
Profiling Java Programs for Parallelism

Clemens Hammacher, Kevin Streit, Sebastian Hack, Andreas Zeller
Department of Computer Science

Saarland University
Saarbrücken, Germany

{hammacher, streit, hack, zeller}@st.cs.uni-saarland.de

Abstract

One of the biggest challenges imposed by multi-core ar-
chitectures is how to exploit their potential for legacy sys-
tems not built with multiple cores in mind. By analyzing
dynamic data dependences of a program run, one can iden-
tify independent computation paths that could have been
handled by individual cores. Our prototype computes dy-
namic dependences for Java programs and recommends lo-
cations to the programmer with the highest potential for
parallelization. Such measurements can also provide start-
ing points for automatic, speculative parallelization.

1. Introduction

A central challenge of multi-core architectures is how to
leverage their computing power for systems that were not
built with parallelism in mind—that is, the vast majority of
programs as we know them. Recent years have seen consid-
erable efforts in automatic parallelization, mostly relying
on static program analysis [3] to identify sections amenable
for parallel execution, and using concepts like transactional
memory to preserve data dependences [10].

While these efforts have shown impressive advances, we
believe that they will face important scalability issues. The
larger a program becomes, the harder it gets to precisely
identify dependences between items—not to speak of multi-
language code, or code that already has basic parallelism.
At the same time, however, it may well be that it is large sys-
tems that offer the highest potential for parallelization. This
is due to essential principles of software design: High ab-
straction, encapsulation, modularity, and hierarchy all keep
computation local, while minimizing global interaction be-
tween components—which implies that such local compu-
tations could also be executed in parallel.

To further explore this hypothesis, we wanted to measure
the potential for parallel execution in recent object-oriented
programs. Our approach works as follows:

1 void main(String[] args) {
2 int n = parseInt(args[0]);
3 long[] sums = new long[n];
4
5 for (int i=0; i<n; ++i) {
6 sums[i] = sumTo(i);
7 }
8
9 long overallSum = 0;

10
11 for (int i=0; i<n; ++i) {
12 overallSum += sums[i];
13 }
14 }
15
16 long sumTo(int n) {
17 if (n == 0) return 0;
18 return n + sumTo(n-1);
19 }

Figure 1. The SumUp example program.

Tracing dynamic dependences. During the execution of a
Java program, we trace all read and write accesses by
all instructions. The traced variable accesses constitute
dynamic dependences: If some instruction instance A
reads a value that was written by an earlier instruction
instance B, then B has influenced the computation at
A, or A depends on B.

As an example, consider the SumUp program in Fig-
ure 1. SumUp sets each element sums[i] to the sum
sums[i] =

∑i
j=0 j, where the sum is computed

recursively in the helper method sumTo(). During
execution, we trace (among others) that the value of
sums[1] depends on the return value of sumTo(),
which again depends on n and the return value of the
recursive call. Section 2 provides foundations on how
to establish dependences; Section 3 describes the im-
plementation of our tracer.

getProperties0 digit0

getProperties1 digit1

getProperties2 digit2

parseInt0

main0

sumTo0 sumTo1

sumTo2

sumTo3

sumTo4

sumTo5

sumTo6

sumTo7

sumTo8

sumTo9

sumTo10

sumTo11

sumTo12

sumTo13

sumTo14

Figure 2. The method level dynamic dependence graph for input “005”. The critical path (shown in bold) denotes
the part of the computation that must be executed sequentially.

Detecting parallelism. The dynamic dependences form a
dynamic dependence graph which describes how the
individual instruction instances transitively depend on
and influence each other. Figure 2 shows the full
dependence graph of the SumUp program when exe-
cuted with the input 005 (an input that leads to mul-
tiple digits being processed, but still a small number
of sumTo() calls). We see how the three individual
digits contribute to forming the parseInt() return
value, which in turn triggers the invocation of five in-
dependent instances of sumTo(), which in turn in-
voke more instances. (Each invocation instance is in-
dexed with its own serial number.)

