
Untangling Changes

Kim Herzig
Saarland University

Saarbrücken, Germany
herzig@cs.uni-saarland.de

Andreas Zeller
Saarland University

Saarbrücken, Germany
zeller@cs.uni-saarland.de

Abstract—When developers commit software changes to a
version control system, they often commit unrelated changes
in a single transaction—simply because, while, say, fixing a
bug in module A, they also came across a typo in module B,
and updated a deprecated call in module C. When analyzing
such archives later, the changes to A, B, and C are treated as
being falsely related. In an evaluation of five Java projects, we
found up to 15% of all fixes to consist of multiple unrelated
changes, compromising the resulting analyses through noise
and bias. We present the first approach to untangle such
combined changes after the fact. By taking into account data
dependencies, distance measures, change couplings, test impact
couplings, and distances in call graphs, our approach is able to
untangle tangled changes with a mean success rate of 63–75%.
Our recommendation is that such untangling be considered as
a mandatory step in mining software archives.

Keywords-bias; mining software repositories; software
change analysis; untangling changes;

I. INTRODUCTION

A large fraction of recent work in empirical software
engineering is based on mining version archives—analyzing
which changes were made to a system, by whom, when,
and where. Such mined information can be used to predict
related changes [1], to predict future defects [2], [3], to
analyze who should be assigned a particular task [4], [5],
or simply to gain insights about specific projects [6].

All these studies depend on the accuracy of the mined
information—accuracy which is threatened by noise. Such
noise can come from missing associations between change
and bug databases [7]. One significant source of noise so far
overseen, however, is tangled changes.

What is a tangled change? Let us assume we have a
developer who is assigned multiple tasks A, B, and C.
Let all these have a separate purpose; A may be a bug
fix, B may be an extension, and C may be a refactoring.
When the developer is done with the three tasks, she has
to commit her changes to the version archive, such that
the changes get propagated to other developers and can go
into production. When committing her changes, she may
be disciplined and group her changes into three individual
commits, each containing the changes pertaining to each task
and coming with an individual description. This separation
is complicated, though; for instance, the tasks may require
changes in similar locations. Therefore, it is more likely that

Table I
PROPORTION OF BUG-FIXING CHANGES
THAT ADDRESS MORE THAN ONE ISSUE.

fixes # tangled fixes
ArgoUML 2,945 186 (6.3%)
GWT 809 115 (14.2%)
Jaxen 105 16 (15.2%)
JRuby 2,977 283 (9.5%)
XStream 312 39 (12.5%)

she will commit all changes tangled in a single transaction,
with a message such as “Fixed bug #334 in foo.c and
bar.c; new feature #776 in bar.c; qux.c refactored;
general typo fixes”.

Such tangled changes do not cause serious trouble in
development. However, they introduce noise in any analysis
of the version archive, thereby compromising the accuracy
of the analysis. As the tangled change fixed a bug, all files
touched by it will now be marked as having had a defect—
even though the tangled tasks B and C have nothing to do
with a defect. Likewise, all files will be marked as being
changed together—which may now induce a recommender
to suggest changes to qux.c whenever foo.c is changed.
Commit messages such as “general typo fixes” point to
additional minor changes all over the code—locations which
will now be related with each other as well as the tasks A,
B, and C.

The problem of tangled changes is not a theoretical
one. In an exploratory study on five open source projects,
we manually classified more than 7,000 individual bug-
fixing changes and checked whether these changes addressed
multiple (“tangled”) developer tasks. Table I summarizes our
results: Between 6% and 15% of all fixes address multiple
concerns at once—they are tangled and therefore introduce
noise and bias into any analysis of the respective change
history. (Section II has more on this study.)

The are two main approaches to overcome the problem of
tangled changes. One solution is to detect tangled changes
and to ignore these data points in any further analyses. But
this solution makes two major assumptions. First, one must
be able to detect tangled changes automatically; second,
the fraction of tangled changes must be small enough that
deleting these data points does not cause the overall data set

to be compromised. The second solution to deal with such
tangled changes is to untangle them into separate changes
which can be individually analyzed, thereby reducing the
noise.

In this paper, we present the first approach to untangle
changes. It splits tangled changes into smaller partitions,
where each partition contains a subset of changes that are
related to each other, but not related to the changes in other
partitions. The algorithm is based on static code analysis
only and is fully automatic, allowing archive miners to
untangle tangled changes and to use the created change
partitions instead of the original tangled change. Our ex-
periments on five open-source projects show that neither
data dependencies, distance measures, change couplings, test
impact couplings, or distances in call graphs serve as a one-
size-fits-all solution. By combining these measures, however,
we obtain an effective approach which untangles multiple
combined changes with a mean success rate of 63%–75%.

The remainder of this paper is organized as follows. To
motivate untangling, we discuss the causes and effects of
tangled changes in Section II. The basic principles of our
untangling approach are presented in Section III and Sec-
tion IV. Section V describes the evaluation setup, followed
by the evaluation results in Section VI and the threats to
validity (Section VII). Section VIII discusses related work
and Section IX closes with conclusion and consequences.

II. TANGLED CHANGES

Many approaches to mining version archives require his-
toric quality data used to train machine learning models.
Zimmermann et al. [2] describe one standard approach to
generate their historic quality data sets mapping bug fixes
to code artifacts. The idea is as follows: one requires a list of
bug fixes applied to individual code artifacts (e.g. code files)
during project history: The more bugs were fixed over time,
the worse the code artifact’s original quality. To retrieve such
a bug fix count, one identifies bug fixing change sets by
parsing commit messages. Once the change set is confirmed
to reference a closed and fixed bug report, all code artifacts
changed within the change set are marked as being fixed.

