values,
which are usually randomly chosen, or default values. Along the execution path
chosen, conditions are collected, such that the resulting path condition represents
the control flow path – any solution to the path condition will follow the same
path. For example, assume that the example in Figure 1 is first executed with
the concrete values (0, 0). The first if statement evaluates to false, which means
the condition ¬(x ≥ 3 ∧ x ≤ 7) is added to the conditions for this path, and
block C is reached. Now this condition is negated to derive a new path condition,
x ≥ 3 ∧ x ≤ 7, for which a constraint solver produces a solution such as (5, 0).
This new input is executed, covering block A, and the conditions along the new
path are collected: (x ≥ 3∧x ≤ 7)∧¬(y−x ≤ 0∨y ≥ 4). Here, again a condition
not yet explored is chosen, negated, and the resulting path condition is solved,
producing for example (5, 5), which finally also reaches block A.

During the DSE exploration done by Pex a separate test suite T is generated.
Whenever an input S generated by DSE executes a branch that is not yet covered
by T , then a test with this input is added to T ; furthermore in Pex all tests that
trigger exceptions are added to T .

3.2 Augmenting Path Conditions

Augmentation may only increase the quality of the test suite, but needs to
preserve the branch coverage of the test suite produced without augmentation.
A basic prerequisite of our approach is therefore that the augmentation of a path
condition does not change the execution path the path condition represents, or
if it does, the inputs fulfilling the original path conditions are retained in the
resulting augmented test suite.

Definition 1 (Control Flow Graph). The control flow graph of a program
is a directed graph CFG = (B,E), where B is the set of basic blocks and E is the
set of transitions. There is one dedicated entry node s ∈ B, and one dedicated
exit node e ∈ B.
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The function R(B) maps each b ∈ B to its immediate control dependent branch
condition c, where R(s) = true, and function N(c) maps each condition c to its
node b ∈ B. A path from the start node of the control flow graph is a control
flow path:

Definition 2 (Control Flow Path). A control flow path is a sequence of
transitions 〈t1, . . . tn〉, where t1 = s and (ti, ti+1) ∈ E. If tn = e the path is
complete.

Each control flow path can be represented as a path condition:

Definition 3 (Path Condition). A path condition is a conjunction of
branch conditions P =

∧
i∈{1..n} ci, such that every input m |= P executes

the control flow path 〈s,N(c1), . . . , N(cn)〉, assuming there are no jumps. If
N(cn) = e then the path condition is complete.

We use C ∈ P as a shorthand when referring to the individual branch conditions
in a path condition.

When applying ADSE in a scenario where we require additional values for one
particular program path it is important to make sure that the original control
flow path is not changed. We call this type of augmentation strict :

Definition 4 (Strictly Augmented Path Condition). A strictly aug-
mented path condition P ′ for path condition P is a transformation of P
such that ∀(I ∈ inputs)(I |= P ′ ⇒ I |= P ).

If we would replace test cases obtained from original path conditions with
those obtained from strictly augmented path conditions, we run into the risk of
losing branch coverage due to possibility of augmented path conditions infeasi-
bility. In the worst case, no strictly augmented path condition is feasible, thus
resulting in no tests generated. Furthermore, each condition will be augmented
at least twice, as it will usually be explored in both true and false valuation. This
may lead to an unnecessary overhead for verbose augmentations (e.g., mutation
testing). Therefore, we define weak augmentation such that resulting augmented
conditions only need to share a prefix path:

Definition 5 (Weakly Augmented Path Condition). A weakly aug-
mented path condition P ′ for path condition P at branch condition ci is a
transformation of P such that ∀j < i : Pj = P ′j.

When applying weak augmentation it is important to include the original path
conditions for test generation in order to guarantee the branch coverage does
not decrease.

A transformation criterion is a function that takes as input a path condition,
and produces a set of augmented path conditions as a result.