In the dynamic dependence graph, we can identify par-
allel as well as serial computation paths. In particu-
lar, we can identify the critical path—the longest path
whose instruction instances must be executed sequen-
tially. In Figure 2, the critical path (shown in bold)
spans from the first call to getProperties() (de-
noted as getProperties0) to sumTo14, the last in-
vocation of sumTo().

As the critical path forms a lower bound on execution
time, it indicates how much a serial run can be sped
up given unlimited resources for parallel execution. In
our example, we could thus speed up execution down
to the 12 calls on the critical path. (We compute de-

pendences on instructions rather than method calls.)

In Section 4, we describe how to compute the critical
path and how to compute the amount of parallelism in
serial Java programs. Section 5 presents initial results
on eight medium- to large-scale Java programs: In the-
ory, these benchmarks can be sped up by factors up
to 500 and more.

Suggesting parallelization candidates. Long paths
of parallel computation indicate opportunities for
parallelization—either manually (by making ap-
propriate recommendations to the programmer) or
automatically (by applying some form of speculative
parallelization). In our example, the first loop in the
main() function would be an obvious candidate,
as all elements of the sums[] array are computed
independently. In Section 6, we describe the approach
and discuss first experiences.

To our knowledge, ours is the first tool to measure the
potential for parallelism in real-life Java programs. In the
long run, the approach will provide starting points for au-
tomatic parallelization of large-scale programs, as well as
produce important empirical data for future research.

Figure 2. The method level dynamic dependence graph for input “005”. The critical path (shown in bold) denotes
the part of the computation that must be executed sequentially.

Detecting parallelism. The dynamic dependences form a
dynamic dependence graph which describes how the
individual instruction instances transitively depend on
and influence each other. Figure 2 shows the full
dependence graph of the SumUp program when exe-
cuted with the input 005 (an input that leads to mul-
tiple digits being processed, but still a small number
of sumTo() calls). We see how the three individual
digits contribute to forming the parseInt() return
value, which in turn triggers the invocation of five in-
dependent instances of sumTo(), which in turn in-
voke more instances. (Each invocation instance is in-
dexed with its own serial number.)

In the dynamic dependence graph, we can identify par-
allel as well as serial computation paths. In particu-
lar, we can identify the critical path—the longest path
whose instruction instances must be executed sequen-
tially. In Figure 2, the critical path (shown in bold)
spans from the first call to getProperties() (de-
noted as getProperties0) to sumTo14, the last in-
vocation of sumTo().

As the critical path forms a lower bound on execution
time, it indicates how much a serial run can be sped
up given unlimited resources for parallel execution. In
our example, we could thus speed up execution down

to the 9 calls on the critical path. (We compute depen-
dences on instructions rather than method calls.)

In Section 4, we describe how to compute the critical
path and how to compute the amount of parallelism in
serial Java programs. Section 5 presents initial results
on eight medium- to large-scale Java programs: In the-
ory, these benchmarks can be sped up by factors up
to 500 and more.

Suggesting parallelization candidates. Long paths
of parallel computation indicate opportunities for
parallelization—either manually (by making ap-
propriate recommendations to the programmer) or
automatically (by applying some form of speculative
parallelization). In our example, the first loop in the
main() function would be an obvious candidate,
as all elements of the sums[] array are computed
independently. In Section 6, we describe the approach
and discuss first experiences.

To our knowledge, ours is the first tool to measure the
potential for parallelism in real-life Java programs. In the
long run, the approach will provide starting points for au-
tomatic parallelization of large-scale programs, as well as
produce important empirical data for future research.

2. Foundations

In this section, we explain the notation and terms used
throughout the rest of this paper. Readers familiar with exe-
cution traces, control-flow and data-dependence graphs may
safely skip this section.

