
Mining Cause-Effect-Chains from Version Histories

Kim Herzig
Software Engineering Chair

Saarland University, Germany
Email: herzig@cs.uni-saarland.de

Andreas Zeller
Software Engineering Chair

Saarland University, Germany
Email: zeller@cs.uni-saarland.de

Abstract—Software reliability is determined by software
changes. How do these changes relate to each other? By
analyzing the impacted method definitions and usages, we
determine dependencies between changes, resulting in a change
genealogy that captures how earlier changes enable and cause
later ones. Model checking this genealogy reveals temporal
process patterns that encode key features of the software
process: “Whenever class A is changed, its test case is later
updated as well.” Such patterns can be validated automatically:
In an evaluation of four open source histories, our prototype
would recommend pending activities with a precision of 60–
72%.

Keywords-Distribution; Maintenance; Enhancement; Life cy-
cle; Software process models

I. INTRODUCTION

Software and its reliability is a product of its history,
which can be characterized as a sequence of changes.
By mining recorded changes, one can identify frequently
changing components—an important factor in predicting the
risk of defects. And one can discover sets of components
that changed frequently together, revealing couplings that
are inaccessible to program analysis.

Research studies in analyzing software history have been
mostly constrained to either space or time. Being constrained
to space means that one examines the evolution of single
components, aggregating features over time. Being con-
strained to time means that one examines which components
were changed at a single moment in time, extracting co-
changes from the resulting transactions. What we would like
to have is reasoning over multiple components at multiple
points in time. However, such reasoning requires a holistic
view of all changes to all components.

In this paper, we present and evaluate a new concept that
enables such multi-dimensional reasoning. A change geneal-
ogy orders changes by dependencies; it tells how changes
influence and cause each other. By mining and model check-
ing such genealogies, we obtain frequent temporal patterns
that encode key features of the software process that span
both space and time: “Whenever class A is changed, its test
case is later updated as well.” or “Whenever Tom changes
his code, Anna has to respond on Tom’s change”. Once
mined, such patterns can be used as building blocks for
a software process model; they also can be validated and
enforced automatically in further development.

Version History Change Dependencies Change Genealogy

A

B

C
E

D

A

C

G

B

+ void foo(){
+    ....
+    ....
+ }

....

....
-  x = f.foo(); 
+ d = g.bar();
....
....

+ void bar(){
+    ....
+    ....
+    ....
+ }

A

B

C
E

D

CTL GenerationLong-Term Coupling Rules

Formula confidence Support
A => EF B 0.8 10

A => AG(B => EF C) 0.6 7

... ... ...

St
at

ic
 A

na
ly

si
s

M
od

el
 C

he
ck

in
g

Figure 1. How GENEVA works. GENEVA takes a version history and
determines dependencies between changes. These dependencies form a
graph, the change genealogy. Model checking reveals frequent rules that
describe temporal key features of the underlying software process.

Transaction T1 Transaction T2 Transaction T3 Transaction T4 Transaction T5

File 4
File 3

File 2
File 1 + int A.foo(int)

+ void B.bar(int)

+ x =  B.bar(5)

- int A.foo(int)
+ float A.foo(float)

+ d = A.foo(5f)

+ d = A.foo(d) + e = A.foo(-1f)

- x =  B.bar(5)
+ x =  A.foo(5f)+  B.bar(5)

Figure 2. We characterize code changes by the method calls and definitions
they add or change. Changes depend on each other based on the affected
methods.

Let us illustrate our approach in a nutshell (Figure 1). The
key idea is to establish dependencies between changes—a
change T2 depends upon a change T1 if T2 uses or modifies
code defined or previously changed within T1. We find
such dependencies by analyzing changes applied to method
definitions and method usages. Figure 2 shows five changes
modifying four files in two packages. T1 adds two method
definitions that are later used and changed by T2 and T3,
respectively. T2 and T3 thus directly depend on T1. Note that
we do not rely on the assumption that transactions should
leave the project in a compilable state. In code repositories
that span multiple projects and in which code is shared
among projects (e.g. Google) it is frequently the case that
code changes leave a dependent project uncompilable.

Summarizing, all direct dependencies between changes



T1 T2 T3 T4 T5

timeday 0 +0 day +1 day +6 day +15 day

Edge Annotation:
CD → ACVertex Annotation:

File 1, File 2

Figure 3. Sample change genealogy derived from the method operations
shown in Figure 2. An arrow Ti → Tj indicates that the change Tj depends
on Ti. Edges annotated contain the dependency types justifying the edge.
Vertices annotations reference the changed file names.

result in a change genealogy—a dependency graph between
changes: Figure 3 shows both the direct and transitive
descendants of T1. As change genealogies grow to thousands
of changes, we can use them to mine for frequent patterns—
in particular temporal patterns that span space and time.
For this purpose, we associate each change with features
such as the file or package being modified. We then use
model checking to determine frequent rules. These rules are
expressed in computation tree logic (CTL); a rule such as
“file1 ⇒ EF test1” means that whenever file1 is changed,
eventually, test1 is changed as well. Additionally, the rule
implies that the change to test1 is structural dependent on
the change applied to file1. Such long-term coupling based
on change dependencies is not detected by current mining
approaches due to their restriction in space and time.

Mined temporal rules can become part of the formal
software process model; generally speaking, they encode
actions that typically follow immediately or after some
period of time. Of course, they can also be validated and
enforced automatically: Should file1 be changed without
test1 following suit before release, chances are that file1
is not properly tested. When file1 is changed, we can
thus give a recommendation reminding developers that test1
must eventually be examined—or changed—as well. These
recommendations are quite accurate: In an evaluation of
four open source histories, our GENEVA1 prototype would
recommend pending activities with a precision of 60–72%.

