
Classifying Code Changes and Predicting Defects
Using Change Genealogies

Kim Herzig
Saarland University

herzig@cs.uni-saarland.de

Sascha Just
Saarland University

just@st.cs.uni-saarland.de

Andreas Rau
Saarland University

rau@st.cs.uni-saarland.de

Andreas Zeller
Saarland University

zeller@cs.uni-saarland.de

I. INTRODUCTION

Identifying bug fixes and using them to estimate or even
predict software quality is a frequent task when mining version
archives. The number of applied bug fixes serves as code
quality metric identifying defect-prone and non-defect-prone
code artifacts. But when is a set of applied code changes, we
call it change set, considered a bug fix and which metrics
should be used to building high quality defect prediction
models? Most commonly, bug fixes are identified by analyzing
commit messages—short, mostly unstructured pieces of plain
text. Commit message containing keywords such as “fix” or
“issue” followed by a bug report identifier, are considered to
fix the corresponding bug report. Similar, most defect predic-
tion models use metrics describing the structure, complexity,
or dependencies of source code artifacts. Complex or central
code is considered to be more defect-prone.

But commit messages and code metrics describe the state
of software artifacts and code changes at a particular point
in time, disregarding their genealogies that describe how the
current state description came to be. There are approaches
measuring historic properties of code artifacts [1]–[5] and
using code dependency graphs [6], [7] but non of these
approaches tracks the structural dependency paths of code
changes to measure the centrality and impact of change sets,
although change sets are those development events that make
the source code look as it does. Herzig et al. [8] used so called
change genealogy graphs to model structural dependencies
between change sets. The authors used these change genealogy
graphs to measure and analyze the impact of change sets on
other, later applied change sets.

In this paper, we make use of change genealogy graphs to
define a set of change genealogy network metrics describing
the structural dependencies of change sets. We further investi-
gate whether change genealogy metrics can be used to identify
bug fixing change sets (without using commit messages and
bug databases) and whether change genealogy metrics are
expressive enough to build effective defect prediction models
classifying source files to be defect-prone or not.

Regarding the identification of bug fixing change sets,
our assumption is that change sets applying bug fixes show
significant dependency differences when compared to change
sets applying new feature implementations. We suspect that
implementing and adding a new feature implies adding new

method definitions that impact a large set of later applied
code changes, which add code fragments adding method calls
to these newly defined methods. In contrast, we suspect bug
fixes to be relatively small rarely defining new methods but
modifying existing features and thus to have a small impact
on later applied code changes. The impact of bug fixes is to
modify the runtime behavior of the software system rather than
causing future change sets to use different functionality.

Similar, we suspect more central change sets—depending
on a large set of earlier change sets and causing many later
applied change sets to be dependent on itself—to be crucial to
the software development process. Consequently, we suspect
code artifacts that got many crucial and central code changes
applied to be more defect prone than others.

More specifically, we seek to answer the following research
questions in our study:

RQ1 How do bug fix classification models based on
change genealogy metrics compare to classification
models based on code complexity metrics (Sec-
tion V)?

RQ2 How do defect prediction models compare with de-
fect prediction models based on code complexity or
code dependency network metrics (Section VI)?

We tested the classification and prediction abilities of our
approaches on four open source projects. The results show
that change genealogy metrics can be used to separate bug
fixing from feature implementing change sets with an average
precision of 72% and an average recall of 89%. Our results
also show that defect prediction models based on change
genealogy metrics can predict defect-prone source files with
precision and recall values of up to 80%. On average the
precision for change genealogy models lies at 69% and the
average recall at 81%. Compared to prediction models based
on code dependency network metrics, change genealogy based
prediction models achieve better precision and comparable
recall values.

II. BACKGROUND

A. Change Genealogies

Change Genealogies were first introduced by Brudaru and
Zeller [9]. A change genealogy is a directed graph struc-
ture modeling dependencies between individual change sets.
Change genealogies allow reasoning about the impact of a

particular change set on other, later applied change sets.
German et al. [10] used the similar concept of change impact
graphs to identify change sets that influence the reported
location of a failure. Alam et al. [11] reused the concept of
change dependency graphs [10] to show how changes build
on earlier applied changes measuring the time dependency
between both changes. In 2010, Herzig [12] used the orig-
inal concept of change genealogies as defined by Brudaru
and Zeller [9] to implement change genealogies modeling
dependencies between added, modified, and deleted method
definitions and method calls. Later, Herzig and Zeller [8] used
this method based change genealogy graphs to mine cause-
effect chains from version archives using model checking.
In this paper, we reuse the concept of genealogy graphs as
defined and implemented by Herzig [12] and used by Herzig
and Zeller [8].

Change Genealogies in a Nutshell

Our change genealogy framework models dependencies
between individual change sets based on method definitions
and method calls added, deleted by every change set. A Code
change CSN depends on an earlier change set CSM if

• CSN deletes a method definition added in CSM ,
• CSN adds a method definition previously deleted in

CSM ,
• CSN adds a statement calling a method definition added

in CSM ,
• CSN deletes a method call added in CSM .

For this purpose, we analyze the complete version history of a
software project reducing every applied change sets to a num-
ber of code change operations that added or deleted method
calls (AC, DC) or added or deleted method definitions (AD,
DD). The example change set shown in Figure 1 contains two
change operations: one deleting the method call b.bar(5)
and one adding A.foo(5f). Note that there exists no change
operation for the method definition public C()... nor for
the class itself. Method calls and definitions are identified
using their full qualified name and absolute position within
the source code. Two change sets depend on each other if any
of their applied change operations depend on each other.

The example change genealogy shown in Figure 3 corre-
sponds to the artificial example history shown in Figure 2.
Following the initial change set example in Figure 1 we can
see that this change set causes two different dependencies for
change genealogy vertex CS4. Removing the method call to
B.bar(int) makes CS4 depending on CS2 that added the
just removed method call. CS4 also depends on CS3 con-
taining a change operation deleting the method definition of
B.bar(int). Apart from dependencies between individual
change sets, a change genealogies stores changed code artifacts
(e.g. file names) as vertex annotations and the dependency
types between vertices as edge annotations.