A program P is given by a set of methods P =
{M1, . . . }. Each method M is defined by its control-flow
graph GM = (V,E, r). Each vertex v ∈ V is an instruction
of the form

z ← op(x1, . . . , xn)

where z is called the result of v and x1, . . . , xn the argu-
ments of v. The edges E model the flow of control between
instructions. r ∈ V is the root of the CFG, i.e. the instruc-
tion that has no control-flow predecessor.

Running the program P on some input D yields a new
program P (D) which is called the trace of P on D. When-
ever an instruction I : z ← op(x1, . . . , xn) in P is ex-
ecuted, an instruction Î : ẑ ← op(x̂1, . . . , x̂n) is added
to P̂ and connected by a control-flow edge to the instruc-
tion added before. We also call Î an instruction instance
of I . The variables ẑ, x̂1, . . . represent the actual addresses
that were written to and read from when the instruction I
was executed. Since a trace is just straight-line code, its
control-flow graph is just a chain Î1 → · · · → În. Thus, we
abbreviate it by the sequence of its instructions: P (D) =
Î1, . . . , În.

In a trace Î1, . . . , În, an instruction Îk is data dependent
on another instruction Îi if Îk uses some variable x̂ that Îi

defines and there is no i < j < k such that Îj also defines x̂.
We then write Îi < Îk. The relation < induces a directed,
acyclic graph on the trace’s instructions which we call the
dynamic data-dependence graph. The longest path from Î1

to În in the dynamic data-dependence graph is called the
critical path.

3. Efficiently Tracing Programs

The basis of our parallelism-detection algorithm is the
execution trace of a program run on a specific input. The
tracer which produces these execution traces is a part of a
dynamic slicer developed in our group [4]. In this section
we will give a brief overview of how execution traces can
be efficiently produced and stored.

The trace file is created by a Java agent, which hooks
itself into the Java virtual machine (VM) in order to instru-
ment every class when it is loaded by the class loader. The
trace file contains all information needed to reconstruct the
precise sequence of bytecode instructions that have been ex-
ecuted and all dynamic dependences between them. This in-
formation includes a representation of all classes that have
been instrumented.

The control flow is traced in such a way that it can effi-
ciently be reconstructed in reverse order, because all algo-
rithms presented in this paper iterate backwards through the
execution trace. For each executed instruction which has
more than one predecessor in the static control-flow graph,
the tracer records the dynamic predecessor. Doing the same
at the beginning of each method and after each method call
enables us to rebuild the precise execution trace. Special
effort has been taken to handle exceptions properly.

Beside this information about the control flow, the trace
file also contains dynamic information concerning the ac-
cess of array elements and object fields. In order to identify
the memory address which is read or written by an array-
load, array-store, getfield or putfield instruction, each ob-
ject (including arrays) is dynamically assigned an identity,
which is recorded for each execution of such an instruction.
Combining this information and the control flow, we com-
pute the dynamic data dependences as described in the next
section.

Currently, the tracer records all information separately
for each thread, which limits us to analyze the dependences
within one thread only. Because of caching effects, instruc-
tion reordering and other optimizations allowed in the Java
memory model, it is much more challenging to reliably
trace dependences between interleaving threads. For now,
we leave this open for future research.

Since the traced sequences occurring at each single
instrumented location are highly repetitive, Wang and
Roychoudhoury propose to compress each of them sepa-
rately [11] using the Sequitur [6] algorithm. A compari-
son [4] between Sequitur and gzip compression shows that
gzip also performs very well (compressing to less than five
percent on average), but consumes much less memory. So
we are using gzip compression for all of our benchmarks.

For testing our tool set we use the DaCapo benchmark
suite [1] which contains eleven medium to large scale Java
programs three of which are multi-threaded (hsqldb, luse-
arch, xalan). Table 1 compares the execution time of the
single-threaded programs in a traced and untraced setting
and states the size of the trace file in relation to the length
of the execution trace.