The remainder of this paper is organized as follows.
We first give an overview of the related work (Section II)
before we define dependencies between changes (Section III)
used to extract change genealogies (Section IV). Next, we
describe how to extract temporal rules (Section V) and how
to mine these rules (Section VI). We then evaluate the
accuracy and usefulness of the mined rules both qualitatively
(Section VII) and quantitatively (Section VIII). Section IX
closes with conclusion and consequences.

II. BACKGROUND

The contributions of this paper combine multiple com-
mon fields in mining software repositories. We present
change dependency graphs as a model to analyze change

1GENEVA = GENealogy Extraction from Version Archives.

impact. As usage example we present an approach to detect
change couplings. Additionally, we use temporal logic to
model development processes to provide recommendations
for developers. To put our work in perspective, this section
provides background information about previous work.

A. Change Dependencies
Stoerzer et al. [1] used a change classification technique

and dependency definition very similar to the one used in
this paper to detect dependencies between atomic changes.
The main goal of their tools was to detect failure-inducing
changes. Later, this work was extended by Wloka et al. [2]
to identify committable code changes that can be applied
to the version archive without causing existing tests to fail.
Both approaches aim to detect change dependencies within
one revision but not across long periods of time.

Brudaru and Zeller [3] were among the first presenting the
concept of change genealogies that model the dependencies
between atomic code changes spanning the complete soft-
ware project lifetime. Later, German et al. [4] introduced
the related concept of change impact graphs to identify
those code changes that influenced the reported location of
a failure. In contrast to our approach, German et al. [4]
resolved change dependencies backwards for a given starting
point in the source code to identify possible causes for a bug
or failure. In this paper, we examine all change dependencies
globally to detect and predict future cause-effect chains.

B. Change Impact Analysis
There are many approaches measuring the impact of

single code changes dynamically. Ren et al. [5] decomposed
code changes into sets of atomic changes to determine
test cases whose execution behavior may have changed.
Later, Stoerzer et al. [1] extended their work to successfully
classify changes as fix inducing. Techniques like Cover-
ageImpact [6] and PathImpact [7] measure the impact of
atomic code changes on program execution.

But using dynamic techniques like program or test execu-
tion limit the impact analysis in two ways. First, it requires
the software project to be in a compilable and executable
state — which is not always the case during development.
Second, it only reflects the immediate impact of code
changes on program structure and execution behavior.

Alam et al. [8] used change dependency graphs [4] to
examine how changes build on each other over time. The
authors showed that dependencies between changes vary
across different projects and that changes build on top of new
code—instead on old stable code—are more defect prone.

In his PhD proposal [9], Herzig introduced the concept
of transaction dependency graphs based on the notion of
change genealogies defined by Brudaru and Zeller [3].
Similar to the change impact graphs by German et al. [4],
Herzig defined dependency graphs but based on version
control transactions instead of atomic changes to define
multiple dependency metrics on these genealogy graphs.



C. Process Models and Temporal Logic

Cook and Wolf [10] were among the first to explore
methods for automatic process modeling. Since then, a
lot of approaches [11]–[13] model and analyze processes,
workflows and execution traces. Instead of describing the
behavioral aspects of a process, we model the relationship
between code changes applied during development.

To extract CTL formulas, we generate formulas similar
than Wasylkowski and Zeller [14] did. We use so-called
temporal-logic queries [15] using multiple placeholders [16].
In their paper, Wasylkowski and Zeller [14] give a good and
short introduction on CTL and Kirpke structures (Figure 4).
In the remainder of the paper, we assume a basic knowledge
of CTL and model checking using Kripke structures.

D. Change Couplings

In 1998, Gall et al. [17] were the first to examine
CVS release data sets to detect logical couplings between
modules. Later, Zimmermann et al. [18] and Ying [19]
used association rule mining techniques to detect coupled
changes, and to automatically suggest and predict likely
further changes. Fluri et al. [20] showed that many change
couplings are not caused by source code changes—and thus
would be undetectable by program analysis.

Recently, Canfora et al. [21] used multivariate time series
to detect cross-transaction change couplings. Using sliding
windows the authors determine change couplings occurring
within certain timeframes. In contrast to our approach,
their approach does not consider any structural information
and thus cannot distinct between change couplings caused
by structural dependencies or by independent development
activities frequently occurring short after each other.

III. CHANGE DEPENDENCIES

How can we tell that one change depends on another
one? Regular version archives contain sequences of code
changes committed to the software project in temporal
order. However, version archives do not explicitly state how
these code changes depend on each other—because this
information is rarely needed in regular development. The
fact that a revision was committed after a previous one
does not imply any dependency. To determine cause-effect
chains, we must detect such inter-change dependencies—
that is, determine which changes are based on each other.
Deciding whether two changes Ti and Tj depend on each
other is a hard problem. At the semantic level, it is generally
undecidable to determine the effect of a change. At the
syntactic level, one needs a full-fledged static analysis to
determine whether applying Tj is possible without applying
Ti first; in practice, this means an attempt to compile the
program for each pair of changes. At the lexical level, one
can determine whether Ti and Tj overlap each other in the
affected locations; this is how version control systems detect
conflicts between changes.

Table I
CHANGE CATEGORIES: CODE CHANGES BELONG TO NONE, ONE OR

MULTIPLE OF THESE CATEGORIES. THESE CHANGE OPERATIONS ARE
USED TO DEFINE DEPENDENCY RULES.

Category Description
AD Adding a new method definition
CD Changing definition of method
RD Removing definition of method
AC Adding new method call
CC Changing method call
RC Removing method call

With the semantic level infeasible, the syntactic level too
expensive, and the lexical level too primitive, we needed
a compromise that would be scalable, yet precise. Similar
to Ren et al. [5], we check which methods are affected by
a change: If Ti introduces a method that Tj calls, then Tj

depends on Ti. Code changes will be reduced to those atomic
changes that change, add or remove method definitions
and method calls. Depending on its change operation, each
atomic change then gets categorized using the corresponding
change categories shown in Table I. With this simple notion
of code changes we can define a fixed set of dependency
rules that describe possible change dependencies:
• Each change to a method definition depends on the

previous definition of the very same method.
• Each change to a method call depends on the previous

change to the very same method call and the change
defining the current version of the called method.