B. Network Metrics

Network metrics describing the dependency structure be-
tween individual code artifacts (e.g. source files) have shown

// fixes a wrong method
// call in line 6 in class C

public class C {
public C() {

B b = new B();
b.bar(5);
A.foo(5f);

}
}

3
4
5
6

7
8

Fig. 1. Diff output corresponding to the table cell of column CS4 and row
File3 shown in Figure 2. It also corresponds to the genealogy vertex CS4
shown in Figure 3.

File 2

File 3

File 4

File 1

Change Set
(CS1)

Change Set
(CS2)

Change Set
(CS3)

Change Set
(CS4)

float A.foo(float)
int A.foo(int)

d = A.foo(5f)

int A.foo(int)

int B.bar(int)

x = B.bar(5) x = B.bar(5)
x = A.foo(5f)

d = A.foo(0.2)

Fig. 2. We characterize change sets by method calls and definitions added
or deleted. Changes depend on each other based on the affected methods.

to be powerful to express dependencies between source code
artifacts such as methods and to predict software defects on
file and package level [6], [7], [13], [14]. In this work, we
use the concept of network metrics to express and measure
dependency relations between change sets. Since these depen-
dencies are already modeled within a change genealogy, we
can reuse many network metrics used in previous studies.

C. Change Classification

Classifying change sets is common in mining version
archives. There exist different approaches classifying change
sets with respect to various aspects.

Classifying whether change sets are bug fixes or not is
one of the earliest topics in mining version archives. Most
approaches are based on commit message analysis. One of

CS1 CS2 CS4CS3

day 0 0 day 1 day 6 day

File 1, File 2

AD AC

File 3 File 1, File 2 File 3, File 4

AD AC

AD AC

+ + +

AC DD

AC DC

Fig. 3. Sample change genealogy derived from the change operations shown
in Figure 2. CSi → CSj indicates that the change CSj depends on CSi.

the first approaches was presented by Čubranić and Gail [15].
The approach scans commit messages provided by developers
for keywords indicating links to the issue ticket system (e.g.
“Fixes bug id 7478”). These links will then be further filtered
based on their activity, authorship and report date. Many
approaches use a slightly modified version of this classification
technique [16]–[19]. Lately, Murgia et al. [20] presented a
technique using natural language processing to group commit
messages sharing the same text features.

There exist a variety of approaches classifying change sets
according to their impact on program execution [21], software
architecture [22]–[25], and program execution [21]. Closely re-
lated is the approach of Fluri et al. who developed a framework
capable of differentiating “between several types of changes
on the method or class level” [26]. With their framework,
the authors are able to assess the impact of a change set
on other source code entities and whether the applied change
set modifies the functionality of the software system or not.
Although, our approach uses a similar abstraction layer, our
aim is it to classify code changes with respect to their purpose:
is a change set a bug fix or a feature implementation.

Kim et al. [19] classified change sets with respect to the
likelihood the applied change set introduced a new software
defect. Although this approach limits the search space for de-
fect prediction models drastically, it cannot be used to identify
bug fixes. Within their approach, the authors themselves used
a commit message based approach to identify bug fixes.

Lately, Kawrykow and Robillard [27] identified so called
non-essential changes—changes that are of “cosmetic nature,
generally behavior-preserving, and unlikely to yield further
insights into the roles of or relationships between the program
entities they modify” [27].

D. Predicting Defects

Defect prediction models aim to predict the number and
sometimes the location of defects to be fixed in near fu-
ture. Such systems can be used to allocate quality assurance
resource. The number of studies and approaches related to
defect prediction is large and continues to grow. We reference
only those approaches and studies that are closely related
to this work. The given references are neither complete nor
representative for the overall list of defect prediction models,
their applications, and related approaches.

One of the earliest attempts to predict defects was conducted
by Basili et al. [28] using object-oriented metrics. Many
studies investigated a large variety of different code metric
types for defect prediction purposes. Ostrand et al. [29] used
code metrics and prior faults to predict the number of faults for
large industrial systems. Zimmermann et al. [17] demonstrated
that higher code complexity leads to more defects. Besides
code related metrics, there exist studies showing that change-
related metrics [4], developer related metrics [30], organiza-
tional metrics [31] and process metrics [32] can be used to
predict defect prone code artifacts.

The usage of code dependency information to build defect
prediction models in now new either. Schöter et al. [33] used

import statements to predict the number of defects for source
files at design time. Shin et al. [34] and Nagapan and Ball [35]
provided evidence that defect prediction models can benefit
when adding calling structure metrics.

Zimmermann and Nagappan [6] demonstrated that network
metrics on code entity dependency graphs can be used to build
precise defect prediction models. Code artifacts communicate
with each used using method calls or shared variables. Model-
ing these communication channels results in a graph structure
that can be used to apply network analysis on them. Later, Bird
et al. [7] extended the set of network metrics by extending code
dependency graph adding contribution dependency edges.

III. CHANGE GENEALOGY METRICS

In Section II-A we briefly discussed the concept of change
genealogies. Summarizing, change genealogies model depen-
dencies (edges) between individual change sets (vertices).
Similar to code dependency metrics [6], [7] we can use change
set dependency graph to define and compute change genealogy
metrics describing the dependency structures between code
changes instead of code artifacts.

Each change set applied to the software system is rep-
resented by a change genealogy vertex. Computing network
metrics for each change genealogy vertex means to compute
change set dependency metrics. Later, we will use this set
of genealogy metrics to classify change sets as bug fixing or
feature implementing using a machine learner and to predict
defect-prone source code artifacts.

To capture as many of such dependency differences as pos-
sible, we implemented various genealogy dependency metrics
of different categories.