4. Detecting Parallelism

The amount of potential parallelism is determined by the
data dependences in the program: If an instruction Î con-
sumes a value computed by an instruction Ĵ (Î is data de-
pendent on Ĵ), Î cannot be executed before Ĵ . As men-
tioned above, we are interested in the amount of potential
parallelism of a program P run on a particular input D.
Therefore, we investigate the dynamic data-dependence
graph H of the trace P (D) = Î1, . . . , În.

Assuming an infinite number of processors and zero cost

runtime trace analysis

benchmark description raw traced length file size critical path len. potential
antlr parser generator 0.4 s 12.6 s 252,966,020 12.6 MB 733,726 344.77
bloat bytecode-level optimization 1.5 s 29.4 s 370,075,796 21.3 MB 1,757,622 210.55
chart graph plotting 2.4 s 20.4 s 8,553,981 7.7 MB 89,535 95.54
eclipse Java IDE 6.6 s 103.9 s 352,435,955 174.8 MB 903,930 389.89
fop print formatter 0.9 s 10.9 s 113,433,667 16.0 MB 493,113 230.04
jython python interpreter 0.5 s 25.7 s 3,487,935,981 29.3 MB 15,190,620 229.61
luindex text indexing 0.7 s 23.9 s 372,897,081 14.4 MB 647,810 575.63
pmd Java source code analyzer 0.4 s 5.2 s 23,473,919 13.6 MB 171,593 136.80

Table 1. Results of tracing and analyzing programs from the DaCapo benchmark suite

of scheduling time, the instructions could be scheduled such
that the trace can be computed in k steps where k is the
length of the critical path in H . Thus, in this hypothetical
setting, the program could be sped up by a factor of n/k.
We call this number the parallelization potential.

Of course, real systems have a finite number of proces-
sors, and true costs for scheduling; real performance is also
very much determined by locality of data accesses as well
as data caching strategies. These real-life constraints can
be accommodated when interpreting the data. Furthermore,
the main purpose of our tool is to aid the programmer in
finding code regions that could profit from parallelization.
To this end, we identify regions in the trace with high po-
tential speed up, i.e. a short critical path in the dynamic
data-dependence graph.

Since the traces are very long (up to 370 millions of exe-
cuted instruction in our benchmark programs), the dynamic
data-dependence graphs can hardly be fully constructed in
memory. Other approaches deal with this problem by using
approximative methods [12]. However, we are only inter-
ested in the length of the critical path and therefore do not
need to construct the graph in memory.

We assign each instruction instance Î a length `(Î). The
length `(Î) of the longest path to Î is simply the maximum
of the lengths of all incoming paths at Î plus one, i.e. `(Î) =
1+max{Ĵ|Î<Ĵ} `(Ĵ). The length of the critical path can be
easily computed by a single sweep over the trace:

The last instruction În of the trace is set to `(În) := 0.
Then, we traverse the trace upwards (as described above,
the tracer already writes out the traces from back to front)
and keep a map live : N → P(V). The map live maps a
memory address to the set of instruction instances that read
that address since the last write to that address (seen from
back to front). Assume we visit instruction instance Î that
reads addresses R and writes memory address w. The set of
all nodes that are data dependent on Î is just live(w). Thus,
`(Î) can be easily computed by adding 1 to the maximum of
the lengths of the nodes in live(w). Finally, we remove w’s
entry from the live and add entries r 7→ Î for each r ∈ R.

In doing so, we visit every instruction instance only
once, thus there is no need of keeping all in memory. Fur-
thermore, the memory consumption is limited by the max-
imum number of simultaneously live memory addresses.
Note that this can also be used on a part Îk, . . . , Îm of
the trace: Memory addresses written without being in the
live map, because they are not read with in the trace part,
can simply be ignored. Thereby, potential parallelism with
the outlying part is ignored. For a sequence of instruc-
tions T = Î1, . . . , Îm we denote the length of the critical
path of T ’s data-dependence graph by `(T).

5. First Results

As mentioned in Section 3, we use the single threaded
programs of the DaCapo suite to test our algorithms. In
the following we give the results of our tool set and analyze
how these results come to be.