But such an approach relies on the basic assumption
that change sets are atomic—each change set contains only
those changes that are necessary to fix the referenced issue.
However, as stated in Section I, there may be various reasons
for developers to tangle multiple unrelated tasks into a single
commit.

When analyzing such tangled change sets, it is not easy to
determine which code artifacts were changed due to which
developer task. In many cases, developers may be able to
separate two unrelated changes and to review these changes
separately. To the best of our knowledge, however, all
approaches to mining version archives consider the change
set as atomic. When it comes to defect prediction, for
instance, this implies that a bug report is mapped to every

single change in the associated change sets; consequently,
this will introduce bias into the data set, which may spoil
the results of any analysis based on this data.

The bias caused by tangled change sets is significant.
Table I shows the number of issue fixing transactions for five
open-source projects. We considered only those transactions
that contained the keywords fixed, resolved, or issue and
later manually validated that their commit message marks
an issue within the source code (bug and feature requests).
We also manually checked the commit messages of these
fixes and marked a change set as tangled if the commit
message clearly indicated that the applied changes tackle
more than one developer task. This can either be commit
messages that contain more than one issue report refer-
ence (e.g. “XSTR-93, XSTR-120, XSTR-170: Support for
\r newline in strings.”) or a commit message indicating
extra work committed along the issue fix (e.g.“Fixes issue
#591[. . .]. Also contains some formatting and cleanup.”)—
mostly cleanups and refactorings. The fraction of tangled
fixes lies between 6% and 15% (Table I) for issue fixing
change sets.

These findings are supported by other studies reporting
similar bias figures for change sets. Dallmeier [8] used delta
debugging to minimize bug fixes of two open source projects
to a minimal set of code changes letting a regression test
pass. The results show that on average 50% to 60% of
the code changes applied within a bug fix transaction had
no effect on the result of the regression tests. Similarly,
in a study of over 24,000 change sets from seven open-
source projects [9], Kawrykow and Robillard found that 2%
to 15% of all method updates were due to non-essential
differences—code changes that did not change the semantics
of the program. For our initial example of defect prediction
models, this means that up to 30% of all changes are falsely
associated with bug reports; they either are tangled with
other changes by coincidence, or have no impact on the
semantics at all. The effects of such biased data mining sets
are significant [7], [9].

Up to 30% of all changes are falsely associated with bug
reports.

III. THE UNTANGLING ALGORITHM

Many change sets contain code changes serving multiple
developer tasks building bigger tangled change sets. Files
touched by a single tangled change set may have been
changed for different reasons and thus should be separated
when analyzing them or mapping developer tasks to changed
files. Otherwise, such tangled change sets lead to harmful
bias impacting prediction models based on version archive
training sets. To reduce this bias, it is necessary to untan-
gle change sets into individual, corresponding change set
partitions.

Generally, determining unrelated code changes applied
together is undecidable, as the halting problem prevents

predicting whether a given code change has an effect on
a given problem. Consequently, every untangling algorithm
will have to rely on heuristics presenting an approximation
of how to separate two or more code changes. We cannot
solve the untangling problem completely, but we hope to
reduce the amount of bias significantly.

An untangling algorithm should be fully automatic and
simple at the same time. The algorithm proposed in this pa-
per expects an arbitrary change set as input and returns a set
of change set partitions such that each change set partition
contains code changes that are related—ideally all necessary
code changes necessary to resolve one developer task (e.g.
fixing a bug)—while the union of all partitions equals the
original change set. Instead of mapping developer tasks to
all changed code artifacts within the corresponding original
change set, one would assign individual developer tasks to
those code artifacts changes within the corresponding change
set partition.

A. Related changes

Each change set is a set of individual change operations
(added, modified, and deleted method definitions and calls)
to individual source code files. Using this terminology, our
untangling algorithm will get one set of change operations
as input and produces a set of sets of change operations (see
Figure 1).

For each pair of change operations,the algorithm has to
decide whether both change operations belong to the same
partition (are related) or should be assigned to separate
partitions (are not related). To determine whether two change
operations are related or not, we have to determine the
relation distance between two code changes such that the
distance between two related change operations is lower than
the distance between two unrelated change operations. Ana-
lyzing the change operations themselves and considering the
project’s history, there are multiple ways to define distance
between two change operations. However, none of them
seem to be powerful enough to capture the complexity of
change operation relations. Here is an example: Considering
data dependencies between two code changes, it seems
reasonable that two change operations changing statements
reading/writing the same local variable are very likely to
belong together. But vice versa, two code changes not
reading/writing the same local variable may very well belong
together—because both change operations affect consecutive
lines. As a consequence, our untangling algorithm should be
based on a feature vector spanning multiple aspects describ-
ing the distances between individual change operations and
should combine these distance measures to separate related
from unrelated change operations.

In Section IV, we will discuss how to combine multiple
distance measures to decide which code changes are likely
to be related. But before that, let us discuss how the overall
algorithm is designed.

Untangling
Algorithm change set partitiontangled change set

Call-Graph Test/Change
Couplings

Data
Dependencies

Distance
Measures

confidence voters

Figure 1. The untangling algorithm partitions change sets using multiple,
configurable aspect extracted from source code. Gray boxes represent sets
of change operations necessary to complete one developer task.

B. Using Multilevel Graph Partitioning

From the previous section we learned that the untangling
algorithm has to iterate over pairs of change operations and
needs to determine the likelihood that these two change oper-
ations are related and thus should belong to the same change
set partition. Although we do not partition graphs, we reuse
the basic concepts of a general multilevel graph partitioning
(MGP) algorithm proposed by Karypis and Kumar [10]–[12]:

1) Build up a triangle matrix M of dimension m × m
containing one row and one column for each of the
m atomic change operations. Each column represents
one change set partition; we start with the most fine
granular partitioning of the original change set.