Atomic changes categorized as CD or RD depend on
those changes that previously added or changed the changed
method definition. AC, CC and RC changes depend on
the AD or CD of the definition of the called method.
Additionally, CC and RC changes depend on those changes
that added the method call before. AD changes depend on
earlier but already deleted definitions of a method within the
same class having the same method signature.

To find these change dependencies, we checkout all revi-
sions from the version archive and detect method changes
using abstract syntax trees derived from the partial program
analysis tool by Dagenais and Hendren [22].

IV. CHANGE GENEALOGIES

On of our primary targets was to design a dependency
model that does not rely on the assumption that a project
is compilable at all revisions. In large code repositories
that span multiple separate but dependent projects, this
assumption gets frequently violated. A prominent example
is the source code repository used within Google Inc.

We use the concept of change genealogies introduced
by Brudaru and Zeller [3]—a directed, acyclic dependency
graph that expresses dependencies between changes com-
mitted to the version repository over time and space. Each
vertex in a change genealogy represents a code change
committed to the version repository. Edges between two
vertices express a dependency between both corresponding



code changes. A dependency edge is directed and points
from the initial change to the depending one. While most
mining approaches treat version control systems as plain
temporal sequence of code changes, genealogy graphs com-
bine temporal and structural information about code changes
spanning a dependency graph. Similar models have been
used to analyze the impact of changes on the quality [8] or
the propagation of changes through the system [4].

Since the concept of change genealogies is mostly the-
oretical, we had to define and modify some aspects of the
original change genealogy definition to make genealogies
applicable in practice. To fit dependencies between atomic
changes (see Section III) into the concept of a change
genealogy, we aggregate atomic changes applied simulta-
neously to the version archive into sets of atomic changes—
so called transactions. In Figure 3, we show a transaction-
based change genealogy graph corresponding to the artificial
revision history shown in Figure 2. Each vertex corresponds
to a transaction applied to the archive and is labeled by its
unique identifier. Each vertex is annotated with the names
of the source files that were changed within the transaction.
Thus, change genealogies described within this paper model
dependencies between transactions (time) and dependencies
between changed source code files (space). All edges are
directed and point from earlier changes to later changes—
the future cannot influence the past. Edges between two
vertices represent a direct structural dependency between the
corresponding transactions. Each edge is labeled with the set
of dependency rules that caused the edge to be added to the
genealogy. The time gap an edge is bridging can be arbitrary.

Combining atomic changes and modeling dependen-
cies between transactions disregards dependencies between
changes applied together. The assumption is that changes
that were applied together by the same author are inter-
dependent and do not refer to long-term cause-effect chains.
Furthermore, considering dependencies between changes
applied in the same transaction would add many cycles to
change genealogies and would therefore heavily affect our
model checking approach (see Section V-C).

Our change genealogies are designed to model cross
transaction dependencies using structural code dependencies
that cannot be detected by standard mining techniques [18],
[19], [21]. In general, change genealogies are not bound to
the transaction level of granularity. But for the purpose of
detecting long-term couplings this simplification reduces the
amount of entities to be analyzed dramatically.

V. LONG-TERM COUPLINGS

To demonstrate the expressive power of change genealo-
gies and to give a practical working example how to use
such change genealogy graphs, we implemented a tool that
predicts long-term cause effect chains based on genealogy
graphs. We build on the concept of change couplings, intro-
duced by Gall et al. [17] and later improved by Zimmermann

et al. [18] and Canfora et al. [21]: If two artifacts are
coupled by frequent common changes, we can use this
coupling to predict related changes. Such couplings are
usually undetectable by program analysis [20].

We consider artifacts frequently or exclusively changed
together (within the same transaction) to be strongly cou-
pled. Using change couplings, it is possible to detect in-
complete code changes and to give recommendations for
further changes. The concept of change couplings has an
important deficiency, though: It relies on the assumption that
coupled artifacts get changed frequently (or always) together
within the same transaction or at least in small, static time
windows after each other. Often, artifacts that are frequently
changed across multiple transactions by different authors get
disregarded. As an example, consider a login function
defined in project P1 and a service class defined in
project P2. Changing the login function by throwing a new
runtime exception requires the developer of class service
to respond. Both files are maintained by different developers
and thus would never occur within one transaction. Further,
the dependency would not be detected by simply compiling
all projects. Still, these files should be considered as tightly
coupled. Tools like eROSE [18] do not detect these cou-
plings because they analyze each transaction independently.
Additionally, approaches like Canfora et al. [21] disregard
structural information. Files changed frequently short after
each other might not be structurally dependent but just
got changed due to an iterative development process. To
detect cross-transaction change couplings, we need structural
dependency information between code changes. Considering
the temporal order of transactions only does not suffice.

A. CTL on Genealogies

Change genealogies model dependencies between changes
and can be used to extend the concept of change couplings.
Long-term change couplings are change couplings spanning
across multiple software revisions. In terms of change ge-
nealogies, we search for software artifact a1 and a2 such
that whenever a1 got changed, there exists a genealogy path
from a1 to a2. The existence of such a path would imply
that both changes structurally depend on each other. Each
long-term coupling can be seen as a cause-effect chain: a
developer changes her code and other developers respond
to her change; the responding change can again cause other
developers to respond to it.

To express long-term couplings, we use computational
tree logic. CTL is the natural temporal logic interpreted over
branching time structures introducing path qualifiers. The
above example could be expressed as: a1 ⇒ EF a2—read
as “a1 imply exists finally a2”, and means that on every path
starting at a1, there is at least one path going through a2.

Using CTL to express long-term change couplings allows
us to use formal verification techniques to model check long-
term change couplings on change genealogies. While being



able to express complex long-term dependency relations
in logical formulas, we can also verify those relations
automatically on any change genealogy at any time.

