
Test Generation across Multiple Layers

Matthias Höschele · Juan Pablo Galeotti · Andreas Zeller
Saarland University, Saarbrücken, Germany

{hoeschele, galeotti, zeller}@cs.uni-saarland.de

ABSTRACT
Complex software systems frequently come in many layers, each
realized in a different programming language. This is a challenge
for test generation, as the semantics of each layer have to be de-
termined and integrated. An automatic test generator for Java, for
instance, is typically unable to deal with the internals of lower level
code (such as C-code), which results in lower coverage and fewer
test cases of interest.

In this paper, we sketch a novel approach to help search-based
test generators for Java to achieve better coverage of underlying
native code layers. The key idea is to apply test generation to the
native layer first, and then to use the inputs to the native test cases
as targets for search-based testing of the higher Java layers. We
demonstrate our approach on a case study combining KLEE and
EVOSUITE.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Experimentation, Reliability, Theory

Keywords
Search based software engineering, symbolic execution, unit test-
ing, test generation, multiple layers, native code

1. INTRODUCTION
Testing is an important task in the development of software sys-

tems. Tools for automatically generating test cases aim at lowering
the cost of creating tests by removing part of this burden from the
user. Search-Based Software Testing [13] (SBST) cast the problem
of creating a test suite as an optimization problem. In the context
of SBST for Java programs, one recurrent limitation lays in dealing
with native code. The Java Native Interface (JNI) [11] allows Java
code running in a Java Virtual Machine to call applications and
libraries written in lower-level languages such as C, C++ and as-
sembly. In contrast to the Java bytecode, this native code is specific

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SBST ’14, June 2 – June 3, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2852-4/14/06 ...$15.00.

path conditions
concrete inputs

KLEE EvoSuite

call contexts

refined
test suite

Figure 1: Overview of our proposed approach

to the hardware and operating system. Java developers choose na-
tive implementations to increase code reusability (re-using already
implemented and debugged C/C++ or assembly code) and perfor-
mance (by avoiding unnecessary layers of abstraction between the
machine execution and the program). Native methods are declared
in a Java class by simply adding the native method modifier.

Every Java program involving native function calls could be seen
as a layered system where the Java code represents the upper layer
(since all the native functions are invoked through the Java code)
and the native module could be seen as the lower layer. Test case
generation for such systems is challenging. Apart from the obvious
implementation problems caused by dealing with heterogeneous
environments, techniques that are suitable for object-oriented pro-
grams might not apply to low-level procedural languages and vice
versa. An SBST tool such as EVOSUITE [3] might be able to ef-
ficiently deal with the object-oriented aspects of the upper layer
(like synthesizing sequences of method invocations to create com-
plex objects) and achieve high coverage, but since native code is
ignored, there is no guidance to improve the search towards un-
covered goals. On the other hand, Dynamic Symbolic Execution
[9, 14] (DSE) has been particularly successful at dealing with the
caveats of low-level code. In particular, KLEE [2] arises as a very
effective tool for achieving high coverage of low-level and system
code, although applying KLEE on the low-level code in isolation
might lead to scenarios that are practically infeasible considering
the high level framework.

In the context of layered-systems, we intend to find a sweet
spot where SBST tools could improve coverage and generate more
meaningful test cases by means of applying symbolic execution
tools at the native code level. Figure 1 shows a sketch of our tech-
nique for generating test cases for layered systems:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

SBST’14, June 2 – June 3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2852-4/14/06...$15.00
http://dx.doi.org/10.1145/2593833.2593834

1

1 int f(int x) { return 2 * x; }
2 int h(int x, int y) {
3 if (x != y)
4 if (f(x) == y + 1000000)
5 return -1;
6 return 0;
7 }

Figure 2: C code of the foo native module.

1. First, we systematically explore the lower-layer native C mod-
ules with a symbolic execution tool such as KLEE. The sym-
bolic tool builds concrete inputs to reach high structural cov-
erage, as well as path conditions (i.e. constraints) on the in-
puts to pursuit a particular path on the native code.

2. Then, we instrument the Java upper-layer with additional
branches that encode the concrete inputs found as well as
the collected path conditions from symbolic execution.

3. We apply a SBST tool such as EVOSUITE on the instru-
mented code. The search is influenced by the additional
branches, forcing the execution of the native code to follow
a particular path in the low-level layer.

4. By collecting the concrete native invocations from the test
suite (i.e. array sizes, field values), we can spawn new sym-
bolic explorations from each interesting calling context. These
then lead to previously unknown concrete inputs and path
conditions, which are again fed to the SBST tool.

This process continues until all goals have been covered (both at
the upper as well as the lower layers) or the test generation budget
has been exhausted.