2) For each cell [coi, coj] with i, j ≤ m of M, we
compute a confidence value indicating the likelihood
that change operation coi and change operation coj are
related and should belong to the very same change set
partition (see Section IV for details on how to compute
these confidence values). Figure 2 shows this step in
detail.

3) After building up the triangle matrix (confidence value
for [coi, coj] equals the confidence value for [coj , coi]),
we collapse the row and column with the highest
confidence value within the corresponding cell. In
other words we combine those partitions most likely
being related.

4) We add a new column and row for the just newly gen-
erated partition com+1 and compute confidence values
between the new partition and all remaining partitions
within the matrix. There are different strategies to
compute the confidence values between two partitions
P1 and P2 containing multiple change operations.
For the results presented in this paper, we took the
maximum of all confidence values between change
operations stemming from different partitions:

Conf (P1, P2) = Max{Conf (ci, cj) | ci ∈ P1 ∧ cj ∈ P2}

each score visitor returns
confidence value [0,1]

for each pair of code change
operation

aggregate

COs

C
O

s

one cell

Figure 2. The procedure to build the initial triangle matrix used within
the modified multilevel graph partitioning algorithm.

The intention to use the maximum value here is that
two code changes can be related even though they
have very few properties in common but operate on the
same data structure or object instance. In such cases,
using the mean value instead would disregard such
dependencies.

These steps ensure that the dimension of the matrix M
decreases by one for each iteration. This is ensured by the
fact that in each iteration, two already known partitions get
deleted (two rows and two columns) while only one row
and one column get added. We also ensure that we always
combine those partitions that are most likely related to each
other.

Without determining a stopping criterion, this algorithm
would run until only one partition is left. This would be
the original change set itself. Our algorithm can handle
two different stopping strategies, both used for different
purposes. Giving the algorithm a fixed number of partitions
to be produced, it merges partitions until it reaches the
desired number of partitions and returns. This strategy will
be used in our experimental setup, but requires the user to
specify the number of unrelated changes applied within the
original change set. Besides our experimental setup, this
strategy might be a good candidate for analyzing change
sets of projects that follow a very strict commit message
format. In these cases, it might suffice to scan the commit
message to extract the expected number of partitions. If
the number of partitions to be expected is unknown, the
algorithm allows the user to specify a confidence threshold
that must be exceeded in order to allow to partitions to be
merged. If no partitions are left whose common cell exceeds
this threshold, the algorithm terminates.

The untangling algorithm shown so far represents the par-
titioning framework used to merge change sets into partitions
only. This part of the algorithm is general and makes no
assumptions about source code, change operations, or any
other aspect that estimates the relation between individual
change operations.

Table II
LIST OF CONFVOTERS USED THROUGHOUT THE EXPERIMENTS.

ConfVoter Description
FileDistance The number of lines between two change

operations if both change operations were ap-
plied to the same file. Will not be considered
otherwise.

PackageDistance If both change operations were applied to
different code files, this ConfVoter will re-
turn the number of different package name
segments within the package names of the
changed files. Will not be considered other-
wise.

CallGraph Identifies the modified methods within the
projects call graph and returns the distance be-
tween the two call graph nodes. The distance
of a path within the call graph is defined as
the sum of all edge weights along the path. An
edge weight between method m1 and method
m2 is defined as one divided by the number
of method calls between m1 and m2.

ChangeCouplings Returns the change coupling confidence as de-
scribed by Zimmermann et al. [13]. Basically,
it computes frequent change patterns and a
confidence value indicating the probability
that the change pattern will occur whenever
one of the patterns components change.

DataDependency Returns a value of one if both change op-
erations read or write the same variable(s).
Return a value of zero otherwise.

In the next sections, we will discuss how to derive the
initial confidence values between change operations filling
the cells of the initial triangle matrix M and how to com-
bine multiple dependency measures into a single confidence
value.

IV. CONFIDENCE VOTERS

To combine various dependency and relation aspects be-
tween change operations, the untangling framework itself
does not decide which change operations are likely to
be related but asks a set of so called confidence voters
(ConfVoters) (see Figure 1). Each ConfVoter expects a pair
of change operations and returns a confidence value between
zero and one. A confidence value of one represents a change
operation dependency aspect that strongly suggests to put
both change operations into the same partition. Conversely,
a return value of zero indicates that the change operations
are unrelated according to this voter.

Using confidence voters, we can handle multiple relation
dependency aspects within the untangling framework. Each
ConfVoter represents exactly one dependeny aspect. Table II
lists the set of ConfVoters used throughout our experiments.
The current prototype of the untangling framework allows
ConfVoters to be registered as plug-ins. This way, we can
add or remove project-specific change operation dependency
aspects within minutes.

To transform multiple confidence values—one per reg-
istered ConfVoter—into a single confidence values required

for the initial triangle matrixM (see Section III-B), we have
to aggregate respecting the fact that different ConfVoters
may have different importance (e.g. data dependency might
be a stronger indication than change couplings). For this
purpose, we train a linear regression model to determine a
project’s specific linear combination of dependency aspects
that matter to separate related from unrelated change op-
erations. Once such a model is trained, we can use it to
determine a single confidence value (regression) providing
all confidence values of all registered ConfVoters. For details
on how to train the linear regression model see Section V-C.