A. EGO Network Metrics

Ego network metrics measure dependencies between change
genealogy vertices and their direct neighbors. For every vertex
we consider direct dependent or direct influencing change sets,
only. Thus, this set of metrics measures the immediate impact
of change sets on other change sets. Table I describes the
implemented genealogy ego network metrics.

The metrics NumDepAuthors and NumParentAuthors refer
to authorship of change sets. Bug fixes might depend mainly
of change sets that have the same author. The last six metrics
in Table I express temporal dependencies between change sets
based on their commit timestamp.

B. GLOBAL Network Metrics

Global network metrics describe a wider neighborhood.
Most global network metrics described in Table II can be
computed for the global universe of vertices and dependencies.
For practical reasons, we limited the metric traversal depth to
a maximal depth of five.

Metrics counting the number of global descendants or
ascendents express the indirect impact of change sets on other
change sets and how long this impact propagates though his-
tory. The set of inbreed metrics express dependencies between
a change set and its children in terms of common ascendents

TABLE I
EGO NETWORK METRICS CAPTURING DIRECT NEIGBOUR DEPENDENCIES.

Metric name Description

NumParents The distinct number of vertices being source of
an incoming edge.

NumDefParents The distinct number of vertices representing a
method definition operation and being source of
an incoming edge.

NumCallParents The distinct number of vertices representing a
method call operation and being source of an
incoming edge.

NumDependants The distinct number of vertices being target of an
outgoing edge.

NumDefDependants The distinct number of vertices representing a
method definition operation and being target of
an outgoing edge.

NumCallDependants The distinct number of vertices representing a
method call operation and being target of an
outgoing edge.

AvgInDegree The average number of incoming edges.
AvgOutDegree The average number of outgoing edges.

NumDepAuthors The distinct number of authors responsible for the
direct dependents.

NumParentAuthors The distinct number of authors that implemented
the direct ascendents of this vertex.

AvgResponseTime The average number of days between a vertex and
all its children.

MaxResponseTime The number of days between a vertex and the
latest applied child.

MinResponseTime The number of days between a vertex and the
earliest applied child.

AvgParentAge The average number of days between a vertex and
all its parents.

MaxParentAge The number of days between a vertex and the
earliest applied parent.

MinParentAge The number of days between a vertex and the
latest applied parent.

or descendants. Code changes that depend on nearly the same
earlier change sets as its children might indicate reverted or
incomplete changes.

C. Structural Holes

The concept of structural holes was introduces by Burt [36]
and measures the influence of actors in balanced social net-
works. In networks where each actor is connected to all other
actors is well balanced. As soon as dependencies between
individual actors are missing (“structural holes”) some actors
are in advanced positions.

The effective size of a network is the number of change
sets that are connected to a vertex minus the average number
of ties between these connected vertices. The efficiency of a
change set is its effective size normed by the number of vertices
contained in the ego network. The higher the metric values for
these metrics the closer the connection of a change set to its
ego network. Table III lists the complete list of used structural
hole metrics.

D. Change Metrics

The last set of metrics shown in Table IV measure the
amount of cade changes applied by the corresponding change
set and its neighbors in the ego network. In our case, we

TABLE II
GLOBAL NETWORK METRICS.

Metric name Description

NumParents† The distinct number of vertices being part of on
incoming path.

NumDefParents† Like NumParents but limited to vertices that
change method definitions.

NumCallParents† Like NumParents but limited to vertices that
change method calls.

NumDependants† The distinct number of vertices being part of on
outgoing path.

NumDefDependants† Like NumDependants but limited to vertices that
change method definitions.

NumCallDependants† Like NumDependants but limited to vertices that
change method calls.

NumSiblingChildren The number of children sharing at least one
parent with this vertex.

AvgSiblingChildren The average number of parents this vertex and
its children have in common.

NumInbreedParents The number of grandparents also being parents.
NumInbreedChildren The number of grandchildren also being chil-

dren.
AvgInbreedParents The average number of grandparents also being

parent.
AvgInbreedChildren The average number of grandchildren also being

children.
† maximal network traversal depth set to 5.

TABLE III
STRUCTURAL HOLES METRICS SIMILAR AS DEFINED BY BURT [36].

Metric name Description

EffSize The number of vertices that connected to this
vertex minus the effective size average number
of ties between these connected vertices

InEffSize The number of vertices that connected by in-
coming edges to this vertex minus the average
number of ties between these connected vertices

OutEffSize The number of vertices that connected by out-
going edges to this vertex minus the average
number of ties between these connected vertices

Efficiency norms EffSize by the sizeof the number of
vertices of the ego-network

InEfficiency norms InEffSize by the sizeof the number of
vertices of the ego-network

OutEfficiency norms OutEffSize by the sizeof the number of
vertices of the ego-network

counted the different number of added and deleted method def-
initions and method calls. The intuition behind these metrics
is that bug-fixes should in many cases be considerable smaller
than other developer tasks such as feature implementations or
code clean-ups [37].

IV. DATA COLLECTION

The goals of our approach are to classify bug fixing change
sets independent from commit messages and bug databases
and to predict defect prone source files, both using change
genealogy network metrics. To reason about the precision
of our classification and prediction models, we compare our
models to state of the art benchmark models.

Mockus and Votta [37] (referred to as M&V for sake of

TABLE IV
CHANGE SIZE METRICS DESCRIBE A VERTEX USING THE NUMBER OF

CHANGE OPERATIONS APPLIED BY THE CORRESPONDING CODE CHANGE.

Metric name Description

ChangeSize The number of change operations correspond-
ing to the vertex.

NumAddOps The number of adding change operations cor-
responding to the vertex.

NumDelOps The number of deleting change operations cor-
responding to the vertex.

NumAddMethDefOps The number of change operations adding
method definitions corresponding to the vertex.

NumDelMethDefOps The number of change operations deleting
method definitions corresponding to the vertex.

NumAddCallOps The number of change operations adding
method calls corresponding to the vertex.

NumDelCallOps The number of change operations deleting
method calls corresponding to the vertex.

AvgDepChangeSize The mean number of change operations
changed by direct children.