2. CROSS-LAYER TEST GENERATION
Let us illustrate our approach by an example. Figure 2 shows a

native module with functions h() and f() written in C (a slightly
modified version of the motivating example presented in [9]). Ob-
serve that, just by simply exercising random values of x and y it is
highly unlikely that h() returns a value different than 0. Dynamic
Symbolic Execution [9] tackles this particular problem by gather-
ing constraints from the program execution, which are later negated
and fed to a constraint solver. Solutions to this constraint systems
are then translated into test inputs in order to achieve higher struc-
tural coverage.

Figure 3 introduces a Java class invoking the native library foo
which contains the C functions in Figure 2. This code represents an
upper layer in the complete system, since all the native C functions
are invoked from the Java class.

Any unit test case generator for Java will find executing the na-
tive function h() declared in Foo quite challenging. First, the visi-
bility level is private. The only way a test case generator can exer-
cise this function is by means of its caller: method bar. Secondly,
since the behavior of bar() depends on object state, the tool will
have to create sequences of method invocations to properly “start”
the Foo instance before invoking bar() on it.

EVOSUITE’s genetic algorithm evolves entire test suites towards
structural coverage criteria. If we apply EVOSUITE to automati-
cally generate a test suite for the Foo class, it is highly likely that
the resulting test cases will not exhibit the AssertionError. This
is due to the fact that the search will have no guidance to cover the
branch triggering the problem.

On the contrary, if we consider our proposed approach on this
particular example, we start by applying KLEE on the C-code

8 class Foo {
9 // make h() available as a native method

10 static {
11 System.loadLibrary("foo");
12 }
13 private static native int h(int x, int y);
14

15 // Java code
16 private boolean flag = false;
17 void start() {flag = true;}
18 void stop() {flag = false;}
19 void bar(int value1, int value2) {
20 if (flag) {
21 int retValue = h(value1,value2);
22 if (retValue != 0) {
23 // a failure has occurred
24 throw new AssertionError();
25 }
26 }
27 }
28 }

Figure 3: A Java class with a declared native function h() in
the Foo native module

29 int main() {
30 int x;
31 int y;
32 klee_make_symbolic(&x, sizeof(x), "x");
33 klee_make_symbolic(&y, sizeof(y), "y");
34 return h(x,y);
35 }

Figure 4: Execution harness for executing KLEE on the func-
tion h()

shown in Figure 2. In order to do so, we create the execution har-
ness shown in Figure 4. One important aspect of creating this exe-
cution harness is deciding what should be symbolic (some integer
values) and what should be concrete (i.e. array sizes). KLEE’s
symbolic execution will cover all paths with exactly 3 values for x
and y, shown in Table 1. In particular, invoking h() with values
x==1056948234 and y==2112896468 returns −1. Then, we instru-
ment the original Java source code as follows:

1. We add a new method instr_h() declared in Figure 5. An
if condition is inserted for each of the concrete values found
by KLEE. In turn this method invokes the native function
h().

2. Additionally, each path condition collected by KLEE is en-
coded as a branch decision and inserted to instr_h().

3. Each invocation to h() in the Java class is replaced by an
invocation to instr_h().

The instrumented Java class Foo is equivalent in behaviour (since
all conditions are side-effect free), but the appended branches pro-
vides twofold guidance to EVOSUITE: One is provided by concrete
inputs found by KLEE that can easily be picked up by EVOSUITE

Table 1: Parameters and return values for native function h()
generated by KLEE

x y h(x,y)

0 0 0
0 1 0

1056948234 2112896468 -1

2

36 private static int instr_h(int x, int y) {
37 /* concrete inputs found by KLEE */
38 if (x == 1056948234 && y == 2112896468) {
39 /*do nothing*/
40 }
41 if (x == 0 && y == 0) {
42 /*do nothing*/
43 }
44 if (x == 0 && y == 1) {
45 /*do nothing*/
46 }
47 /* path conditions collected by KLEE */
48 if (x==y) {
49 /*do nothing*/
50 }
51 if (x!=y && 2*x!=y+1000000) {
52 /*do nothing*/
53 }
54 if (x!=y && 2*x==y+1000000) {
55 /*do nothing*/
56 }
57 /* invocation to native method h() */
58 return h(x,y);
59 }

Figure 5: The instrumented version of the h() native function
from Figure 3. The first conditions encourage the use of values
provided by KLEE

as suggestions for values1. But it could be the case that one of these
concrete solutions found during symbolic exploration is infeasible
in the context of the more limited usage within the Java class. In
order to address this issue, we also instrument the path conditions.
By doing this, if a concrete solution is infeasible, but there is an
alternative solution for the same path, EVOSUITE might be guided
by the path condition branches.