CTL is a powerful language with which you can express
very complicated temporal properties on a change genealogy
graph. We omit an introduction to CTL due to space reasons.
Our goal is to find many plausible CTL formulas that might
express long-term cause effect chains. To do so, we use
predefined CTL templates [16] that are suitable to express
long-term cause effect chains. Our CTL formulas make use
of only three CTL operators: EF (exists finally), EX (exists
next), and AG (all globally). We also limit the number of
involved source code artifacts to three:
Templ1: a1 ⇒ EF a2: Changing a1 causes at least one

dependent change on a2.
Templ2: a1 ⇒ AG(a2 ⇒ EF a3): Changing a1 and later

changing a2 causes a change in a3. All later changes
depend on the initial change of a1.

Templ3: a1 ⇒ EF(a2 ∧ a3): Changing the artifact a1
causes dependent changes in a2 and a3 within the same
transaction.

Templ4 : a1 ⇒ EF a2 ∧ EF a3: Changing a1 causes
dependent changes in a2 and a3 but not necessarily
in the same transaction.

We do not claim that this set of CTL formulas is complete.
In fact, you can choose any CTL formula that will match
your purposes.

While CTL formulas are defined on software artifacts
(e.g. source code files) a change genealogy graph expresses
dependencies between sets of atomic changes. To bridge
this gap, we can use the change genealogy transaction
annotations. Replacing the artifact placeholders a1,a2, and
a3 within the CTL templates with the corresponding changed
files, we can express temporal dependencies over change
genealogy paths.

To illustrate this procedure, lets consider the change
genealogy from Figure 3 using CTL template Templ1. We
choose a path that matches the temporal logic of Templ1:
{T1, T3, T5}. Within Templ1 we replace the variable a1
with the file names changed within T1: F1, F2 and the
variable a2 with those file names changed within T5 : F4.
The resulting formulas are: F1 ⇒ EFF4 and F2 ⇒ EFF4.
Later (Section V-C) we will see that not all possible template
instances have to be generated.

Long-term couplings detected by GENEVA imply
structural dependencies between coupled artifacts.

B. Limiting the Temporal Scope

In the previous section, we discussed how to generate
CTL formulas using CTL templates. But in most projects all
such dependencies will become eventually true. Even though
each temporal path expressed by a long-term coupling rule is
based on structural code dependencies, we want to limit the

T1 T2 T3

time
+0 day +1 day +6 day +15 daytime window

S T2 T3 E

F1, 
F2 F3 F1, 

F2 E

Extract 
subgraph and 
add artificial 
final state  

Change label 
with names
of corresponding 
changed files

day 0

Figure 4. Extracting genealogy subgraphs from change genealogy using
sliding time window and converting genealogy subgraph to Kripke struc-
ture.

temporal scope in which such long-term coupling rules must
be valid. The longer the time between two dependent nodes,
the lower the probability that the later applied change was
caused by the earlier one. Therefore, we limit the number of
days between the initial change and the depending changes.
Doing so, we can ensure that there is a maximal time
window (max days) in which a CTL formula must be valid.

For this purpose, we use a sliding window approach to
generate multiple genealogy subgraphs from the original
genealogy graph. For each vertex u of the original geneal-
ogy graph G(V,E) we generate a corresponding genealogy
subgraph G′(V ′, E′) such that:
V ′ = {v ∈ V | t(u, v) ≤ max days ∧ path(u, v)} ∪ {u}

where t(u, v) is the number of days between the
commit dates of u and v. path(u, v) is true if and only
if there exists a path from u to v in G.

E′ = {e(v1, v2) ∈ E | v1 ∈ V ′ ∧ v2 ∈ V ′}
Figure 4 shows an example genealogy subgraph extracted

from our initial genealogy in Figure 3 (max days = 1). Each
genealogy subgraph is a connected graph having u (here T1)
as a root. The number of generated genealogy subgraphs
equals the number of vertices in the original genealogy graph
G. Graphs with a depth of one can be ignored.

Model checking the CTL formulas on the genealogy
subgraphs ensures a time window in which these formulas
have to be valid. Additionally, we automatically ignore
changes with no outgoing dependency. This reduces the
model checking space and makes model checking all these
formulas feasible.

C. Model Checking Genealogies

At this point, we have introduced the concept of change
genealogies and explained the concept of long-term change
couplings described as CTL formulas. To derive valid long-
term couplings, we have to model check which CTL for-
mulas evaluate to true on the genealogy subgraphs. But
before, we have to transform each genealogy subgraph into
a Kripke structure—a nondeterministic finite state machine



whose nodes represent reachable states with transition edges
between them.

Our genealogy subgraphs from Section V-B are con-
nected, directed, acyclic graphs and can be interpreted as a
nondeterministic finite state machine. They therefore already
are Kripke structures. It remains to add a new artificial final
state (the graph will be left-total) and replacing the original
node labels by those filenames changed by the corresponding
transaction (using the vertex annotations). This way, our
Kripke structures express temporal dependencies between
changed files instead of transactions.

The resulting Kripke structures can be used to model
check our CTL formulas. CTL formulas evaluating to true on
at least one Kripke structure are worth further investigation
since they represent potential long-term coupling rules.

VI. LONG-TERM COUPLING RULES

In the previous section, we generated valid CTL formulas
and prepared our data model to allow automatic CTL valida-
tion. But which of these formulas describe frequent change
patterns and which formulas occurred rarely or only once?
To mark important rules and to determine the strength of a
coupling rule we rank rules by their support and confidence
measures [18]:
Support. We measure the number of Kripke structures on

which the CTL formula F was evaluated to be true
as support(F ). In our initial example (Figure 3), the
formula File1 ⇒ EF File3 has a support of two. File1
was changed in transactions T1 and T3. The transactions
T2 and T4 change File3 and depend on either T1 or T3.