MaxDepChangeSize The maximal number of change operations
changed by one of the direct children.

SumDepChangeSize The total number of change operations changed
by direct children.

AvgParentChangeSize The mean number of change operations
changed by direct parents.

MaxParentChangeSize The maximal number of change operations
changed by one of the direct parents.

SumParentChangeSize The total number of change operations changed
by direct parents.

brevity) used code complexity metrics to identify bug fixing
change sets. We will use a code complexity metric based
change purpose classification models as benchmark model to
compare against our change genealogy network metric models.
Section IV-B contains details on the used complexity metrics.

We compare change genealogy defect prediction models
against two benchmark model: models based on code com-
plexity [17] and models based on code dependency mod-
els [6](referred to as Z&N for sake of brevity). Section IV-B
and Section IV-C contain details on the used complexity and
code dependency network metrics.

We evaluate our classification and prediction models on four
open-source projects: HTTPCLIENT, LUCENE, RHINO, and
JACKRABBIT. The projects differ in size from small (HTTP-
CLIENT) to large (LUCENE) allowing us to investigate whether
the classification and prediction models are sensitive to project
size. All projects are known in the research community and
follow the strict and industry-like development processes of
APACHE and MOZILLA. A brief summary of the projects
and their genealogy graphs is presented in Table V. Change
genealogy graphs contain approximately as many vertices as
applied change sets. The difference in the number of vertices
and the number of change sets is caused by change sets
that do not add or delete any method definition or method
call (e.g. modifying the build system or modifying code
documentation).

A. Bugs

For both approaches, change classification and defect pre-
diction, we need to know whether a change set applies a bug

TABLE V
PROJECTS USED FOR EXPERIMENTS.

HTTPCLIENT JACKRABBIT† LUCENE RHINO

History length 6.5 years 8 years 2 years 13 years
Lines of Code 57,143 65,764 362,128 56,084
Source files 570 687 2,542 217
Code changes 1,622 7,465 5,771 2,883
Mapped BUG reports 92 756 255 194
Mapped RFE reports 63 305 203 38

Change genealogy details
vertices 973 4,694 2,794 2,261
edges 2,461 15,796 8,588 9,002
† considered only sub-project JACKRABBIT content repository (JCR).

candidate pairs

?version archive

bug mappingcreation order timestamp resolution

Filter Chain

Reading data Selecting potential linkages Filtering based on several criteria Saving data

Reg
Ex

bug database

Fig. 4. Process of linking change sets to bug reports.

fix and the total number of applied bug fixes per source file.
Once we identified bug fixing change sets and the correspond-
ing bug report id, we can associate change sets with modified
source files and count the distinct number of fixed bug reports
per source file.

To associate change sets with bug reports, we followed the
approach by Zimmermann et al. [17] (see also Figure 4):

1) Bug reports and change sets are read from the corre-
sponding bug tracking system and version archive.

2) In a preprocess step we select potential
candidates using regular expressions such as
[bug|issue|fixed]:?\s*#?\s?(\d+) to search for
potential bug report references in commit messages.

3) The pairs received from step 2) then pass a set of filters
checking

a) that the bug report is marked as resolved.
b) that the change set was applied after the bug report

was opened.
c) that the bug report was marked as resolved not later

than two weeks after the change set was applied.

To determine a set of ground truth identifying the real
purpose of change sets we use a data set published by Herzig
et al. [38] containing a manual classified issue report type for
each individual files issue report. Instead of using the original
issue report type to identify bug reports, we used the manual
classified issue report type as published by Herzig et al. [38].

B. Complexity Metrics

We computed code complexity metrics for all source files
of each projects trunk version using a commercial tool called
JHAWK [39]. JHAWK computes classical object-oriented code
complexity metrics for JAVA projects. Using JHAWK we
computed the code complexity metrics listed in Table VI.

TABLE VI
SET OF CODE COMPLEXITY METRICS USED.

Identifier Description

NOM Total number of methods per source file.
LCOM Lack of cohesion of methods in source file.
AVCC Cyclomatic complexity after McCabe [40].
NOS Number of statements in source file.
INSTΣ Number of class instance variables.
PACK Number of imported packages.
RCS� Total response for class (# methods + # distinct

method calls).
CBO� Couplings between objects [41].
CCML Number of comment lines.
MOD� Number of modifiers for class declaration.
INTRΣ Number of implemented interfaces.
MPC� Represents coupling between classes induced by

message passing.
NSUBΣ Number of sub classes.
EXTΣ Number of external methods called.
FOUTΣ Also called fan out or effect coupling. The

number of other classes referenced by a class.
F-INΣ Also called fan in or afferent coupling. The

number of other classes referencing a class.
DIT∧ The maximum length of a path from a class to

a root class in the inheritance structure.
HIERΣ Number of class hierarchy methods called.
LMCΣ Number of local methods called.
Σ aggregated using the sum of all metric values of lower order
granularity. � aggregated using the mean value. ∧ aggregated using
the max value.

C. Network Metrics

Code dependency network metrics as proposed by Z&N
express the information flow between code entities modeled
by code dependency graph. The set of network metrics used
in this work slightly differs from the original metrics set used
by Z&N. We computed the used network metrics using the R
statistical software [42] and the igraph [43] package. Using
igraph we could not re-implement two of the 25 original
network metrics: ReachEfficiency and Eigenvector. While we
simply excluded ReachEfficiency from our network metric set,
we substituted the Eigenvector by alpha.centrality—a metric
that can be “considered as a generalization of eigenvector
centrality to directed graphs” [44]. Table VII lists all code
dependency network metrics used in this work. Metrics carry
the same metric name than the corresponding metric as de-
scribed by Z&N.

D. Genealogy Metrics

We discussed the set of genealogy metrics in Section III.
To compute these metrics, we constructed change genealogy
graphs modeling dependencies between change sets over the
entire project history. The metrics were computed using our
self written MOZKITO [45] mining framework.