V. EVALUATION SETUP

To determine the precision of our untangling algorithm,
we ran experiments on five open-source Java projects (see
Table III) with more than 50 months of active development
history and more than 10 active developers. The projects
differ in size (line of code) ranging from small (JRuby),
medium (ArgoUML) to large (Google Web Toolkit). The dif-
ferent project sizes allow us to check whether the proposed
untangling algorithm works on smaller projects as well as on
large projects. The number of committed change sets ranges
from 1,300 (Jaxen) to 16,000 (ArgoUML), and the number
of bug fixing change sets ranges from 105 (Jaxen) to nearly
3000 (ArgoUML and JRuby).

In the next sections, we will discuss how to determine
the expected outcome of an untangling procedure in order
to measure its precision using a set of ground truths and a
method to produce a set of artificially tangled change sets.

A. Ground Truth

In Section II, we discussed that a large proportion of
change sets must be considered as tangled—combining
multiple developer tasks into one version archive commit.
For our experimental setup this means that we cannot rely
on the existing data to evaluate our untangling algorithm,
simply because we cannot determine whether a produced
change set partition is correct and if not, how much it differs
from an expected result.

To determine a reliable set of atomic (unbiased) change
sets—change sets containing only those code changes to ful-
fill exactly one developer task—we used a two phase manual
inspection of issue fixing change sets. The limitation to issue
fixing change sets was necessary in order to understand the
reason and to learn the purpose of the applied code changes.
Without having a document describing the applied changes,
it is very hard to judge whether a code change is tangled or
not, at least for a project outsider.

1) We pre-selected change sets that could be linked to
exactly one fixed and resolved bug report (similar
to Zimmermann et al. [2]). All other change sets
contained in the project’s history were ignored in
Step 2.

Untangling
Algorithm

ground truth
change sets

artificially tangled
change sets

created change set
partition

comparison

Figure 3. Artificially tangled change sets are generated using manually
classified atomic change sets to compare created partitions and desired
output. In the example, two change operations are put into a wrong partition,
and hence the success rate is 6

8
= 75%

2) Each change set passed from Step 1 was manually in-
spected and classified as atomic or non-atomic. During
manual inspection, we first read the commit message.
In many cases, the commit message already indicated
a tangled change set and therefore the change set was
marked it non-atomic. If the commit message did not
classify the change set as non-atomic, we inspected
the actual code changes. Only if we had no doubt that
the change set served only one developer task that was
stated within the linked bug report (also no additional
refactoring or code cleanup), we classified the change
set as atomic. During classification, we tried to be as
conservative as possible. If we had any doubt that the
change set might not be atomic, we classified it as
non-atomic.

The last row of Table III contains the number of manually
classified atomic change sets per project. Their number
depends on two project specific factors: the more bug fixing
change sets contain a reference to the corresponding bug
report, the more change sets rank for manual inspection;
second, the smaller and cleaner a change set the easier
its manual classification is. For the three smaller projects
Google Web Toolkit, Jaxen, and XStream, we found between
30 and 40 atomic changes each. Considering the total
amount of historic change sets, this number is small but
does not represent the amount of atomic change sets within
the project. Due to the very restrictive selection of change
sets for manual classification, we have limited the number
of atomic changes to a small selection. For the two larger
projects ArgoUML and JRuby, we found more atomic change
sets. In relation to their total number, the fraction of atomic
change sets remains comparable: 0.8–2.4%. These figures
represent the fraction of change sets that could be classified
as atomic, whereas the figures presented in Table I are the
fraction of change sets that could be classified as tangled.
This implies that the majority of change sets could not be
classified.

Table III
DETAILS OF PROJECTS USED DURING EXPERIMENTS.

.

ArgoUML Google Web Toolkit Jaxen JRuby XStream
lines of code 164,851 266,115 20,997 101,799 22,021
#history months 150 54 114 105 90
#developers 50 120 20 67 12
Total #change sets 16481 5326 1353 11134 1756
#bug fixes 2,945 809 105 2,977 312
#atomic bug fixes 125 (4.2%) 44 (5.4%) 32 (30.5%) 200 (6.7%) 40 (12.8%)

B. Generating Artificial Tangled Change Sets

Combining atomic change sets into artificially tangled
change sets is straight forward. Nevertheless, we have to be
careful which atomic change sets to tangle. Combining them
randomly is easy but would not simulate real tangled change
sets. In most cases, developers do not combine arbitrary
changes into one change set, but code changes that are close
to each other (e.g. fixing two bugs in the same file or improv-
ing a loop while fixing a bug). To simulate such relations
to some extend, we combined only change sets that contain
at least two change operations touching files that are not
more than two sub-packages apart. As an example, assume
we have a set of three change sets: CS1 = {a.b.c.d.F1},
CS2 = {a.b.c.e.F2}, and CS3 = {a.f.c.d.F3}. Using our
change set combination strategy explained above, we would
combine CS1 with CS2 since they are only one sub-package
apart. But we would not combine CS1 with CS3 nor CS2

with CS3.1

Furthermore, we limit the number of days allowed be-
tween two atomic change sets to 14 days (two weeks). The
main reason for this limitation was to simulate real world
code changes. On the other hand, this limitation was also
necessary for technical reasons. Most of our ConfVoters
require type resolution using the partial program analysis
tool [14] which needs to compile the source code. Longer
time periods between code changes imply higher probability
that merging code changes leaves source code uncompilable.
Applying our approach to real world tangled change sets,
such a situation will never occur.