Table 1 shows the results of our tests. Additional in-
formation given are the length of one run using the option
-s small which executes the corresponding benchmark on a
small input set, the length of the critical path in this execu-
tion and the parallelization potential.

The size of the runs spans from 8,553,981 instruction
instances for chart to 3,487,935,981 instances for jython.
The parallelization potential ranges from 95.54 for chart to
575.63 for luindex. (As pointed out in Section 4, this num-
ber does not take overhead of scheduling into account, and
should be seen as a theoretical upper bound for what non-
speculative parallelization could achieve.) Generally, our
results indicate a definite potential for parallelization for
Java programs. They also suggest that with an increasing
execution length the potential parallelism increases as well.

Where do these potential speed-up factors come from?
Let us investigate what constitutes the potential for paral-
lelization by looking at the three benchmark programs with
the highest factors in more detail.

luindex is a file indexing engine. In the benchmark, five

files are indexed. The results of several files are joined
at the end to form a single index. The individual index-
ing operations could potentially be performed in paral-
lel as indicated by our results; the joining still is serial.
This is not much of a surprise; indeed, our tool just
confirmed what could be obtained from a brief code
examination.

antlr is a generator for recursive descent parsers. The
parser code for each rule in the grammar can be gener-
ated independently from all other rules. Therefore, all
rules can be processed in parallel—a property which is
not obvious from the code, and which can be exploited
by programmers.

eclipse is a programming environment. The DaCapo
benchmark runs seven JDT performance test suites.
Since test suites are set up to be independent of each
other, the potential for parallelization is not surprising.
However, our result confirms that the tests are indeed
independent—which would a very valuable informa-
tion for a programmer who wants to improve testing
performance.

Obviously, these first results show very coarse-grained
parallelism in outer loops—which is where, at least in these
programs, the most gain is to be found, and where the pro-
grams can be easily rewritten to take advantage of paral-
lelization. However, our approach is equally applicable to
detect more fine-grained parallelism.

In the long run, benchmarks created for measuring the
performance of Java runtime systems may not prove best for
measuring the potential for parallelization. Therefore, every
result for parallelization potential needs to be checked care-
fully for whether the potential comes from the program—or
the way it is benchmarked.

6. Suggesting Parallelization Candidates

The parallelization potential can not tell us how or where
to start looking for code that can possibly be parallelized.
As a first application of the dependence profiler, we investi-
gate the potential parallelism in loops. To this end, we first
compute a loop tree [7] for every control-flow graph in the
program. Second, we perform the same backward traversal
of the trace as for detecting the overall critical path length.
Each time the execution reaches a loop boundary, a new
computation of the critical path is started for this instance
of the loop. Consecutive iterations of the loop body of one
dynamic instance of the loop are handled as one execution
for which the critical path is determined.

Consider a program P , an input D, and the result-
ing trace P (D). Let L be a loop, given by the instruc-
tions I1, . . . , In of its body, and let L̂ = Îi1 , . . . , Îim

be an

instance of the loop in P (D). Then, the length of the criti-
cal path is determined for every instance L̂i of L in P (D).
After processing the complete trace the parallelization po-
tential for loop L is computed as ratio of the accumulated
lengths of the critical paths and lengths of the instances:

potential(L) :=
∑

Instance L̂ `(L̂)∑
Instance L̂ |L̂|

As an example, consider the run of SumUp (see Figure 1)
on the input “015”. The overall parallelization potential
is 29.32. For the loop in line 5, the loop analysis reports a
potential of 23.78, for the one in line 11 a potential of 4.02.
Note that the potential of the latter loop is almost indepen-
dent from the input because the loop has loop carried de-
pendences. The potential speed-up of ∼ 4 does not vary
much for different inputs.