Confidence. To measure the strength of the consequence
expressed in formula F we calculate confidence(F ) as
the fraction of the formula’s support divided by the
number of times the premises (source code file a1) has
been changed. In our initial example (Figure 3), the
formula File1 ⇒ EF File3 has a confidence value of
one. The support value of the formula is two (see above)
and File1 got changed twice.

Rules are primarily ranked by confidence: The higher the
confidence, the higher the rank of the rule. Rules with equal
confidence are ranked by support.

A. Rules as Recommendations

The purpose of change couplings is to be used as rec-
ommendations. Whenever a programmer commits a change,
a recommendation tool suggests further changes based on
rules extracted from earlier code changes. Long-term change
rules express frequent change rules that span multiple change
transactions. Thus, each recommendation based on long-
term change rules does not suggest code changes to be
made within the same transaction but might indicate future
development activities; further changes to be applied within
a time window of max days number of days.

The computation of long-term coupling rules is already
described in Section V. To compute recommendations for a
given transaction Ti, we have to execute the following steps:

1) Generate the change genealogy graph until transaction
Ti−1 and generate all valid CTL formulas within the
current genealogy subgraph. That is, extract all changed
files from all transactions of the genealogy subgraph
and create all possible CTL formulas if not in the
CTL cache. Each CTL formula is stored as long-term
coupling rule together with the up-to-date support and
confidence values.

2) Select all long-term coupling rules with implication
premises that correspond to files changed within the
transaction Ti.

3) Rank the selected rules by confidence and support.
The computation of change genealogies and CTL rules,

model checking them and computing support and confidence
values on the fly takes time. Generating all long-term
coupling rules for a mid-size project spanning a history
of 15,000 transactions take several hours—depending on
the average number of files changed by transactions. (Of
course, change genealogies do not have to be regenerated
for each transaction but can be extended by single or
multiple transactions.) Still, to improve efficiency, we used
the following optimizations:
Ignoring large transactions. Transactions that touch many

files are suspicious because most of them either com-
bine multiple changes that should be separated or they
refer to refactoring or documentation updates. In gen-
eral, these transactions have a large number of incoming
and outgoing dependency edges causing millions of
CTL formulas generated. Additionally, long-term cou-
pling rules derived from large transactions have a higher
chance of causing many false positives.
We determine the median over the number of files
changed by earlier transactions. Transactions for which
the number of changed files is larger than the 3/4-
quantil of the change size distribution are ignored.

Ignoring rarely changed files. In a project history, there
are many code artifacts that have a very limited life
span. Other artifacts are rarely updated, if ever. To
minimize the number of relevant CTL formulas and to
ease the memory consumption during model checking,
we ignored all files that were changed only once.

Ignoring deleted files. When generating CTL formulas, we
drop rules that would contain files deleted within the
transaction as implication. Whenever a source code
artifact gets deleted, we remove all CTL formulas that
have the deleted artifacts as implication premise.

Optimized, generating recommendations for single change
transactions is fast and takes about one second.2

2All times were measured on a Linux Server using a single Intel
Xeon(X5570) processor (2.93GHz) and 8GB RAM



B. Additional Change Properties

There might be cause-effect chains that occur under
certain circumstances only. To capture cause-effect chains
that are bound to certain development activities, we have
to combine long-term coupling rules with change properties
such as size, author, or purpose of a change.

We implemented two such properties: fixes and big
changes. Analyzing commit messages from version archives
using a similar approach like Zimmermann et al. [23], we
can determine if the applied changes were made to fix
a bug fix transactions. Transactions changing more than
20% of a file’s content are classified as big changes with
respect to the individual file. Formulas with otherwise low
confidence might have high confidence when considering
fixing transactions or big transactions only. An example of
such conditional long-term change coupling rule is given in
Section VII.

C. Inner-Transaction Rules

So far, GENEVA extracts long-term coupling rules oc-
curring across multiple change transactions only. Previous
work [18], [21] also reported rules that occur within the
very same transaction. For comparison purposes, we added
an option adding inner-transaction rules to adjust formulas
support and confidence values.

In this paper, we obtained all results with disabled inner-
transaction rules, since we want to highlight the contribution
of long-term couplings. In Section VIII-G, however, we
will see that inner-transaction rules increase the number of
recommendations without sacrificing the precision.

VII. SOME RULE EXAMPLES

GENEVA uncovers long-term change couplings. Unlike
couplings within transactions, long-term change couplings
might not be obvious nor directly understandable by looking
at the code in one version—simply because they span a
longer period of time. To project outsiders, many long-term
change rules may come as surprises (which may actually
add to their value). Below, we give three basic examples
of long-term coupling rules from the JRuby project in CTL
style.
Long-term couplings in JRuby. The JRuby project is

based on a large compiler infrastructure defin-
ing many compiler interfaces and implementations
for these interfaces. One such interface is called
VariableCompiler. It changed 18 times between
2001 and 2010. Out of these 18 changes, 16 caused a
change in StandardASMCompiler within 8 days.
Each time, both transactions depended indirectly on
each other. Considering the complete JRuby project
history, the long-term coupling rule has a support value
of 16 and a confidence of 0.77.

VariableCompiler ⇒ EF StandardASMCompiler

Although, both files were never committed to-
gether, the maintainer of both files is the same.
In addition, both classes call each other indirectly:
StandardASMCompiler uses BodyCompiler as
interface; it’s implementation BaseBodyCompiler
then references VariableCompiler. The coupling
although frequent, can only be detected over time—by
using an approach like GENEVA.

Test suite changes. Adding functionality to classes often
requires new test cases to be added. Such dependencies
occur frequently within the same transactions. But there
are also cases in which improved or changed test cases
unveil problems in classes that might not be directly
under test. These cases often span multiple transactions
since the newly discovered issues cannot be checked ad
hoc:

MainTestSuite⇒ EFRubyObject

Nine changes to the MainTestSuite made other de-
velopers change the class RubyObject. The obvious
assumption is that the main test suite unveiled new
problems in RubyObject; the long-term coupling rule
connecting both files has a confidence of 0.65.
For JRuby we found 8 rules having a test case as
premises with an average confidence of 0.59 and an
average support value of 6.25. Note that most of these
case could not be detected by compiling the project(s)
due to the fact that most test errors are runtime issues.