C. Training Confidence Voter Aggregation Model

In Section IV, we mentioned the use of a linear regression
model to aggregate all ConfVoter confidence values for a
pair of change operations into a single confidence value. To
train the model, we used our ground truth set of change
sets (see Section V-A). Thirty per cent of the generated
artificially tangled change sets (see Section V-B) will be used
for training purposes. For each pair of change operations
within the training set, we compute all ConfVoter confidence
values (as the untangling algorithm would do). Additionally,
we add an expected result value indicating whether both

1This slightly favors the ConfVoter which uses package distances as a
heuristic. However, we favored a more realistic distribution of changes over
total fairness across all ConfVoters.

change operations have been included within the very same
change set: one for pairs containing change operations from
the very same atomic change set, zero otherwise.

This set of confidence values and expected result values
will then be used to train our aggregation model using the
Weka tool [15]. To aggregate confidence values within the
untangling algorithm itself, it suffices to let the model predict
the result value based on the ConfVoter confidence values
computed for each pair of change operations.

D. Success Rate

To test our untangling algorithm, we generate all possible
artificially tangled change sets as described in Section V-A.
Since we know the origin of each change operation, we now
can compare the expected partitioning with the partitioning
produced by the untangling algorithm (see Figure 3). We
measure the difference between original and produced par-
titioning as the number of change operations that were put
into a “wrong” partition.

For a set of artificially tangled change sets t, we define
our success rate as

success rate =
correctly assigned change operations

total # of change operations in t

As an example for a success rate, consider Figure 3.
In the artificially tangled change set, we have 8 changes
overall. Out of these, two are misclassified (the diagonally
striped one in the upper right corner, and the plain grey
one in the lower left corner); the other six are assigned
to the proper partition. Consequently, the success rate is
6/8 = 75%, implying that 2/8 = 25% of all changes
need to be recategorized in order to obtain the ground truth
partitioning.2

VI. RESULTS AND DISCUSSION

The results presented in this section depend on the size
of the artificial tangled change sets that is to be untangled—
the so called blob size. The blob size represents the number
of atomic change sets contained within the same artificial
tangled change set. We did not generate artificially tangled
change sets larger than five, although possible. During our

2Our computation of the success rate selects the minimal number of
recombinations; this is in line with common differencing algorithms which
also find the minimal number of operations to change a version into another.

Table IV
NUMBER OF GENERATED ARTIFICIALLY TANGLED CHANGE SETS

SORTED BY BLOB SIZE.

blob size
2 3 4 5

∑
ArgoUML 172 767 2,820 8,712 12,471
GWT† 128 413 940 1,559 3,040
Jaxen 240 1,573 7,470 26,892 36,175
JRuby 961 14,019 152,518 1,303,808 1,471,306
XStream 469 4,754 39,243 263,451 307,917
† GWT = Google Web Toolkit

manual change set inspection (see Section II) we rarely
found commits that had or exceeded a blob size of five.
We found that change sets with a blob size of two or three
are most common.

A. Artificially Tangled Change Sets

Our results for generating artificially tangled change sets
(see Section V-B) are listed in Table IV. The number of
generated artificially tangled change sets highly depend on
the project’s history. While the number of artificially tangled
change sets for JRuby and XStream are well above 1.4
million and 300K respectively, the numbers are much lower
for the remaining projects. The ability to generate artificially
tangled change sets depends on the number of atomic change
sets (correlation of .5) but also depends on the files touched
by these atomic change sets. The more atomic change sets
touch source files with low file distance (see Section V-B)
the more artificially tangled change sets will be generated.
Increasing blob size allows more different combinations to
be build. The Google Web Toolkit project is the project with
the lowest number of generated artificially tangled change
sets but also with one of the highest fraction of non-atomic
bug fixes (see Table I) and it is also the project with the
second smallest number of atomic change sets identified (see
Table III). The project with the highest number of artificial
tangled change sets is JRuby. Accordingly, it is the project
with the second lowest number of tangled fixes (Table I) and
the project with the highest number of atomic change sets.

B. Untangling Artificial Tangled Change Sets

The results of the actual untangling algorithm according
to our experimental setup (Section V) are shown in Figure 4,
grouped by project and blob size.

Overall, the success rates of our untangling algorithm lie
between 60% and 91% for artificially tangled change sets
of blob size two and between 50% and 84% for artificially
tangled change sets of size five. Surprisingly, projects with
higher number of generated artificially tangled change sets
also show better untangling success rates (correlation .77).
The more artificially tangled change sets, the higher the
number of instances to train our linear regression aggrega-
tion model on (see Section V-C).

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

2 3 4 5

Su
cc

es
s

R
at

e

blob size

ArgoUML Google Webtool Kit Jaxen JRuby XStream Mean

Figure 4. Untangling success rates per project and blob size.

Our approach untangles any two artificially tangled
changes with a success rate of 60–91%.

It is not surprising that the blob size is negatively cor-
related with the success rate of the untangling algorithm.
The more change operations to be included and the more
partitions to be generated, the higher the likelihood of
misclassifications. Increasing the blob size from two to three,
success rates drop by approximately ten percent, across all
projects. Increasing the blob size further has a negative
impact on success rates, but the differences are lower than
between blob size two and three. The number of samples to
train the aggregation model is proportional to the blob size.

The project with the lowest success rates is ArgoUML—
the only GUI application within this set of projects. Inspect-
ing some of the falsely classified change operations unveiled
that there are a number of code changes that are dependent
considering the GUI level (e.g. window and fonts size)
but are hard to detected on code level. Naturally, relations
between code changes that are not evident on the source
code level are hard to detect using code relation heuristics,
only.

The mean values for all blob sizes (see dotted line in
Figure 4) lie between 77% for blob size two and 63%
for blob size five. Improving the untangling results for
ArgoUML to a comparable level could increase the mean
value by nearly 4%, ranging between 82% for blob size two
and 66% for blob size five.

The mean success rate across all blob sizes is
63% (blob size five) to 73% (blob size two).