The potential alone is not very expressive, because a loop
with a high potential does not influence the overall speed of
the program significantly if it is not executed very often.
Thus, we introduce the influence influence(L) of a loop L.
The influence is the quotient of the number of executed in-
struction instances of L̂ and the length of the trace. Based
on the influence and the potential L, we define the gain as

gain(L) = influence(L)− influence(L)
potential(L)

to couple the influence of a loop with the potential paral-
lelism. This will direct the programmer to the loops which
will benefit most from parallelization.

Applied to the DaCapo suite, the loop analysis pin-
pointed the parallelism at the right places as we verified by
manual inspection. For example, in the luindex benchmark,
almost all of the potential was found in the loop that dis-
tributes the indexing across the individual inputs.

7. Related Work

In the last years there have been several papers about
extracting parallelism using dynamic analyses. However,
most of the presented tools do dynamic binary instrumen-
tation of the machine code produced by a C compiler. This
causes several complications: Due to very aggressive com-
piler optimizations it is harder to trace the dependences. For
example, the binary instrumentation must be able to trace
dependences also through the register file if the compiler
performed aggressive register allocation. It might even be
necessary to recompile the code disabling all optimizations.

Our tool instruments Java bytecode with a Java agent. It
can be used on any VM that implements the necessary API.
Therefore, the program can be analyzed without modifica-
tions or recompilation. To our knowledge, our tool is the

first one that can efficiently profile medium to large scale
Java programs for parallelism.

The work closest to ours is the Taskfinder tool by von
Praun et al. [10]. Taskfinder is similar to our analysis frame-
work, and works on C programs. However, the size of the
programs we can profile is a magnitude larger.

Bridges et al. [2] perform automatic parallelization using
decoupled software pipelining. They also find suitable re-
gions for parallelization with a profiler that traces memory
dependences. However, for safe speculation, they rely on
hardware features that are not common in current systems.

Thies et al. [9] apply dynamic binary instrumentation to
analyse data dependences in C programs to extract pipeline
parallelism that can be used to transform the program into
a stream program. The applied program transformation re-
quires that every data dependence is emitted during the dy-
namic analysis which makes the approach unpractical for
larger programs.

Rul et al. [8] presents an automatic parallelization frame-
work for C programs that also relies on dynamic analy-
sis. The granularity of their approach is even more coarse
than in the work by von Praun et al: code between func-
tion calls and loop boundaries are compressed to so-called
snippets; the dynamic data dependences are treated only be-
tween snippets.

Harris and Singh [5] use profiling to detect parallelism
in functional programs written in Haskell. As Haskell is a
pure functional language, there is no competing access for
shared resources. Their approach aims for finding paral-
lelism among so-called thunks, units of code created by the
Haskell compiler to implement lazy evaluation.

None of these approaches has been demonstrated to work
on object-oriented programs; or been shown to scale up to
medium- to large-scale programs. This is the specific con-
tribution of the present paper.

8. Conclusion and Future Work

By tracking the dependences between computation paths
in Java program runs, our approach provides measurement
for the parallelization potential of Java programs. Just like
a regular profiler detects locations where most time is be-
ing spent, our approach detects those locations where par-
allelization brings the most benefits—an important task that
can guide and should precede any kind of manual or au-
tomatic parallelization. Our early results clearly highlight
the parallelization potential in real-life Java programs and
thus should encourage research on how to fully exploit this
potential.

Measurement alone does not bring performance benefits,
though; and lots of work remain to fully leverage the power
of dynamic dependences. Our future work will focus on the
following topics:

Better modeling. As stated in Section 4, the amount of
parallelism given by the critical path is much more a
theoretical than a practical value. We want to com-
pute realistic maximum amounts of parallelism given:
a limited number of processors or other resources; a
specific effort for creating threads; varying costs for
different instructions; or varying costs for (possibly
cached) data accesses.

A workbench for experimentation and evaluation.
Dynamic dependences, as determined by our ap-
proach, can be used to easily experiment with different
parallelization techniques and to evaluate them.
Rather than implementing a complicated paralleliza-
tion technique into some compiler, and then only
evaluating its performance, one can use our traces to
evaluate a concept before implementing the full tool
chain.