Fixes vs. changes. Some change couplings occur only un-
der certain circumstances. The following rule has an
overall confidence value below 0.5:

RubyIO⇒ (EFRubyStructure ∧ EF Visibility)

However, if the changes applied to RubyIO are bug
fixes, the rule has a confidence of 0.8. In other words,
fixes to RubyIO imply other changes, while regular
changes do not.
For JRuby we found 31 long-term coupling rules that
only occur frequently when fixing an artifact. The
average confidence of these rules lies at 0.63 with an
average support value of 5.4.

All these rules span both space and time, and reveal long-
term couplings that GENEVA is the first approach ever to
uncover. Deviations from these rules are likely candidates
for missing activities—and hence problems.

GENEVA can use additional change properties as
coupling conditions to detect change coupling rules that

cannot be detected by comparable tools.

VIII. QUANTITATIVE EVALUATION

After having explored some of the patterns manually,
we wanted to know how many such rules exist and how
useful these patterns are in practice. The fact that long-
term coupling rules are represented in CTL formulas allows



automatic pattern validation on other change genealogies.
Therefore, the accuracy of this validation is our evaluation
target: How reliable are these rules and do patterns really
occur frequent enough to allow recommendations?

A. Evaluation Subjects

For our quantitative evaluation, we chose four open source
projects that had more than two years of project history
and were under constant development by more than twenty
developers (see Table II). The project histories contain seven
to twelve years of active development, more than 1,300
project revisions and more than 1,000 changed files. The
number of those files causing long-term couplings varies
from project to project. For three out of the four projects
GENEVA found over 200 long-term coupling rules with
confidence above 0.5 and for two projects nearly 100 long-
term couplings with confidence above 0.7.

Table II
EVALUATION SUBJECTS. ‘#FILES’ IS THE NUMBER OF FILES CHANGED
WITHIN THE PROJECT HISTORY. THE ROWS ‘#LTC 0.5’ AND ‘#LTC 0.7’

SHOW THE NUMBER OF SOURCE FILES FOR WHICH LONG-TERM
COUPLINGS WITH SUPPORT VALUES ≥ 3 AND A CONFIDENCE ≥ 0.5

AND ≥ 0.7 RESPECTIVELY EXIST.

ArgoUML Jaxen JRuby XStream

history 12 years 9 years 9 years 7 years
transactions 16,481 1,353 11,060 1,683
authors 50 20 66 11
#files 16,658 9,831 15,029 1,188
#ltc 0.5 243 28 232 231
#ltc 0.7 94 10 99 19

B. Exploring Change Genealogy

Table III shows details of the genealogy graphs for the
four project histories. The number of vertices equals the
number of transactions changing at least one JAVA source
file. GENEVA cannot determine dependencies between non
JAVA files and thus ignores these files.

For each project, we had to determine an appropriate
window size max days. Choosing max days too small will
disregard many potential long-term couplings, but choosing
it too large will spoil the results by adding a lot of noise. As a
first approximation, we therefore used the change genealogy
graphs to compute the median number of days between
two dependent transactions to determine a reasonable value
for the window size to be used. Table III shows that the
median time gaps between vertices and youngest child
(Median GYC) vary between four and sixteen days.

C. Predicting Long-Term Couplings

To evaluate whether long-term coupling rules are precise
enough to be used for recommendations, we build a long-
term coupling pattern prediction model. GENEVA ranks
recommendations by their confidence and support values.
The top ranked three recommendations are then used as
prediction result. The first 10% of each project history define
the training period allowing GENEVA to learn common

Table III
DETAILS OF GENEALOGY GRAPHS FOR THE FOUR OPEN SOURCE

PROJECT HISTORIES. OD STANDS FOR OUT DEGREE—THE NUMBER OF
EDGES LEAVING A VERTEX. “Median GYC”—MEDIAN GAP YOUNGEST

CHILD—IS THE NUMBER OF DAYS BETWEEN A VERTEX AND ITS
YOUNGEST CHILD. #SUBGRAPHS STATES THE NUMBER OF GENERATED,

NON-EMPTY GENEALOGY SUBGRAPHS OBTAINED WHEN USING
Median GYC AS THE TIME WINDOW SIZE.

ArgoUML Jaxen JRuby XStream

#Vertices 8,716 1,330 11,055 1,680
#Edges 28,389 3,651 63,613 4,161
Average OD 7.9 6.7 10.1 5.3
Median GYC 16 9 8 4
#subgraphs 1,216 128 2,387 256

long-term change patterns and rules. For the remaining 90%
of transactions, we used GENEVA to predict the top three
ranked long-term coupling rules:

1) Let T be the transaction to predict rules for. Further,
let CFT be the set of files changed by T .

2) Remove all files f ∈ CFT from CFT that got deleted
by T : CF′T = CFT \{f ∈ CFT |f got deleted by T}.
Remove all rules that have f as implication premise.

3) Take all CTL rules seen in the past that have file
c ∈ CFT as implication premise and store as prediction
candidates PCT .

4) Remove all entries from PCT that have a confidence
lower than 0.5 or a support value lower than 2: PT =
{pc ∈ PCT |conf (pc) ≥ 0.5 ∧ support(pc) ≥ 3}.

5) Sort PT by confidence. Rank entities with equal con-
fidence using their support value. Remove all but the
top three entities from PT .

6) Let GT be the genealogy subgraph for the transaction T
using max days (see Table III). Let FGT

be the set of
CTL formulas that evaluate to true on GT .

7) Update support and confidence values of all know
formulas and add new rules.