V. CLASSIFYING CODE CHANGES (RQ1)
In this first series of experiments we seek an answer to RQ1:

can we use change genealogy metrics to identify bug fixing
change sets and how to such code change classification models
compare to classification models based on code complexity
models?

TABLE VII
LIST OF CODE DEPENDENCY NETWORK METRICS.

Metric name Description

Ego-network metrics (computed each for incoming, outgoing, and
undirected dependencies; descriptions adapted from Z&N):
Size # nodes connected to the ego network
Ties # directed ties corresponds to the number of edges
Pairs # ordered pairs is the maximal number of directed ties
Density % of possible ties that are actually present
WeakComp # weak components in neighborhood
nWeakComp # weak components normalized by size
TwoStepReach % nodes that are two steps away
Brokerage # pairs not directly connected. The higher this number,

the more paths go through ego
nBrokerage Brokerage normalized by the number of pairs
EgoBetween % shortest paths between neighbors through ego
nEgoBetween Betweeness normalized by the size of the ego network

Structural metrics (descriptions adapted from Z&N):
EffSize # entities that are connected to an entity minus the

average number of ties between these entities
Efficiency Normalizes the effective size of a network to the total

size of the network
Constraint Measures how strongly an entity is constrained by its

neighbors
Hierarchy Measures how the constraint measure is distributed

across neighbors. When most of the constraint comes
from a single neighbor, the value for hierarchy is
higher

Centrality metrics (computed each for incoming, outgoing, and
undirected dependencies; descriptions adapted from Z&N):
Degree # dependencies for an entity
nDegree # dependencies normalized by number of entities
Closeness Total length of the shortest paths from an entity (or to

an entity) to all other entities
Reachability # entities that can be reached from a entity (or which

can reach an entity)
alpha.centrality† Generalization of eigenvector centrality [44]
Information Harmonic mean of the length of paths ending in entity
Betweenness Measure for a entity in how many shortest paths

between other entities it occurs
nBetweenness Betweenness normalized by the number of entities
† Metrics not used by Z&N.

Our goal is to build two sets of change set classification
models for each subject project and to compare both sets of
classification models against each other. For each classification
model to be built, we need a data collection containing
explanatory variables (metric values per change set) and the
dependent variable classifying the corresponding change set
as bug fixing or as feature adding (see Figure 5). Change
genealogy metrics are already collected at change set level—
each change set corresponds to exactly one change genealogy
vertex. But code complexity metrics are collected on source
file level. M&V used the difference in code complexity before
and after the change set applied as metric. Following the idea
of M&V, for each metric M we sum up the metric values
over all source files at revision CSi−1 and subtract the same
sum of metric values collected at revision CSi. Doing this for
every code complexity metrics, yields a set of code complexity
metric values reflecting the amount of code complexity added
or deleted by change set CSi—we call this set code complexity
difference metrics.

The columns containing the change genealogy metrics are

● ● ●

ch
an

ge
 s

et
s

code complexity
difference metrics

Change
set type

Change
set ID

● ● ●

● ● ●

● ● ●

● ● ●

change genealogy
metrics

● ● ●

Fig. 5. Data collection used for change set classification purposes.

used to train the change genealogy classification model, the
code complexity difference columns are used to train the
benchmark model.

A. Experimental Setup (RQ1)

To train and test our classification models, we split our
original data set as shown in Figure 5 into training and testing
sub sets.

We train and test classification models for each subject
project, once using change genealogy metrics and once us-
ing code complexity metric difference values using stratified
sampling—the ratio of bug fixing change sets in the original
data set is preserved in both training and testing data sets.
This makes training and testing sets more representative by
reducing sampling errors.

Next, we split the training and testing sets into sub sets
each containing the columns change set type and change set
identifier but one set containing change genealogy metrics only
and one set containing code complexity difference metrics
only. Splitting metric sets after creating testing and training
sets, we create pairs of classification models using the same
training and testing split but using different metrics data as
feature vectors.

We repeatedly sample data sets 100 times in order to
generate 100 independent training and testing sets. Each split
is used to built one change genealogy and one code complexity
model. In total, we test 200 independent prediction models for
each project. Using such a repeated sampling reduces bias. A
single sample may lead to a good or bad result by accident.

We conducted our experiments using the R statistical
software [42] and more precisely Max Kuhn’s R package
caret [46]. This package provides helpful wrapper functions
to several machine learning algorithms available in other
packages. As machine learner we used a support vector
machine with radial kernel. As evaluation measures, we report
precision, recall, and F-measure. Each of these measures is a
value between zero and one. A precision of one indicated that
the classification model did not produce any false positives;
that is classified non bug fixes as bug fixes. A recall of one
would imply that the classification model did not produce
any false negatives—classified a bug fix not as such. The F-
measure represents the harmonic mean of precision and recall.

Fig. 6. Results from the classification experiment to separate bug fixing from
feature implementing code changes.

B. Classification Quality

The results of the stratified repeated holdout setup are shown
in Figure 6. Panels on the x-axis represent the subject projects.
Each classification model ran on 100 stratified random samples
on the two metric sets: change genealogy and complexity
difference metrics.

The black line in the middle of each boxplot indicates the
median value of the distribution. The red colored horizontal
lines do not have any statistical meaning—they have been
added to ease visual comparison. Additionally, we performed a
non-parametric statistical test (Kruskal-Wallis) to statistically
compare the results from the use of two pairs of metrics
sets: change genealogy metrics vs. code complexity metric
differences.

The results shown in Figure 6 show that the classification
performances of both metric sets are close to each other, except
for LUCENE. In all three cases code complexity difference
metrics show statistically significant (p < 0.05) stronger
classification results than change genealogy metrics, except
for the recall values for JACKRABBIT. In summary, code
complexity differences outperform change genealogy metrics
on three out of four projects. For LUCENE we were no able to
train a functional classification model using code complexity.
Nearly all change sets applied to LUCENE modified code
complexity only marginally. Thus, complexity metrics showed
too little variance to allow classification model training. Over
all projects, models based on change genealogy metrics show a
median precision of 0.69 and a median recall of 0.81. Models
based on complexity metrics showed a median precision of
0.72 and a median recall of 0.89.