C. The importance of Confidence Voters

Using multiple ConfVoters to estimate the relation be-
tween two change operations raises questions about the

35%

2%

28%

33%

2%

2%
1%

87%

10%

6%

10%46%

22%

16%

FileDistance PackageDistance DataDependency CallGraphDistance ChangeCouplings

5%

2%

8%

85%

73%

3% 7%
2%

15%

ArgoUML GWT JRuby XStreamJaxen

Figure 5. Relative importance for confidence for each ConfVoter used within the experimental setup. The importance is presented as percentage covering
the proportion of variance explained by aggregation models. (GWT stands for Google Web Toolkit.)

contribution of each of the ConfVoter. During our experi-
ments, we learned that the importance of the used set of
ConfVoters is constant and independent of the project under
investigation.

Figure 5 shows the relative importance for each of the
aggregation model’s ConfVoter components. The importance
is measured as the average percentage of the aggregation
models R2 values—measured over all computed aggrega-
tion models. Surprisingly, the relative importance of single
ConfVoters is highly dependent on the project under inves-
tigation. It seems that there exists no single combination of
ConfVoters that describes change set dependency relations.
For ArgoUML and Google Web Toolkit DataDependency is
the most dominant factor followed by PackageDistance—
for the other three projects it is of no major importance.
For Jaxen and XStream ChangeCouplings are most dominant
while for JRuby PackageDistance is the most important
ConfVoter. Except for CallGraphDistance, all ConfVoters
contribute to the aggregation prediction R2 for at least one
of the five projects. Thus we conclude, that the performance
of individual ConfVoters is project specific.

Every project brings its own factors that determine how
to untangle changes.

VII. THREATS TO VALIDITY

Like any other empirical study of this kind, the approach
presented in this paper has threats to its validity. We identi-
fied four noteworthy threats.

The change set classification process used in Section V-A
involved manual code change inspection. We tried to be
as conservative as possible when classifying atomic change
sets, but the classification process was conducted by soft-
ware engineers not familiar with the internal details of the
individual projects. Thus, it is not unlikely that the manual
selection process or the pre-filtering process mis-classified
change sets. This could impact the number and the quality
of generated artificially tangled change sets and thus could
impact the untangling results, in general.

A second threat is given by the selected software projects
used throughout our experimental setup. We cannot claim

that the selected Java projects are representative in any way.
We tried to include projects of different size and domains.
With Google Web Toolkit, we also considered a project
that is developed by an industrial company. Nevertheless,
we have to be aware that untangling results for other
projects may differ. The very same holds for the selection
of ConfVoters. Choosing a different set of ConfVoters will
impact untangling results.

The process of constructing artificially tangled change sets
may not be simulating real life blobs caused by developers
combining multiple developer tasks into single change sets.
Thus, results of untangling real developer change sets may
differ.

The aggregation process to transform multiple confidence
values into a single confidence value includes a machine
learner training phase. The data sets used to train these
aggregation models are produced by random splits (see
Section V-C). Using different random splits may impact the
aggregation results significantly and thus may impact the
overall untangling results.

As mentioned briefly, we use the partial program analysis
tool [14] by Dagnais and Hendren within our untangling
algorithm. Thus, the validity of our results depend on the
validity of the used approach.

The untangling results presented in this paper are based
on artificially tangled change sets derived using the ground
truth set which contains issue fixing change sets, only. Thus,
it might be that the ground truth set is not representative for
all types of code changes.

VIII. RELATED WORK

To the best of our knowledge, our approach to untangle
unrelated changes from version archives is the first approach
addressing this issue. Nevertheless, this work complements
and makes use of existing research.

A. Classifying Code Changes

The work presented in this paper is closely related to
many research approaches that analyze and classify code
changes or development activities. In this section, we want

to discuss some of these approaches most closely related to
our approach.

Untangling changes can be seen as a code change clas-
sification problem. The untangling algorithm classifies code
changes as related or unrelated. Prior work on code clas-
sification mainly tried to classify code changes based on
their quality [16] or on their purpose [17], [18]. Sunghun et
al. [16] developed a change classification technique, based
on machine learning, comparing software changes to earlier
applied software changes. Their approach is able to classify
changes as “buggy” or “clean” with a precision of 75% and a
recall of 65% (on average). Despite their good classification
results, their approach cannot be used to untangle code
changes. Comparison of current and past code changes does
not help to determine a possible semantical difference and it
would require a bias free software history. Hindle et al. [17],
[18] analyzed large change sets that touch a large number
of files to automatically classify the maintenance category
of the individual changes. The results indicate that large
change sets frequently contain architectural modifications
and are thus important for the software’s structure. In most
cases, large commits were more likely to be perfective than
corrective.

Störzer et al. [19] used a change classification technique
to automatically detect code changes contributing to test
failures. Later, this work was extended by Wloka et al. [20]
to identify committable code changes that can be applied
to the version archive without causing existing tests to
fail. Both approaches aim to detect change dependencies
within one revision but require test cases mapped to change
operations in order to classify or separate code changes. This
will rule out the majority of change operations not covered
by any test case or for which no test case is assigned.

Williams and Carver [21] present in their systematic
review many different approaches on how to distinguish
and characterize software changes. However, none of these
approaches is capable of automatically identifying and sepa-
rating combined source code changes based on their different
characterization or based on semantic difference.