D. Benchmark Model

To illustrate the usefulness of this approach, we compare
the prediction measurements with a very basic benchmark
model that constantly predicts the top three most changed
files, at the prediction point in time. In Table IV, benchmark
values are stated behind the GENEVA result in brackets.

E. Precision of recommendations

As performance measurement for our prediction model,
we compute its precision. A standard metric for the fidelity
of classifications, the precision determines the fraction of
correctly predicted long-term change coupling rules:

precision =
#true positives

#true positives + #false positives

Table IV shows the prediction results of the described
prediction process. The precision of the prediction model lies
between 60 and 72 percent—thus, roughly two out of three
recommendations correctly predict a future code change that



Table IV
GENEVA PREDICTION RESULTS FOR LONG-TERM COUPLINGS. “AVG RANK OF HIGHEST HIT” DETERMINES THE AVERAGE POSITION THE FIRST VALID
RULES CAN BE FOUND AT. ROW 3 SHOWS THE PERCENTAGE OF TRANSACTIONS FOR WHICH GENEVA GAVE AT LEAST ONE RECOMMENDATION. THE

LAST ROW SHOWS HOW MANY OF THE GIVEN RECOMMENDATION SETS CONTAINED TRUE LONG-TERM COUPLING RULES ONLY.

GENEVA GENEVA with inner-transaction rules

ArgoUML Jaxen JRuby XStream ArgoUML Jaxen JRuby XStream

Precision (Benchmark) 0.60 (0.31) 0.70 (0.28) 0.72 (0.58) 0.63 (0.28) 0.66 0.59 0.71 0.67
Avg rank of highest hit (Benchmark) 1.8 (2.0) 1.8 (2.4) 1.9 (2.1) 1.8 (2.1) 2.0 2.0 2.0 2.1
% Transactions recommended 9.2 9.3 32.6 20.7 21.5 17.2 43.8 37.1
% Transactions with only true positives 52.3 68.8 58.0 54.2 48.0 47.8 49.1 43.8

will depend on the current code change within the time
frame of max days. This precision is on par with systems
like eROSE [18] but clearly outperforms the precision of the
benchmark model. Given that the recommendations actually
span space and time and thus face a far greater challenge,
this is a very satisfying result.

Precision is usually accompanied by recall, a measure of
completeness of our predictions. In our setting, this would
mean to evaluate how much of a system’s future evolution
(as expressed by future long-term couplings) is predictable
from its past history. Since the future is determined by so
many factors that are completely outside of the domain of
our research (and far out of the capabilities of any research),
the measure of recall makes little sense in our context.

In our evaluation, two out of three recommendations by
GENEVA correctly predict the next activity.

F. Efficiency of recommendations

In GENEVA’s recommendations, the average rank posi-
tion of the highest ranked true positive is between one and
two. This means that in case GENEVA gives a recommen-
dation, the first or second recommendation is a hit. Thus,
choosing a recommendation list length of more than three
would still deliver valid long-term coupling rules at the top
of the recommendation list.

GENEVA’s recommendations are efficient, placing the
correct activity in the top two positions of the ranked list.

G. Adding inner-transaction rules

The right half of Table IV shows prediction results for
the enhanced GENEVA tool integrating inner-transaction
coupling rules (Section VI-C). With inner-transaction rules,
the prediction precision for the projects argoUML and
XStream slightly improved, while the precision for Jaxen
and JRuby decreased. Overall, though, it seems that the
integration of inner-transaction change patterns does not add
many coupling rules not known by GENEVA before. The
average rank of the highest true recommendation slightly
drops but remains stable across all projects. Surprisingly, the
number of vertices for which GENEVA gives recommenda-
tions increases drastically. Together with a stable to slightly
improved precision, we can conclude that adding inner-
transaction rules to GENEVA improves the overall results.

This also implies that both sets, inner-transactional and long-
term couplings, are not subsets of each other. Increasing the
number of recommendations without decreasing precision
implies that GENEVA added rules that could not be detected
within single transactions and vice versa.

Adding inner-transaction rules increases the number of
recommendations without sacrificing precision.

H. Threats to Validity

External validity. We only examined the histories of four
open-source projects. We cannot claim their develop-
ment process or project history is representative for
other projects. However, we expect projects with a
tighter process control to result in more process rules
and increased accuracy.

Internal validity. Our approach of modeling dependencies
between changes by methods is kept simple on purpose,
and is neither necessarily sound nor necessarily com-
plete. As the problem is generally undecidable, a certain
amount of imprecision cannot be avoided. Concepts like
the coupling between transactions (rather than atomic
changes) or the use of time windows may also reduce
precision while improving efficiency.

Construct validity. Our evaluation used a standard ap-
proach: Learning from the past and checking whether
our findings still hold in the future; no manual inter-
pretation was involved that could threaten our findings.

IX. CONCLUSION AND CONSEQUENCES

In software development, activities are spread across space
and time—and yet depend on each other. Change genealo-
gies capture these dependencies as long-term couplings
between changes and affected artifacts. GENEVA is able
to detect such long-term couplings as temporal rules that
capture key features of the underlying software process.
GENEVA predicts code changes that will be applied in
future with a precision around 70% (Table IV), which
is considerably higher than predicting the most frequently
changed files. Being able to predict across space and time
shows the potential of change genealogies in predicting
software features.

Besides general improvements to performance and scala-
bility, our future work will focus on the following topics:



Dependencies between changes. Currently, we are inves-
tigating dependencies between changes to allow
GENEVA to use a much finer-grained dependency
graph to increase prediction precision.

More features. Right now, we express temporal patterns
over individual files affected by a change. Rules may
also include authors (“Whenever Bob changes some-
thing, Alice revises it”) or metrics (“If cyclomatic
complexity exceeds 0.75, a module will be refactored”).

Graph patterns and metrics. Besides temporal rules, we
can also search for specific patterns in the genealogy
graph, such as identifying changes that trigger the most
future changes, or the changes with the highest long-
term impact on quality or maintainability.