Definition 6 (Transformation Criterion). A transformation criterion is a
function T (P ) that creates a set of augmented path conditions P ′ based on P .
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Algorithm 1 Test suite generation using weak augmentation.

Require: Program M
Require: Transformation Criterion T
Ensure: Test Suite T
1: procedure GenerateSuiteAugmented(M)
2: T ← {}
3: while none of the exploration bounds were reached do
4: P ← get next path condition
5: S ← solve P
6: if S is satisfiable and covers new branch then
7: t← test with S as input
8: T ← T ∪ {t}
9: for P ′ ∈ AugmentCondition(T ,P) do

10: S′ ← solve P ′

11: if S′ is satisfiable then
12: t′ ← test with S′ as input
13: T ← T ∪ {t′}
14: end while
15: return T ;
16: end procedure

Given a transformation criterion T (P ), we can now use DSE to produce a
test suite using Algorithm 1. Each time a path condition is selected for test
generation (Line 4), and it covers a new branch, we add a test based on it (to
retain the code coverage) and apply the transformation function, to try to solve
all augmented path conditions. The solution (concrete input values) to each such
augmented path condition is added to the resulting test suite after discarding
redundant solutions (see Section 3.3). The process ends if any of the exploration
bounds is reached, for example in terms of a time limit or limit in the number
of path conditions to explore.

The path condition is a conjunction of branch and loop conditions encoun-
tered during program execution. The AugmentCondition(T ,P) call from line 9
weakly augments each of these conditions, one at a time, and discarding all con-
ditions following the augmented condition. For example, assume that in path
condition C1 ∧ C2 ∧ C3 ∧ C4 the condition C1 has already been augmented.
When augmenting C2 the resulting condition would be C1 ∧ C ′2.

3.3 Handling Redundancy

In normal DSE, the constraint solver is only queried for path conditions which
lead to execution of a new control flow path. In contrast, the augmentation
may lead to a set of path conditions that all follow the same control flow path.
Thus, there is the possibility that the solution to one augmented path condition
satisfies some of other augmented conditions for the same path condition. This
is a typical problem in coverage-oriented test generation, and is often countered
by applying minimization as a post-processing step (e.g., [20]).
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Algorithm 1 first solves all augmented path conditions. In principle, a fur-
ther optimization can be added to check if previous test cases already satisfy a
new augmented condition. In practice, however, we achieved a higher speedup
by simply parallelizing Algorithm 1, because many augmented path conditions
turn out to be unsatisfiable. The satisfiable solutions are then minimized using
a simple heuristic: Solutions are sorted descending by the length of the path
conditions from which they were obtained. Next, sequentially, each of these so-
lutions is evaluated against the other augmented path conditions. If it turns out
that a given augmented path condition is satisfiable with a previous solution,
the solution obtained directly from this path condition is discarded. As a re-
sult, we obtain a minimized set of solutions satisfying the same augmented path
conditions; this set is represents the test suite returned to the user.

When dealing with path conditions, each condition in the source code may
occur several times in one path condition. In particular, loop guards may be
repeated many times. For example, consider the following loop:

while ( x != 0 ) {

list.add( x % 10 );

x = x / 10;

}

Assuming the loop unrolled exactly 3 times the pc will be a conjunction of
conditions as follows:

x 6= 0, list[0] = x mod 10,
x/10 6= 0, list[1] = x/10 mod 10,

x/10/10 6= 0, list[2] = x/10/10 mod 10,
x/10/10/10 = 0

Here, one division operator occurred in conditions 12 times (32 + 3) after 3 un-
rollings and all these occurrences may be targets for augmentation, which could
lead to scalability problems. In principle, one can avoid augmenting duplicate
occurrences of the same code location by incorporating ADSE directly into the
underlying DSE engine, such that it has the required mapping of path conditions
to source code statements. Based on this information, one can avoid to augment
more than one condition corresponding to the same source code statement, if
desired.

4 Augmentation Criteria

We now instantiate the transformation criterion for different common testing
objectives, such as boundary value analysis, mutation testing, or general logical
coverage criteria.