The execution of EVOSUITE on the instrumented Java bytecode
leads to the test case presented in Figure 6. The resulting test suite
achieves full coverage and exhibits the failure in the code. A pro-
grammer inspecting the resulting test suite will conclude the exis-
tence of a problem since the reflected behavior was not expected.

By sharing constraints and calling contexts between KLEE and
EVOSUITE, we may be able to generate interesting tests for

systems across a high-level Java layer and a low-level C layer .
We presume that applying different techniques targeting specific

features of each layer might pave the way towards generating tests
cases for systems with multiple layers.

3. THE ROAD AHEAD
While the initial example works well in practice, our concept for

testing across layers is still under development. Issues we currently
face include:

• Providing feedback from EVOSUITE to KLEE requires the
recording of call contexts. To do this we need to extend EVO-
SUITE or add further instrumentation to the Java bytecode
that records array sizes and serializes objects to obtain field
values.

• When combining multiple tools into one approach, finding
the right allocation of resources is crucial to achieve good re-
sults. We expect the optimal ratio of time spent on SBST and

1EVOSUITE extracts constants from the byte code in order to seed
values during the search, which has tremendous impact in the
search [4]

60 @Test
61 public void test6() throws Throwable {
62 Foo foo = new Foo();
63 foo.start();
64 // Undeclared exception!
65 try {
66 foo.bar(1056948234, 2112896468);
67 fail("Expecting exception AssertionError");
68 } catch(AssertionError e) {
69 }
70 }

Figure 6: A JUNIT test case generated automatically by EVO-
SUITE on the instrumented code of Figure 5

symbolic execution to be dependent on the idiosyncrasies of
subjects and will provide it as a configurable option.

• JNI provides access to Java heap memory via API calls to the
virtual machine. This complex interaction might be hard to
handle for KLEE. We need to replace these calls during sym-
bolic execution in order to provide the runtime information
(i.e. object field values) recorded while running EVOSUITE.

• Callbacks from C code to Java methods can also be a chal-
lenge since these methods are out of reach for a tool like
KLEE. We need to investigate how frequently such callbacks
are used and if their use poses a threat to the applicability of
our approach.

• There are small semantic differences regarding primitive types
in Java and C. When transferring path conditions or concrete
values between those environments we need to be aware of
these differences and possibly modify values in order to pre-
serve the intended semantics.

Our approach is not limited to the simple stack of Java code and
native C methods, but can also be applied to more complex stacks
like Web applications (Javascript / PHP / SQL / C) or applications
interacting with operating system kernels. Another application is
to stay within one language, and using symbolic execution for as
many lower layers as possible, leaving it to SBST to cover the
higher layers and/or system interaction. Despite their challenges,
we see great potential for cross-layer test generation—making test
generation scale up not only to systems, but to systems of systems.

4. RELATED WORK

4.1 Search-based Testing
The field of search-based software testing (SBST) is concerned

with the application of efficient search algorithms in order to gen-
erate test cases. Genetic Algorithms (GA) are one of the most com-
monly applied classes of global search algorithms. The intuition
behind GAs is to imitate the natural process of evolution. Popula-
tions of candidate solutions are evolved by probabilistically apply-
ing domain specific operators that mimic mutation and recombina-
tion via crossover. The parents for individuals of the next genera-
tion are chosen based on their fitness in order to bias the survival
of the fittest. The GA continually improves the fitness of the pop-
ulation until either an optimal solution is reached or a stopping cri-
terion is met (e.g. maximum number of fitness evaluations or time
limit). In the domain of evolutionary testing, a population would
represent a set of test cases and the fitness measures how close a
candidate solution is to satisfy a coverage goal.

3

Fitness functions are used to increase the likelihood of choos-
ing promising individuals for reproduction and thereby gradually
improving the fitness of each generation. In evolutionary testing
fitness functions for branch coverage [13] usually integrate the ap-
proach level (number of unsatisfied control dependencies) and the
branch distance (heuristic for how close the deviating condition is
to evaluating as desired). Such search techniques are not restricted
to the context of primitive datatypes, but have also been applied to
test object-oriented software using method sequences [15, 6].

The conventional approach to SBST is to search for test cases
that satisfy a single coverage goal in isolation. Since limited com-
putational resources need to be allocated to the entire set of cov-
erage goals, dead code and unsatisfiable branch conditions could
waste a lot of runtime that could help to cover feasible branches.
Whole test suite generation implemented by EVOSUITE [5] tries
to fix this issue by optimizing an entire test suite at once towards
satisfying a coverage criterion, and therefore prevents results from
being adversely effected by the order, the difficulty or infeasibility
of individual coverage goals.