B. Refactorings

The combination of refactorings and semantic relevant
code changes can be seen as a special case of the un-
tangling problem which has been topic for many research
papers. Murphy-Hill et al. [22], [23] analyzed thousands of
development activities to prove, or disprove, several common
assumptions about how programmers refactor. Their results
also show that developers frequently do not indicate refac-
toring activity in commit logs, which would increase the
bias potential discussed in Section II, even further. Later,
Kawrykow and Robillard [9] investigated over 24,000 open-
source change sets and found “that up to 15.5% of a system’s
method updates were due solely to non-essential differences

affecting the association rules that can be mined from change
data”.

C. Change Dependency

The problem that version archives do not capture enough
information about code changes to fully describe them is
not new. Robbes et al. [24] showed that the evolutionary
information contained within version archives such as CVS
and SVN is incomplete and of low quality. Storing historical
data as reaction due to explicit developer request fails to
store important historic data fragments, while the nature of
version archives leads to a view of software as being simply
a set of files. As a solution, Robbes et al. [24] proposed
a novel approach that automatically records all semantic
changes performed on a system. An untangling algorithm
would clearly benefit from such extra information that could
be used to add context information for individual change
operations.

D. Bias in Version Archives

In recent years, the discussion about bias and noise in
data sets produced by mining version archives and their
effect on mining models increased. Lately, Kawrykow and
Robillard [9] showed that bias caused by non-essential
changes severely impacts mining models based on such data
sets. Considering the combination of non-essential changes
and essential changes as an untangling problem, the result
of Kawrykow and Robillard are a strong indication that
unrelated code changes applied together will have similar
effects.

Dallmeier [8] analyzed bug fix change sets of two open
source projects and used delta debugging to minimize bug
fixes to a set of code changes that is sufficient to make
regression tests pass. He found out that on average only
50% of the changed statements were responsible to fix the
bug.

The effects of bias caused by unbalanced data sets on
defect prediction models were investigated by Bird et al. [7].
The authors conclude that “bias is a critical problem that
threatens both the effectiveness of processes that rely on
biased datasets to build prediction models and the general-
izability of hypotheses tested on biased data”.

Kim et al. [25] showed in an empirical study that the
defect prediction performance decreases significantly when
the data set contains 20%-35% of both false positives and
false negatives noises. The authors also present an approach
that allows automatic detection and elimination of noise
instances. But removing data points from data sets also
means less data points to learn from. Untangling changes
can be seen as an attempt to resolve possible noise factors
before aggregation and further processing, allowing predic-
tion models to benefit from possible noise instances instead
of removing them.

E. Used Frameworks

In this section, we give credit to those frameworks used
in order to accomplish the presented work.

As described in Section III-B, we use a simplified version
of the multilevel graph partitioning algorithm as proposed
by Karypis and Kumar [12]. Although we do not work
on any graph structure, our untangling algorithm follows
the basic principles of the coarsening phase of a multilevel
graph partitioning algorithm — with minor modifications.
The uncoarsening phase of the original partition algorithm
is not considered within this work.

To compute the ConfVoters confidence values that build
the fundament of our untangling algorithm, we have to
extract single change operations analyzing change sets that
might leave the source code in an uncompilable state. To
accomplish this task, many of the mentioned ConfVoters
use static analysis for partial Java programs, as proposed
by Dagenais and Hendren [14].

IX. CONCLUSION AND FUTURE WORK

In this paper we propose an untangling algorithm that
helps to reduce the amount of bias within data mining sets,
caused by version archive commits, combining changes that
were committed due to multiple developer tasks. To the best
of our knowledge, this study is the first one to quantify
the extent of tangled changes in real world projects. Our
results show that the fraction of tangled changes may be
substantial, causing a serious threat to empirical findings
based on version archives.

For the five open-source projects used within our ex-
periments, the algorithms showed an average success rate
between 63% and 77%, depending on the number of parti-
tions to be created. Basing empirical findings on untangled
changes will make them more precise, and less threatened
by bias and noise.

Our results indicate that untangling changes is a sur-
prisingly difficult task, leaving lots of room for future
improvements. Our future work will focus on the following
topics:

• Evaluate tangling effect. As a next step, we plan to
fully integrate our untangling algorithm into state of
the art prediction or recommendation models and to
show the effect of the untangling project. Given our
approach, the challenge here is not so much to untangle
the changes, but to untangle the commit message. While
we can easily identify the purpose of the tangled change
overall (from the message committed to the version
archive), we can no longer identify the purpose of the
untangled subchanges—we know they are independent,
but we no longer know which ones are still tied to
the explicitly stated purpose, and which ones are not.
We are currently investigating classification models
that determine the semantic change applied by code
changes.

• Non-essential changes. We also plan to integrate
the work on non-essential changes, as proposed by
Kawrykow and Robillard [9]. We can use the concept of
non-essential changes to filter out non-essential changes
before untangling, putting all non-essential changes into
a separate change set partition. We believe that such
an integration of both approaches would improve the
success rate of the untangling algorithm.

• Recommendations to developers. In the long run, one
could also present untangled change sets as recommen-
dations to users—either at the time they are committed,
or at the time they would be manually analyzed. Our
current focus, however, is to reduce data noise and the
resulting threats to analysis of version archives.

We are committed to make the entire untangling frame-
work and all training examples publicly available. We expect
to release this package early 2012 at the project web site:

www.st.cs.uni-saarland.de/softevo/untangling/

ACKNOWLEDGMENT

This work was conducted while Kim Herzig was a re-
search intern at Google Inc. This work was funded by a
Google Research Award “Predicting the Risk of Changes”.
Yana Mileva provided constructive feedback on earlier ver-
sions of this work.

REFERENCES

[1] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller,
“Mining version histories to guide software changes,” in
Proceedings of the 26th International Conference on Software
Engineering. IEEE Computer Society, May 2004, pp. 563–
572.