4.1 Boundary Value Testing

For a given path condition, any input values satisfying this condition will follow
the represented path and will thus exhibit the same behavior. DSE therefore



8

assumes that it is sufficient to test each path only once, and it does not matter
which value out of the domain for this path is chosen. However, this only holds
under the assumption that there is a complete specification that can decide cor-
rectness for every path. From the test suite point of view, a single representative
per path is sufficient to test for functional faults, but not to test for domain
faults [25].

For example, if the condition in Line 2 of Figure 1 is wrongly implemented
and x should range from 2 to 7 instead of 3 to 7, then a test suite derived with
DSE might not be able to detect this fault. Similarly, if such a test suite is used
for regression testing, then changes in the value domains would not be detected.

An idea that was proposed early on [25] and has been focus of research over
the years (e.g., [17,18]) is that testing should focus on values around the bound-
aries of domains. Using boundary values instead of whatever the underlying
constraint solver suggests has the potential to increase the regression fault sen-
sitivity of a test suite produced with DSE, and it also has the potential to make
test cases easier to understand, as in many cases values obtained would have an
obvious relation to conditions in source code.

There are several different ways to derive boundary values using ADSE. A
simple method to derive values at the boundaries of relational comparisons is to
augment relational conditions as follows (e.g., [18]):

A = B → A = B A ≤ B → A = B A < B → A = B − 1
A 6= B → A = B − 1 A ≥ B → A = B A > B → A = B + 1

(1)

Boundary value analysis typically requires not only a value at the boundary,
but also representative values from somewhere within the domain. This can be
achieved by either selecting different values instead of 1 in the above transfor-
mation, or by additional conditions as follows:

A ≤ B → A < B A < B → A < B − 1
A ≥ B → A > B A > B → A > B + 1

(2)

Boundary analysis usually also requires to use values on the other side of a
boundary, i.e., values outside the target domain. Boundary value analysis thus
leads to weakly augmented path conditions, such that we include the original
path conditions to ensure there are representative values for all branch condi-
tions.

4.2 Mutation Testing

Mutation testing [7] is a technique where simple syntactic changes (mutations)
are applied to the code in order to simulate faults. The main application of
this is to quantify the sensitivity of a test suite with respect to changes in the
code, and thus to estimate its effectiveness at detecting real faults. However,
mutants can also be used to drive test generation. In particular, by mutating
constraints we can create inputs that weakly kill mutants [14]; i.e., the state
is changed locally after the mutated statement. Mutants are based on actual
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fault models and thus should be representative of real faults, and experiments
have confirmed that generated mutants are indeed similar to real faults for the
purpose of evaluating testing techniques [3]. The estimation of effectiveness is
quantified in the mutation score, which is the ratio of detected (killed) mutants
to mutants in total. Mutants that survive the test cases offer guidance in where
the test suite needs improvement.

Different types of mutations can be defined in terms of mutation operators,
where each mutation operator typically can be applied to several different loca-
tions in a program, each time resulting in a new mutant; usually, only mutants
that differ by a single change from the original program are considered.

In Apex, we have implemented the following mutation operators:

ROR, LOR, AOR: Relational/Logical/Arithmetic operator replacement (3
different mutation operators) replace respectively a relational, logical and
arithmetic operator with all its other variants.

UOI: Unary operator insertion inserts increment, decrement, negation, and bit-
wise complement operators to variables and constants.

CRO: Constant replacement operator replaces variables and arbitrary constants
with constants 0, 1 and -1.