4.2 Symbolic Execution
KLEE [2] is a symbolic execution tool. In order to execute

symbolically, the user has to provide an execution harness as the
one presented in Figure 4. In KLEE, programs are compiled into
LLVM assembly, a reduced virtual instruction set. Every time a
LLVM instruction is symbolically executed, the current symbolic
state is updated. When KLEE hits a branch instruction, the branch
condition is symbolically evaluated to true and false. Then, a new
constraint system is built by conjoining each of these new condi-
tions to the current path condition associated to this symbolic state.
Then, each constraint system is later fed into the STP [8] constraint
solver. If neither of them is satisfiable, the current symbolic state is
discarded. If both are satisfiable, the symbolic state is cloned, and
the each path condition is updated with the corresponding branch
condition. If only one branch is satisfiable, no state cloning hap-
pens, although the satisfiable branch condition is appended to the
current path condition. This process continues until no more sym-
bolic states are available for exploration, or the exploration budget
has been exhausted.

When the exploration is finished, KLEE summarises the con-
crete input values of each variable for each satisfiable path. KLEE
also models some memory and arithmetic errors (such as division
by zero, null dereferences, buffer overflows, accessing invalid mem-
ory addresses, etc.) as new branches. By doing so, KLEE provides
the user with an input exhibiting potentially harmful behaviour.

4.3 Hybrid Approaches
There are several approaches to combine SBST and symbolic

execution. In [12], DSE is introduced as a mutation operator to
escape local optima during the search-based algorithm. In [7, 10]
the genetic algorithm is periodically alternated with DSE. Current
chromosomes are transformed in parametrised unit tests in order to
apply DSE. On the other hand, new executions obtained by DSE
are later transformed into chromosomes that are fed to the evolu-
tionary approach. Baars et al. [1] introduced the idea of symbolic
search-based testing, where the fitness function of the GA takes dif-
ferent possible symbolic paths to the target into account. All these
techniques share the goal of achieving maximum structural cover-
age by means of intertwining SBST and DSE. In contrast, in the
context of the current work, these SBST and symbolic execution
are used in different domains.

5. CONCLUSIONS
With the concept of cross-layer test generation, we have sketched

a high level overview on how to combine a symbolic execution
tool like KLEE and a SBST-based tool like EVOSUITE in order
to achieve better coverage in layered systems. We also presented
the main challenges we might like to address in the near future. In
the long run, cross-layer test generation may prove as a promis-
ing approach to scale test generation from individual libraries and
applications to complex systems which no single test generation
technique could handle as a whole.

Acknowledgments.
This work was funded by an European Research Council (ERC)
Advanced Grant “SPECMATE – Specification Mining and Testing”.
Eva May provided helpful comments on earlier revisions of this
work.

6. REFERENCES
[1] A. I. Baars, M. Harman, Y. Hassoun, K. Lakhotia,

P. McMinn, P. Tonella, and T. E. J. Vos. Symbolic
search-based testing. In ASE, pages 53–62, 2011.

[2] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and
automatic generation of high-coverage tests for complex
systems programs. In OSDI, pages 209–224, 2008.

[3] G. Fraser and A. Arcuri. EvoSuite: Automatic test suite
generation for object-oriented software. In FSE, pages
416–419, 2011.

[4] G. Fraser and A. Arcuri. The seed is strong: Seeding
strategies in search-based software testing. In G. Antoniol,
A. Bertolino, and Y. Labiche, editors, ICST, pages 121–130.
IEEE, 2012.

[5] G. Fraser and A. Arcuri. Whole test suite generation. IEEE
Transactions on Software Engineering, 39(2):276–291, 2013.

[6] G. Fraser and A. Zeller. Mutation-driven generation of unit
tests and oracles. TSE, 28(2):278–292, 2012.

[7] J. P. Galeotti, G. Fraser, and A. Arcuri. Improving
search-based test suite generation with dynamic symbolic
execution. In ISSRE, pages 360–369. IEEE, 2013.

[8] V. Ganesh and D. L. Dill. A decision procedure for
bit-vectors and arrays. In CAV, pages 519–531, 2007.

[9] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed
automated random testing. In PLDI, pages 213–223. ACM,
2005.

[10] K. Inkumsah and T. Xie. Improving structural testing of
object-oriented programs via integrating evolutionary testing
and symbolic execution. In ASE, pages 297–306. IEEE,
2008.

[11] S. Liang. Java Native Interface: Programmer’s Guide and
Reference. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1st edition, 1999.

[12] J. Malburg and G. Fraser. Combining search-based and
constraint-based testing. In ASE, pages 436–439, 2011.

[13] P. McMinn. Search-based software test data generation: a
survey. Softw. Test., Verif. Reliab., 14(2):105–156, 2004.

[14] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit
testing engine for c. In M. Wermelinger and H. Gall, editors,
ESEC/SIGSOFT FSE, pages 263–272. ACM, 2005.

[15] P. Tonella. Evolutionary testing of classes. In ISSTA, pages
119–128, 2004.

4