● ● ●● ● ●

● ● ●

co
de

 fi
le

s

● ● ●● ● ●

● ● ●

● ● ●

code metrics network metrics genealogy
metrics

combined network metrics

aggregated over all change
sets changing the
corresponding file

#bug fixesfile name

● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

Fig. 7. Data collection used to classify bug fixing change sets and to predict
defects for source files.

C. Influential Metrics

The R package caret [46] allows computing the importance
of individual metrics using the filterVarImp function. The
function computes a ROC curve by first applying a series of
cutoffs for each metric and then computing the sensitivity
and specificity for each cutoff point. The importance of the
metric is then determined by computing the area under the
ROC curve. We a combined metrics set to compute variable
importance for change genealogy and code complexity metrics
and considered the top-10 most influential metrics for each
metrics set for examination.

The most influential change genealogy metrics are dedicated
to code age, the number of change set parents, and network
efficiency. Bug fixing change sets seem to change older
code while feature implementations are based on newer code
fragments. It also seems universal that feature implementing
change sets have more structural dependency parents than bug
fixing ones.

The most influential complexity difference metrics show
that the higher the impact of a change set on cyclomatic
complexity of the underlying source code, the higher the
chance that the change set is implementing a new feature.
Thus, bug fixing change sets show smaller impact on code
complexity than feature implementations. Surprisingly, metrics
explicitly referring to the size of a change set, such as number
of statements, are not among the top ten most influential
complexity metrics.

VI. PREDICTING DEFECTS (RQ2)

This series of experiments is dedicated to research ques-
tion RQ2: how do defect prediction models compare with
defect prediction models based on code complexity or code
dependency network metrics? We do not aim to build the
best prediction models possible and thus did not make any
performance tuning optimizations when training the different
prediction models. Our prediction models are trained to clas-
sify source code files as containing at least one defect or no
defect.

A. Experimental Setup

We reuse the basic experimental setup as described in
Section V. The only difference is the used data collection.
To train and test classification models on code complexity

httpclient jackrabbit lucene rhino

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

precision
recall

f-m
easure

Co
de

Ne
tw
ork

Ge
ne
alo
gy

Co
mb

ine
d

Co
de

Ne
tw
ork

Ge
ne
alo
gy

Co
mb

ine
d

Co
de

Ne
tw
ork

Ge
ne
alo
gy

Co
mb

ine
d

Co
de

Ne
tw
ork

Ge
ne
alo
gy

Co
mb

ine
d

Fig. 8. Results from the repeated holdout experimental setup. Note that
the Combined label refers to the combined metric set containing call graph
network metrics and change genealogy metrics.

and network metrics, we can reuse the originally generated
set of metrics as described in Section IV-B and Section IV-C.
The set of change genealogy metrics cannot be reused with-
out modification. Change genealogy metrics are collected on
change set basis but not on source file level. Thus, we have to
convert the change genealogy metric set to the source file level.
For each source file of the project, we aggregate all change
genealogy metric values over all change sets that modified
the corresponding file. We used three different aggregation
functions: mean, max, and sum. The resulting data collection
is illustrated in Figure 7.

B. Prediction Results

Results from the defect prediction experimental setup are
presented in Figure 8. Panels across the x-axis in the figure
represent the subject projects. The four prediction models used
were run on 100 stratified random samples on four metric sets:
complexity metrics, code dependency network metrics, change
genealogy metrics, and a combined set Combined that contains
code dependency and change dependency network metrics. For
each run we computed precision, recall an F-measure values.
The black line in the middle of each boxplot indicates the
median value of the corresponding distribution. Larger median
values indicate better performance on the metrics set for the
project based on the respective evaluation measure. Note that
the red colored horizontal lines connecting the medians across
the boxplots do not have any statistical meaning—they have
been added to aid visual comparison of the performance of the
metrics set. An upward sloping horizontal line between two
boxplots indicates that the metrics set on the right performs

better than the one of the left and vice versa. Additionally, we
performed a non-parametric statistical test (Kruskal-Wallis) to
statistically compare the results.

The results shown in Figure 8 suggest that network metrics
outperform code complexity metrics. Network metric predic-
tion models show better precision and recall values for all
four subject projects. Change genealogy models report up to
20% (on average 10%) less false positives (higher recall) when
compared to code network metric models. At the same time,
recall values for change genealogy models drop slightly in
comparison to network metric based models. The statistical
tests (Kruskal-Wallis) showed that the differences in classifi-
cation performances are statistically significant (p < 0.05).

Models trained on feature vectors combining code depen-
dency and change dependency network metrics show better
precision values for HTTPCLIENT and RHINO but worse
precision values for LUCENE when compared to models
trained on change genealogy metrics, only. The precision
values for LUCENE even drop below the precision values of
the corresponding network metric models. But interestingly,
models trained using the combined metric sets show better
recall values for all four projects. For three out of four projects,
the recall values are considerable increased (HTTPCLIENT,
JACKRABBIT, RHINO).

C. Influential Metrics

We used the same strategy as described in Section V-C to
determine top-10 most influential metrics. For three out of
four projects (HTTPCLIENT, JACKRABBIT, RHINO) seven of
the ten most influential metrics are change genealogy metrics.
Only for LUCENE the top-10 most influential metrics contains
no change genealogy metric.

We observed three different patterns with respect to pres-
ence and ranking of network and change genealogy metrics.
Each of the four top-10 most influential metric sets contained
one of the EffSize or Efficiency metrics as the most important
network metrics. For HTTPCLIENT, JACKRABBIT, and RHINO
the top two most influential metrics were change genealogy
metrics describing the relation between a change set and its
dependencies to earlier applied change sets (outgoing depen-
dencies). The number and type of the dependency parents as
well as the time span between the change set and its parents
seem to be crucial. The higher the number of parents and the
longer the time span between a change set and its parents the
higher the probability to add new defects. Thus, code entities
that got applied many change set combining multiple older
functions together are more likely to be defect prone than
other.