For example, Line 2 consists of a conjunction of two comparisons; the LOR
operator would replace the && with ||, xor and ROR would replace x <= 7

with x < 7, x == 7, x >= 7, etc. UOI would result in (x+1) <= 7 and all other
variations. Given a mutation operator M , the augmentation should ensure that
for a given condition C there is a value for each of the mutants C ′ ∈M(C) that
distinguishes between C and C ′. Therefore, a weak augmentation function for
condition C simply is to join mutant and original condition with an xor, such
that a resulting test input evaluates different for C and C ′:

T (C) = {C ⊕ ¬C ′ | ∀C ′ ∈M(C)} (3)

4.3 Logical Coverage

The third instantiation of ADSE we consider in this paper is on coverage criteria
for logical predicates, as common in source code. Note that DSE tools operating
on the byte-code such as Symbolic JPF [2] or Pex do not need to treat complex
logical predicates, as usually complex predicates in source code are compiled to
nested atomic predicates in byte-code. However, if the instrumentation for DSE
is done on the source code (e.g., [21]) or it is done on a model level (e.g., [16])
then complex predicates can exist and need to be covered.

The transformation of logical predicates to conditions that enforce test gen-
eration for different coverage criteria is well studied in other domains, e.g., when
representing coverage criteria as temporal logic predicates for model checking [8].
To apply this to our context, we adopt the notation used in [1]: A logical predicate
(branch condition) consists of clauses conjoined with logical operators. Without
augmentation, the result of DSE is thus a test suite satisfying predicate coverage.
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We consider general active clause coverage (GACC), which is a version of
MCDC [6]. It requires that for each clause in a logical predicate there exists
a state such that the clause determines the value of the predicate, and the
clause has to evaluate to true and to false. For example, the branch in Line 3 in
Figure 1 consists of two clauses, y − x ≤ 0 and y ≥ 4. Each of the two clauses
determine either the true or false outcome of the predicate only if the other
one evaluates to false. In general, a clause C determines a predicate P if the
following xor-expression is true, where PC,x denotes P with C replaced with x:
PC,True ⊕ PC,False

Consequently, the transformation of a predicate P requires that for every
clause C ∈ P we add a condition such that P is true and C determines the
outcome of P :

T (P ) = {P ∧ (PC,True ⊕ PC,False) | C ∈ P} (4)

Note that GACC tests always come in pairs, as the MCDC definition requires
that the clause C has to be shown to make P evaluate to true and to false. We
assume that the DSE exploration will lead to application of the transformation
to both P and ¬P . In practice, this means that the above transformation will
usually achieve that C evaluates to true and to false. Theoretically, however,
simply using determination to augment the condition might also lead to a pair of
tests where a clause evaluates to the same value in both cases, yet the determined
outcome of the condition differs. This can be overcome by considering the values
of individual clauses across transformations as will be described below.

In contrast to GACC, General Inactive Clause Coverage (GICC) requires a
clause to not determine the outcome of the predicate, i.e., changing the value
of the clause does not change the value of the predicate. For example, GICC
requires that each of the two clauses in the predicate in Line 3 in Figure 1 has to
evaluate to true and to false without changing the outcome of the predicate. If
the outcome of the predicate is true, then that means the other clause has to be
true; if the predicate is false, then in this example there is no way a clause can
not determine this outcome. GICC is also known as Reinforced Condition/De-
cision Coverage [24]. The following transformation creates a pair of augmented
conditions for every clause in a predicate:

T (P ) = {P ∧ C ∧ ¬(PC,True ⊕ PC,False) | C ∈ P}∪
{P ∧ ¬C ∧ ¬(PC,True ⊕ PC,False) | C ∈ P}

This transformation again uses the determination function to require the pred-
icate P to evaluate to true with clause C evaluating to true, and also with C
evaluating to false, such that C does not determine P . Again, GICC also requires
that the same is also shown for ¬P , and we assume that ¬P is also augmented
as part of the DSE exploration.

There are stronger versions of GACC and GICC, which require that the
other clauses in the predicates do not change their values for any given pair
of tests for a clause C. This can be achieved by keeping track of values across
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transformations. For example, if we know that clause C evaluated to true in
the first of a pair of GACC tests, then in the second we can add the condition
C = false. In fact, when adding this requirement the resulting test set will
satisfy the stricter CACC (Correlated Active Clause Coverage) criterion, which
requires that the considered clause determines the outcome of a predicate, and
both the predicate and the clause evaluate to true and false.