Alternate computations. A dynamic approach like ours
can also be used to detect opportunities for alternate
computations. For instance, one could exploit arith-
metic properties like associativity or commutativity
to reorder computations and thus unlock further fine-
grained parallelization potential. Similar transforma-
tions could be applied to data structures.

More and multi-threaded programs. As it comes to the
implementation, our approach is currently limited to
single-threaded programs. An extension to multiple
threads is straight-forward, though, and will allow us
to apply the approach on a larger variety of programs.

Granularity. When computing dependences, we have
the choice between various levels of granularity—
methods vs. basic blocks vs. instructions. We want
to explore how these different levels impact the accu-
racy of our computations, and how they contribute to
making the approach even more scalable.

Speculative parallelization. Last but not least, we want to
implement a system that leverages this very measured
potential by applying automated, speculative paral-
lelization to large-scale Java programs. Before such
an implementation, though, comes measurement—and
the parallelization potential, as discovered in our early
results, is very encouraging.

More information on this work can be found at

http://www.st.cs.uni-saarland.de/javaslicer/

Acknowledgments. We thank the anonymous reviewers for
their detailed and constructive comments.

http://www.st.cs.uni-saarland.de/javaslicer/

References

[1] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Framp-
ton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo bench-
marks: Java benchmarking development and analysis. In
OOPSLA ’06: Proceedings of the 21st annual ACM SIG-
PLAN conference on Object-Oriented Programing, Systems,
Languages, and Applications, pages 169–190, New York,
NY, USA, Oct. 2006. ACM Press.

[2] M. J. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. I.
August. Revisiting the sequential programming model for
the multicore era. IEEE Micro, January 2008.

[3] A. Darte, Y. Robert, and F. Vivien. Scheduling and Auto-
matic Parallelization. Birkhäuser, 2000.

[4] C. Hammacher. Design and implementation of an efficient
dynamic slicer for Java. Bachelor’s Thesis, November 2008.

[5] T. Harris and S. Singh. Feedback directed implicit par-
allelism. In ICFP ’07: Proceedings of the 12th ACM
SIGPLAN international conference on Functional program-
ming, pages 251–264, New York, NY, USA, 2007. ACM.

[6] C. G. Nevill-Manning and I. H. Witten. Linear-time, incre-
mental hierarchy inference for compression. In Data Com-
pression Conference, 1997. DCC ’97. Proceedings, pages
3–11, 1997.

[7] G. Ramalingam. On loops, dominators, and dominance
frontiers. ACM Trans. Program. Lang. Syst., 24(5):455–490,
2002.

[8] S. Rul, H. Vandierendonck, and K. D. Bosschere. Extract-
ing coarse-grain parallelism in general-purpose programs.
In Proceedings of the 2008 ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages
281–282, Salt Lake City, Feb. 2008.

[9] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A prac-
tical approach to exploiting coarse-grained pipeline paral-
lelism in c programs. In MICRO ’07: Proceedings of the
40th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, pages 356–369, Washington, DC, USA,
2007. IEEE Computer Society.

[10] C. von Praun, L. Ceze, and C. Caşcaval. Implicit parallelism
with ordered transactions. In PPoPP ’07: Proceedings of the
12th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pages 79–89, New York, NY,
USA, 2007. ACM.

[11] T. Wang and A. Roychoudhury. Using compressed byte-
code traces for slicing Java programs. In ACM/IEEE Inter-
national Conference on Software Engineering (ICSE), pages
512–521, 2004.

[12] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slic-
ing algorithms. In IEEE/ACM International Conference on
Software Engineering, pages 319–329, 2003.

	1 . Introduction
	2 . Foundations
	3 . Efficiently Tracing Programs
	4 . Detecting Parallelism
	5 . First Results
	6 . Suggesting Parallelization Candidates
	7 . Related Work
	8 . Conclusion and Future Work