VII. THREADS TO VALIDITY

Empirical studies like this one have threats to validity. We
identified three noteworthy threats:
Change Genealogies. First and most noteworthy, change ge-

nealogies model only a dependencies between added
and deleted method definitions and method calls. Dis-
regarding change dependencies not modeled by change

genealogies might have an impact on change dependency
metrics. More precise change dependency models might
lead to different change genealogy metric values and thus
might change the predictive accuracy of the correspond-
ing classification and prediction models.

Number of bugs. Computing the number of bugs per file is
based on heuristics. While we applied the same technique
as other contemporary studies do, there is a chance the
count of bugs for some files may be an approximation.

Issue reports. We reused a manual classified set of issue
reports to determine the purpose of individual change
sets. The threats to validity of the original manual clas-
sification study [38] also apply to this study.

Non-atomic change sets. Individual change sets might refer
to only one issue report but still apply code changes
serving multiple other development purposes (e.g. refac-
torings or code cleanups). Such non-atomic change sets
introduce data noise into the change genealogy metric
sets and thus might bias the corresponding classification
models.

Study subject. Third, the projects investigated might not be
representative, threatening the external validity of our
findings. Using different subject projects to compare
change genealogy, code dependency, and complexity met-
rics might yield different results.

REFERENCES

[1] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting fault
incidence using software change history,” IEEE Trans. Softw. Eng.,
vol. 26, no. 7, pp. 653–661, Jul. 2000.

[2] A. E. Hassan and R. C. Holt, “The top ten list: Dynamic fault prediction,”
in Proceedings of the 21st IEEE International Conference on Software
Maintenance, ser. ICSM ’05. IEEE Computer Society, 2005, pp. 263–
272.

[3] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller, “Predicting
faults from cached history,” in Proceedings of the 29th international
conference on Software Engineering, ser. ICSE ’07. IEEE Computer
Society, 2007, pp. 489–498.

[4] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of
the efficiency of change metrics and static code attributes for defect
prediction,” in Proceedings of the 30th international conference on
Software engineering, ser. ICSE ’08. ACM, 2008, pp. 181–190.

[5] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy,
“Change bursts as defect predictors,” in Proceedings of the 2010 IEEE
21st International Symposium on Software Reliability Engineering, ser.
ISSRE ’10. IEEE Computer Society, 2010, pp. 309–318.

[6] T. Zimmermann and N. Nagappan, “Predicting defects using network
analysis on dependency graphs,” in Proceedings of the 30th international
conference on Software engineering, ser. ICSE ’08. ACM, 2008, pp.
531–540.

[7] C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu, “Putting
it all together: Using socio-technical networks to predict failures,” in
Proceedings of the 2009 20th International Symposium on Software
Reliability Engineering, ser. ISSRE ’09. IEEE Computer Society, 2009,
pp. 109–119.

[8] K. Herzig and A. Zeller, “Mining Cause-Effect-Chains from Version
Histories,” in Proceedings of the 2011 IEEE 22nd International Sym-
posium on Software Reliability Engineering, ser. ISSRE ’11. IEEE
Computer Society, 2011, pp. 60–69.

[9] I. I. Brudaru and A. Zeller, “What is the long-term impact of changes?”
in Proceedings of the 2008 international workshop on Recommendation
systems for software engineering, ser. RSSE ’08. ACM, 2008, pp.
30–32.

[10] D. M. German, A. E. Hassan, and G. Robles, “Change impact graphs:
Determining the impact of prior code changes,” Inf. Softw. Technol.,
vol. 51, no. 10, pp. 1394–1408, Oct. 2009.

[11] O. Alam, B. Adams, and A. E. Hassan, “A study of the time dependence
of code changes,” in Proceedings of the 2009 16th Working Conference
on Reverse Engineering, ser. WCRE ’09. IEEE Computer Society,
2009, pp. 21–30.

[12] K. S. Herzig, “Capturing the long-term impact of changes,” in Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 2, ser. ICSE ’10. ACM, 2010, pp. 393–396.

[13] R. Premraj and K. Herzig, “Network versus code metrics to predict
defects: A replication study,” in Proceedings of the 2011 International
Symposium on Empirical Software Engineering and Measurement, ser.
ESEM ’11. IEEE Computer Society, 2011, pp. 215–224.

[14] A. Tosun, B. Turhan, and A. Bener, “Validation of network measures
as indicators of defective modules in software systems,” in Proceedings
of the 5th International Conference on Predictor Models in Software
Engineering, ser. PROMISE ’09. ACM, 2009, pp. 5:1–5:9.

[15] D. Čubranić and G. C. Murphy, “Hipikat: recommending pertinent
software development artifacts,” in Proceedings of the 25th International
Conference on Software Engineering, ser. ICSE ’03. IEEE Computer
Society, 2003, pp. 408–418.

[16] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in Proceedings
of the International Conference on Software Maintenance, ser. ICSM
’03. IEEE Computer Society, 2003, pp. 23–32.

[17] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
Eclipse,” in Proceedings of the Third International Workshop on Pre-
dictor Models in Software Engineering, ser. PROMISE ’07. IEEE
Computer Society, 2007, pp. 9–.

[18] A. E. Hassan, “Automated classification of change messages in open
source projects,” in Proceedings of the 2008 ACM symposium on Applied
computing, ser. SAC ’08. ACM, 2008, pp. 837–841.

[19] S. Kim, J. E. James Whitehead, and Y. Zhang, “Classifying software
changes: Clean or buggy?” IEEE Transactions on Software Engineering,
vol. 34, no. 2, pp. 181–196, March/April 2008.

[20] A. Murgia, G. Concas, M. Marchesi, and R. Tonelli, “A machine
learning approach for text categorization of fixing-issue commits on
cvs,” in Proceedings of the 2010 ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement, ser. ESEM ’10.
ACM, 2010, pp. 6:1–6:10.