4.4 Error Conditions

The fourth instance of ADSE we consider in this paper is that of error conditions:
While many expressions can be efficiently tested in terms of the explicitly listed
conditions on the value ranges, there are often implicit conditions that can lead
to erroneous behavior. For example, if the expression x/y is part of a condition,
then if y = 0 the outcome of the expression is division by zero fault, while for
any other value the expression is valid. There have been attempts to make such
implicit error conditions explicit to allow test generation tools to cover these
cases (e.g., [4, 19]), Pex makes these branches explicit [23], and SAGE includes
such conditions in the properties it checks for [11].

If the underlying symbolic execution engine does not make such branches
explicit (e.g., Pex or SAGE make them explicit, but other tools might not), then
error conditions can be explicitly enforced using ADSE. For example,

T (P ) =

{P} if there are no divisions in P
{P ∧ x = 0 | ∀x : divisors in P} ∪
{P ∧ x 6= 0 | ∀x : divisors in P} otherwise.

(5)

In a similar way, other error conditions can be used to augment path conditions.
For example, every arithmetic condition can be augmented to a version where
there is an overflow and one where there is none; every array access with a non-
constant value can be augmented to one version where the index is within the
range, and one where it is out of range; every pointer access can be augmented
to a version where the pointer is null and one where it is not.

5 Evaluation

Our Apex prototype implements the described approach as an extension to the
Pex tool, and we applied it to a set of example functions to evaluate the effects
of the condition augmentation on the resulting test suite size as well as fault
detection ability. Pex operates on .NET byte-code (CIL), and all complex pred-
icates in the source code are translated to atomic conditions in the byte-code.
Furthermore, the symbolic execution engine in Pex already makes error con-
ditions explicit as branches. Consequently, our evaluation focuses on boundary
value and mutation analysis. In our evaluation we aim to determine how aug-
mentation with boundary value and mutation analysis affects the fault detection
ability, test suite size, the number of conditions that need to be solved, and time
required for computation.
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Table 1. Mutants killed using DSE and augmented with boundary value and mutation
analysis

Averages: DSE: 59.22%, Boundary Augmentation: 67.90%, Mutation Augmentation: 75.29%

Function DSE Bounds Mutation

Factorial 87.10% 92.86% 93.88%
Power 61.35% 85.66% 90.91%
MaxValue 68.33% 88.28% 89.37%
Fibonacci 84.76% 87.80% 89.02%
GCD 41.74% 41.04% 58.07%
WBS 27.76% 26.28% 28.27%

Function DSE Bounds Mutation

FindMiddle 58.65% 64.69% 74.60%
WrapInc 76.32% 87.50% 95.00%
Remainder 58.87% 74.97% 82.92%
ToOctal 28.71% 33.16% 40.77%
ToHex 51.97% 61.03% 70.11%
Roops avg. 65.08% 71.52% 90.56%

5.1 Experimental Setup

Apex is based on of Pex, but needs to access path conditions and change the
test generation strategy that is applied, which is not possible through the public
Pex extension interface. Without modifying Pex itself, we implemented Apex in
terms of a Pex extension that collects the path conditions Pex uses to generate
tests, and external tool processing them in order to derive tests. The resulting
Apex prototype can automatically generate unit test suites using ADSE, requir-
ing nothing but the byte-code of the unit under test. Apex leverages PexWizard,
custom Pex-extensions and external tools written in C# to fulfill its tasks.