Acknowledgments. Kim Herzig is funded by a Google
Research Award “Predicting the Risk of Changes”.

REFERENCES

[1] M. Stoerzer, B. G. Ryder, X. Ren, and F. Tip, “Finding failure-
inducing changes in java programs using change classifica-
tion,” in Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering, ser. SIG-
SOFT ’06/FSE-14, 2006, pp. 57–68.

[2] J. Wloka, B. Ryder, F. Tip, and X. Ren, “Safe-commit analysis
to facilitate team software development,” in Proceedings of
the 31st International Conference on Software Engineering,
ser. ICSE ’09, 2009, pp. 507–517.

[3] I. I. Brudaru and A. Zeller, “What is the long-term impact
of changes?” in RSSE ’08: Proceedings of the 2008 inter-
national workshop on Recommendation Systems for Software
Engineering, 2008, pp. 30–32.

[4] D. M. German, A. E. Hassan, and G. Robles, “Change impact
graphs: Determining the impact of prior code changes,”
Information and Software Technology, vol. 51, no. 10, pp.
1394–1408, 2009.

[5] X. Ren, B. G. Ryder, M. Stoerzer, and F. Tip, “Chianti: A
change impact analysis tool for Java programs,” in ICSE ’05:
Proceedings of the 27th international conference on Software
engineering, 2005, pp. 664–665.

[6] A. Orso, T. Apiwattanapong, and M. J. Harrold, “Leveraging
field data for impact analysis and regression testing,” in
ESEC/FSE-11: Proceedings of the 9th European Software
Engineering Conference, 2003, pp. 128–137.

[7] J. Law and G. Rothermel, “Whole program path-based dy-
namic impact analysis,” in ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering, 2003, pp.
308–318.

[8] O. Alam, B. Adams, and A. E. Hassan, “Measuring the
progress of projects using the time dependence of code
changes,” in ICSM, 2009, pp. 329–338.

[9] K. S. Herzig, “Capturing the long-term impact of changes,”
in ICSE ’10 Ph.D. Symposium: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineer-
ing, 2010, pp. 393–396.

[10] J. E. Cook and A. L. Wolf, “Discovering models of software
processes from event-based data,” ACM Trans. Softw. Eng.
Methodol., vol. 7, no. 3, pp. 215–249, 1998.

[11] V. Curcin, M. M. Ghanem, and Y. Guo, “Analysing scientific
workflows with Computational Tree Logic,” Cluster Comput-
ing, vol. 12, no. 4, 2009.

[12] L. Wen, J. Wang, W. M. Aalst, B. Huang, and J. Sun, “A
novel approach for process mining based on event types,” J.
Intell. Inf. Syst., vol. 32, no. 2, pp. 163–190, 2009.

[13] D. Lo, L. Mariani, and M. Pezzè, “Automatic steering of
behavioral model inference,” in ESEC/FSE ’09: Proceedings
of the the 7th joint meeting of the European software engi-
neering conference and the ACM SIGSOFT symposium on
The foundations of software engineering. ACM, 2009, pp.
345–354.

[14] A. Wasylkowski and A. Zeller, “Mining temporal specifica-
tions from object usage,” in ASE ’09: Proceedings of the 2009
IEEE/ACM International Conference on Automated Software
Engineering, 2009, pp. 295–306.

[15] E. P. F. Chan, “Temporal-logic queries,” Computer Aided
Verification, vol. 12, no. 4, pp. 450–463, 2000.

[16] A. Gurfinkel, M. Chechik, and B. Devereux, “Temporal
logic query checking: A tool for model exploration,” IEEE
Transactions on Software Engineering, vol. 29, pp. 898–914,
2003.

[17] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical
coupling based on product release history,” in ICSM ’98:
Proceedings of the International Conference on Software
Maintenance, 1998, pp. 190–198.

[18] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller,
“Mining version histories to guide software changes,” in ICSE
’04: Proceedings of the 26th International Conference on
Software Engineering, 2004, pp. 563–572.

[19] A. T. T. Ying, “Predicting source code changes by mining
revision history,” 2003.

[20] B. Fluri, H. C. Gall, and M. Pinzger, “Fine-grained analysis
of change couplings,” in SCAM ’05: Proceedings of the Fifth
IEEE International Workshop on Source Code Analysis and
Manipulation, 2005, pp. 66–74.

[21] G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta,
“Using multivariate time series and association rules to detect
logical change coupling: an empirical study,” in Proceedings
of the 18th International Conference on Software Mainte-
nance (ICSM), ser. ICSM 2010, 2010.

[22] B. Dagenais and L. Hendren, “Enabling static analysis for
partial Java programs,” in OOPSLA ’08: Proceedings of
the 23rd ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2008,
pp. 313–328.

[23] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting de-
fects for eclipse,” in Proceedings of the Third International
Workshop on Predictor Models in Software Engineering, ser.
PROMISE ’07, 2007.


	I Introduction
	II Background
	II-A Change Dependencies
	II-B Change Impact Analysis
	II-C Process Models and Temporal Logic
	II-D Change Couplings

	III Change Dependencies
	IV Change Genealogies
	V Long-Term Couplings
	V-A CTL on Genealogies
	V-B Limiting the Temporal Scope
	V-C Model Checking Genealogies

	VI Long-Term Coupling Rules
	VI-A Rules as Recommendations
	VI-B Additional Change Properties
	VI-C Inner-Transaction Rules

	VII Some Rule Examples
	VIII Quantitative Evaluation
	VIII-A Evaluation Subjects
	VIII-B Exploring Change Genealogy
	VIII-C Predicting Long-Term Couplings
	VIII-D Benchmark Model
	VIII-E Precision of recommendations
	VIII-F Efficiency of recommendations
	VIII-G Adding inner-transaction rules
	VIII-H Threats to Validity

	IX Conclusion and Consequences
	References