[21] K. Chatterjee, L. de Alfaro, V. Raman, and C. Sánchez, “Analyzing the
impact of change in multi-threaded programs,” in Proceedings of the
13th international conference on Fundamental Approaches to Software
Engineering, ser. FASE’10. Springer-Verlag, 2010, pp. 293–307.

[22] J. Dı́az, J. Pérez, J. Garbajosa, and A. L. Wolf, “Change impact analysis
in product-line architectures,” in Proceedings of the 5th European
conference on Software architecture, ser. ECSA’11. Springer-Verlag,
2011, pp. 114–129.

[23] M. Lee, A. J. Offutt, and R. T. Alexander, “Algorithmic analysis of the
impacts of changes to object-oriented software,” in Proceedings of the
Technology of Object-Oriented Languages and Systems (TOOLS 34’00),
ser. TOOLS ’00. IEEE Computer Society, 2000, pp. 61–.

[24] B. J. Williams and J. C. Carver, “Characterizing software architecture
changes: A systematic review,” Inf. Softw. Technol., vol. 52, pp. 31–51,
January 2010.

[25] A. Tang, A. Nicholson, Y. Jin, and J. Han, “Using bayesian belief
networks for change impact analysis in architecture design,” J. Syst.
Softw., vol. 80, pp. 127–148, January 2007.

[26] B. Fluri and H. C. Gall, “Classifying change types for qualifying change
couplings,” in Proceedings of the 14th IEEE International Conference
on Program Comprehension, ser. ICPC ’06. IEEE Computer Society,
2006, pp. 35–45.

[27] D. Kawrykow and M. P. Robillard, “Non-essential changes in version
histories,” in Proceedings of the 33rd International Conference on
Software Engineering, ser. ICSE ’11. ACM, 2011, pp. 351–360.

[28] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Trans. Softw. Eng.,
vol. 22, no. 10, pp. 751–761, Oct. 1996.

[29] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Where the bugs are,”
in Proceedings of the 2004 ACM SIGSOFT international symposium on
Software testing and analysis, ser. ISSTA ’04. ACM, 2004, pp. 86–96.

[30] M. Pinzger, N. Nagappan, and B. Murphy, “Can developer-module
networks predict failures?” in Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering, ser.
SIGSOFT ’08/FSE-16. ACM, 2008, pp. 2–12.

[31] N. Nagappan, B. Murphy, and V. Basili, “The influence of organizational
structure on software quality: an empirical case study,” in Proceedings
of the 30th international conference on Software engineering, ser. ICSE
’08. ACM, 2008, pp. 521–530.

[32] A. E. Hassan, “Predicting faults using the complexity of code changes,”
in Proceedings of the 31st International Conference on Software Engi-
neering, ser. ICSE ’09. IEEE Computer Society, 2009, pp. 78–88.

[33] A. Schröter, T. Zimmermann, and A. Zeller, “Predicting component fail-
ures at design time,” in Proceedings of the 2006 ACM/IEEE international
symposium on Empirical software engineering, ser. ISESE ’06. ACM,
2006, pp. 18–27.

[34] Y. Shin, R. Bell, T. Ostrand, and E. Weyuker, “Does calling structure
information improve the accuracy of fault prediction?” in Proceedings
of the 2009 6th IEEE International Working Conference on Mining
Software Repositories, ser. MSR ’09. IEEE Computer Society, 2009,
pp. 61–70.

[35] N. Nagappan and T. Ball, “Using software dependencies and churn
metrics to predict field failures: An empirical case study,” in Proceedings
of the First International Symposium on Empirical Software Engineering
and Measurement, ser. ESEM ’07. IEEE Computer Society, 2007, pp.
364–373.

[36] R. S. Burt, Structural holes: The social structure of competition.
Cambridge, MA: Harvard University Press, 1992.

[37] A. Mockus and L. G. Votta, “Identifying reasons for software changes
using historic databases,” in Proceedings of the International Conference
on Software Maintenance (ICSM’00), ser. ICSM ’00. IEEE Computer
Society, 2000, pp. 120–.

[38] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: How
misclassification impacts bug prediction,” Universität des Saarlandes,
Saarbrücken, Germany”, Tech. Rep., August 2012.

[39] “Jhawk 5 (release 5 version 1.0.1),” available at:
http://www.virtualmachinery.com/jhawkprod.htm.

[40] T. J. McCabe, “A complexity measure,” IEEE Trans. Software Eng.,
vol. 2, no. 4, pp. 308–320, 1976.

[41] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, Jun. 1994.

[42] R Development Core Team, R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing, 2010.

[43] G. Csardi and T. Nepusz, “The igraph software package for complex
network research,” InterJournal, vol. Complex Systems, p. 1695, 2006.
[Online]. Available: http://igraph.sf.net

[44] P. Bonacich, “Power and centrality: A family of measures,” American
journal of sociology, 1987.

[45] “Mozkito (0.4-snapshot),” available at: http://mozkito.org.
[46] M. Kuhn, caret: Classification and Regression Training, 2011, R

package version 4.76. [Online]. Available: http://cran.r-project.org/web/
packages/caret/caret.pdf

http://igraph.sf.net
http://cran.r-project.org/web/packages/caret/caret.pdf
http://cran.r-project.org/web/packages/caret/caret.pdf

	Introduction
	Background
	Change Genealogies
	Network Metrics
	Change Classification
	Predicting Defects

	Change Genealogy Metrics
	EGO Network Metrics
	GLOBAL Network Metrics
	Structural Holes
	Change Metrics

	Data Collection
	Bugs
	Complexity Metrics
	Network Metrics
	Genealogy Metrics

	Classifying Code Changes (RQ1)
	Experimental Setup (RQ1)
	Classification Quality
	Influential Metrics

	Predicting Defects (RQ2)
	Experimental Setup
	Prediction Results
	Influential Metrics

	Threads to Validity
	Conclusion
	References