[2] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting de-
fects for Eclipse,” in Proceedings of the Third International
Workshop on Predictor Models in Software Engineering, ser.
PROMISE ’07. IEEE Computer Society, 2007.

[3] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and
A. Bener, “Defect prediction from static code features: current
results, limitations, new approaches,” Automated Software
Engg., vol. 17, pp. 375–407, December 2010.

[4] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this
bug?” in Proceedings of the 28th international conference on
Software engineering. ACM, 2006, pp. 361–370.

[5] P. Bhattacharya, “Using software evolution history to facilitate
development and maintenance,” in Proceeding of the 33rd
international conference on Software engineering. ACM,
2011, pp. 1122–1123.

[6] P. L. Li, R. Kivett, Z. Zhan, S.-e. Jeon, N. Nagappan, B. Mur-
phy, and A. J. Ko, “Characterizing the differences between
pre- and post-release versions of software,” in Proceeding of
the 33rd international conference on Software engineering.
ACM, 2011, pp. 716–725.

www.st.cs.uni-saarland.de/softevo/untangling/

[7] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,
V. Filkov, and P. Devanbu, “Fair and balanced? Bias in bug-
fix datasets,” in Proceedings of the the 7th joint meeting
of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software
engineering, ser. ESEC/FSE ’09. ACM, 2009, pp. 121–130.

[8] V. Dallmeier, “Mining and checking object behavior,” Ph.D.
dissertation, Universität des Saarlandes, August 2010.

[9] D. Kawrykow and M. P. Robillard, “Non-essential changes
in version histories,” in Proceeding of the 33rd international
conference on Software engineering, ser. ICSE ’11. ACM,
2011, pp. 351–360.

[10] G. Karypis and V. Kumar, MeTis: Unstructured Graph
Partitioning and Sparse Matrix Ordering System, Version
2.0, 1995. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.38.376

[11] ——, “A fast and high quality multilevel scheme for parti-
tioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, pp.
359–392, December 1998.

[12] ——, “Analysis of multilevel graph partitioning,” in Proceed-
ings of the 1995 ACM/IEEE conference on Supercomputing,
ser. Supercomputing 1995. ACM, 1995.

[13] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller,
“Mining version histories to guide software changes,” in
Proceedings of the 26th International Conference on Software
Engineering, ser. ICSE ’04. IEEE Computer Society, 2004,
pp. 563–572.

[14] B. Dagenais and L. Hendren, “Enabling static analysis for
partial Java programs,” in Proceedings of the 23rd ACM SIG-
PLAN conference on Object-oriented programming systems
languages and applications, ser. OOPSLA ’08. ACM, 2008,
pp. 313–328.

[15] I. H. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques, Third Edition. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc., 2011.

[16] S. Kim, E. J. Whitehead, Jr., and Y. Zhang, “Classifying
software changes: Clean or buggy?” IEEE Trans. Softw. Eng.,
vol. 34, pp. 181–196, March 2008.

[17] A. Hindle, D. M. German, and R. Holt, “What do large
commits tell us? A taxonomical study of large commits,” in
Proceedings of the 2008 international working conference on
Mining software repositories, ser. MSR ’08. ACM, 2008,
pp. 99–108.

[18] A. Hindle, D. German, M. Godfrey, and R. Holt, “Automatic
classication of large changes into maintenance categories,”
in Program Comprehension, 2009. ICPC ’09. IEEE 17th
International Conference on, may 2009, pp. 30–39.

[19] M. Stoerzer, B. G. Ryder, X. Ren, and F. Tip, “Finding failure-
inducing changes in java programs using change classifica-
tion,” in Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering, ser. SIG-
SOFT ’06/FSE-14. ACM, 2006, pp. 57–68.

[20] J. Wloka, B. Ryder, F. Tip, and X. Ren, “Safe-commit analysis
to facilitate team software development,” in Proceedings of
the 31st International Conference on Software Engineering,
ser. ICSE ’09. IEEE Computer Society, 2009, pp. 507–517.

[21] B. J. Williams and J. C. Carver, “Characterizing software
architecture changes: A systematic review,” Information and
Software Technology, vol. 52, no. 1, pp. 1–51, 2010.

[22] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor,
and how we know it,” Software Engineering, International
Conference on, vol. 0, pp. 287–297, 2009.

[23] E. Murphy-Hill and A. Black, “Refactoring tools: Fitness for
purpose,” Software, IEEE, vol. 25, no. 5, pp. 38 –44, sept.-oct.
2008.

[24] R. Robbes, M. Lanza, and M. Lungu, “An approach to soft-
ware evolution based on semantic change,” in Fundamental
Approaches to Software Engineering, ser. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2007, vol.
4422, pp. 27–41.

[25] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise
in defect prediction,” in Proceeding of the 33rd international
conference on Software engineering, ser. ICSE ’11. ACM,
2011, pp. 481–490.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.376
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.376

	I Introduction
	II Tangled Changes
	III The Untangling Algorithm
	III-A Related changes
	III-B Using Multilevel Graph Partitioning

	IV Confidence Voters
	V Evaluation Setup
	V-A Ground Truth
	V-B Generating Artificial Tangled Change Sets
	V-C Training Confidence Voter Aggregation Model
	V-D Success Rate

	VI Results and Discussion
	VI-A Artificially Tangled Change Sets
	VI-B Untangling Artificial Tangled Change Sets
	VI-C The importance of Confidence Voters

	VII Threats to Validity
	VIII Related Work
	VIII-A Classifying Code Changes
	VIII-B Refactorings
	VIII-C Change Dependency
	VIII-D Bias in Version Archives
	VIII-E Used Frameworks

	IX Conclusion and Future Work
	References