We ran experiments on 11 standalone methods and one class with multiple
methods; Factorial, Power, MaxValue, Fibonacci, GCD (GreatestCommonDe-
nominator), Remainder, ToOctal and ToHex are taken from DSA5, WBS is
taken from [22], and FindMiddle and WrapRoundCounter are examples used
in [9]; Roops avg.6 denotes results averaged over a set of 44 methods of integer
examples contained in the Roops test generation benchmark. In our experiments,
we consider the boundary value and mutation transformations in detail. We do
not consider logical coverage as there are only few complex branch conditions in
the byte-code-based symbolic execution performed by Pex, and we also do not
consider error conditions as Pex already makes these explicit.

To determine the effectiveness of ADSE we applied the boundary value and
mutation testing transformations to all our examples, and measured the resulting
mutation scores in both cases, as well as the resulting number of test cases, path
conditions solved and time elapsed. For boundary value analysis, we generated
conditions to derive values directly at the boundaries and using a representative
value.

5.2 Results

Table 1 lists the mutation scores achieved with ADSE against mutants of path
conditions, as described in Section 4.2; in almost all cases there is a clear im-
provement over the mutation scores of the branch-coverage test set produced by

5 http://dsa.codeplex.com/
6 http://code.google.com/p/roops/
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Table 2. # of tests of augmented test suite / # of path conditions solved using
boundary value and mutation analysis, and time

Function Tests/Conditions Time
DSE Boundary Mutation DSE Boundary Mutation

Factorial 4/4 6/11 8/98 <1s <1s <1s
Power 4/4 10/31 15/286 <1s <1s 1s
MaxValue 5/5 11/38 15/367 <1s <1s 1s
Fibonacci 6/6 7/15 9/164 <1s <1s <1s
GCD 4/4 4/17 27/1,004 <1s <1s 2m54s
WBS 18/18 101/174 365/2,508 <1s 2s 1m48s
FindMiddle 11/11 25/180 71/2,240 <1s <1s 19s
WrapInc 2/2 4/6 6/40 <1s <1s <1s
Remainder 11/11 33/139 64/1,838 <1s 1s 58s
ToOctal 6/6 18/301 71/14,524 <1s 16s 35m59s
ToHex 14/14 24/382 101/11,395 <1s 9s 12m27s
Roops avg. 2.05/2.05 2.36/4.68 5.50/94.39 <1s <1s <1s

Average 7.25/7.25 20.45/108.22 63.13/2,879.87 <1s 2s 4m32s

Pex. Boundary value testing leads to lower mutation scores for GCD and WBS;
for these examples there seem to be more mutants that are not related to bound-
ary values, such that the boundary values represent an unlucky choice. There is
of course a potential bias in these results as the mutants used for evaluation are
the same as used to produce test cases. However, the aim of this experiment is
not to evaluate different coverage criteria, but to demonstrate the general feasi-
bility of ADSE, and that Apex can satisfy the augmented path conditions to a
high degree.

In our experiments, ADSE resulted in up to 30% higher mutation scores.

Table 2 reveals where the increase in mutation score comes from: The number
of tests produced is considerably higher than in Pex’s branch-coverage test sets.
The table shows the size of test suites produced by augmentation and number
of path conditions that were solved.

In our experiments, ADSE increased the number
of tests by up to 20× over branch coverage.

Constraint solving can be very expensive, and as the augmentation increases
the number of conditions that need to be solved, this can be problematic with
respect to the scalability of the approach. Table 2 summarizes the number of
conditions that were passed to the constraint solver with and without augmen-
tation (this includes the conditions that are solved as part of the regular DSE
exploration), and the right hand side of Table 2 summarizes the time it took to
emit the augmented test suites, running on 7 out of 8 logical cores of Intel(R)
Core(TM) i7-2675QM CPU @ 2.20GHz processor and 8 GB RAM. The increase
is significant, and depends on the actual transformation used. Little surprising,
mutation analysis leads to the largest number of augmented path conditions,
and thus also significantly increases the effort that goes into test generation.
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The fact that mutation testing has scalability issues is well known, and there
are ways to improve the performance, primarily by more fine-grained control over
path conditions. Other techniques include summarizing loops [13], which directly
addresses the scalability problem with loop unrollings (see 3.3), or sampling
mutants instead of exhaustively considering all of them. Such techniques can
theoretically be applied to ADSE as well. Furthermore, there are techniques to
reduce the number of calls to the constraint solver (e.g., [11]).

The ToOctal example has the largest increase in the number of path condi-
tions, and this and ToHex are instances of the loop unrolling problem described
in Section 3.3. As our current prototype is not directly integrated into Pex it
does not have access to a mapping between path conditions and code, making
it impossible to avoid this problem.

On average, ADSE lead to a modest increase in computational time,
but the worst case was 36 minutes slower than normal DSE.

5.3 Threats to Validity

The focus of this evaluation is to demonstrate that ADSE can result in better
test suites, where the meaning of “better” can be defined by any transformation
criterion. There are several threats to the validity of these experiments:

Threats to construct validity are on how the performance of a testing tech-
nique is defined. We measured the quality of the resulting test sets in terms
of their mutation score on path conditions, not the source code. However, in
practice developers might have different preferences such as whether the chosen
values are similar to values a human tester might have chosen. Furthermore, an
increase in mutation score might not be desirable if it comes with a significant
increase of the test suite size. The mutation score in our experiments was com-
puted by the same tool used to generate mutation augmented test suites, so the
results may be biased. As we used a standard set of mutation operators it is
likely that other mutation analysis tools would result in similar scores; however,
in general quantifying the relation between different coverage criteria is not the
objective of this paper.

Threats to internal validity might come from how the empirical study was
carried out. To reduce the probability of having faults in our Apex prototype,
it has sizable unit test suite and makes heavy use of Code Contracts. The size
of the chosen example functions means that there is a threat to external validity
regarding the generalization to other types of software. The main limitation
enforcing our choice of case study subjects was that our approach is not fully
implementable through the public Pex extension API.

6 Conclusions

DSE can efficiently generate inputs to cover all (simple) paths in a program.
Yet, the use of DSE to produce test suites with high coverage of established test
criteria has not been explored in depth. In this paper we describe a technique
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that transforms the path conditions that DSE handles such that DSE produces
test suites satisfying any chosen coverage criterion. We have instantiated this
augmented dynamic symbolic execution for boundary value analysis, mutation
analysis, logical coverage criteria, and error conditions, demonstrating that the
resulting test suites are superior at detecting faults to the simple branch coverage
test suites produced by Pex.

There are several immediate applications of ADSE: First, a common appli-
cation reported by Pex users is to simply explore the behavior of a function or
program. In this case, the programmer simply looks at the test data produced
by Pex, and can thus profit from a wider range of interesting cases. For exam-
ple, if there is a predicate on 5 × x == y × z then a valid assignment (and the
one chosen by Pex) would be to assign 0 to x, y, and z. Mutation analysis or
boundary values would lead to different (more interesting) values.

The second application is a traditional scenario in automated testing when
there is no automated oracle available. Here, the aim is often to produce test
sets that satisfy a given criterion, for example a logical coverage criterion.

A third application scenario is regression testing: When software evolves, one
needs a regression test suite to check for regression faults. The stronger the test
suite, the more sensitive it is against regression faults, and thus ADSE can offer
to improve regression test suites.

ADSE also has the potential to extend DSE in many ways not immediately
targeted by the transformations we described in this paper. Augmenting com-
prehensibility by transforming to human-readable values (e.g., for strings) or
performance testing are just two possible augmentations.

Finally, in our evaluation we demonstrated that augmentation can lead to
test suites satisfying different criteria. However, we have not yet investigated
which criteria are most useful in practice. For example, the mutation testing ex-
periments indicate scalability problems, which might justify the use of sampling
techniques to generate stronger test sets without expensive constraint solving
on too many individual mutants. Furthermore, our current prototype is imple-
mented as an extension to Pex, whereas a tighter tool integration would offer
further opportunities for optimization. This and other improvements will be the
focus of our future work.
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