Saarland University
Faculty of Natural Sciences and Technology I
Department of Computer Science
Bachelor’s Program in Computer Science

Bachelor’s Thesis

Design and Implementation of an
Efficient Dynamic Slicer for Java

submitted by
Clemens Hammacher

on November 11, 2008

Supervisor

Andreas Zeller

Advisors

Valentin Dallmeier
Martin Burger

Reviewers

Andreas Zeller
Sebastian Hack

Affirmation of Congruence

Hereby I affirm that the content of the electronic version attached to this thesis
conforms to this printed version.

Saarbriicken, November 11, 2008

Statement

Hereby I confirm that this thesis is my own work and that I have documented all
sources used.

Saarbriicken, November 11, 2008

Declaration of Consent

Herewith I agree that my thesis will be made available through the library of the
Computer Science Department.

Saarbriicken, November 11, 2008

Abstract

Dynamic slicing is a well known technique in automated debugging. For
a concrete program run and the slicing criterion consisting of a program lo-
cation and a set of variables, it computes the set of instructions that affected
the values of the variables at this location.

Although dynamic slicing has been studied extensively, there is only one
implementation of a dynamic slicer available for Java, called JSlice. Since
this implementation does only work on few programs and is difficult to set
up and to use, we are designing a new dynamic slicer (JAVASLICER) from
scratch. To make our implementation future-proof and independent from the
VM implementation, we use a Java Agent to instrument the bytecode of the
program under suspect.

In this thesis, we describe the design decisions that have been taken as
well as some aspects of the technical implementation. We also mention
some improvements regarding the performance as well as the representa-
tion and compression of the execution trace, that builds the basis for the slice
computation. In the evaluation section, we show that JAVASLICER is fully
functional and exceeds the existing solution in several aspects.

Contents
1 Introduction
2 Related Work

3 Background and Basics

3.1 Slicingo
32 JavaBytecode
33 ASM . . .
34 JavaAgents e
35 Sequitur e
3.5.1 Runlength Encoding
3.5.2 Shared Grammar
4 Design
4.1 Tracer e e e e e
4.1.1 Instrumentation
4.1.2 Identifying Objects
413 TraceFile oo oL
414 Compressiono
4.2 Slicer e

5 Implementation

5.1 Instrumentation
52 Challenges.
5.3 Limitations
5.3.1 Nativecode
532 Reflection
5.3.3 Shutdownhooks
5.4 Performance Tuning
5.5 Slicing Algorithm L L
6 Evaluation
6.1 CaseStudies.
6.1.1 Assignments and Methods
6.1.2 Exception Handling and Advanced Data Dependencies . .
6.2 Real Life Applications
6.3 Performance Lo
6.3.1 Compression o..ii
6.32 Slicing
6.4 Comparison withJSlice

7 Conclusions and Future Work

10
12
13
14
15

17
17
17
19
20
20
21

22
22
24
24
24
25
25
25
28

29
29
29
30
30
30
31
32
33

35

References 37

List of Figures
1 Ilustration of data and control dependencies 9
2 Sketch of the Java toolchain 13
3 Comparison of runtime against slice size 33
4 Comparison of trace length against slicing execution time 34
List of Tables
1 Example of the Sequitur algorithm 15
2 Comparison of different compression algorithms 32
Listings
1 Simple method with try-catchblock 11
2 Bytecode corresponding to the method in Listing 1 11
3 ASM code producing the bytecode of Listing2 12
4 Simple class implementing the lazy initializing pattern 22
5 Instrumented version of the class in Listing4 23
6 Demonstration of a simple slice 29
7 Slice computation including exceptions 31

1 Introduction

It is well known that debugging and maintenance take a great part in the develop-
ment and lifecycle of a program. A current survey of 139 mid to big-sized North
American companies conducted by IDC [3] during the 2nd quarter 2008 shows that
each company spends $5.2 million to $22 million per year for debugging.

The question is what makes debugging that difficult, and hence that expensive.
The problem is that in big companies, lots of developers work together on one
software project. Each of them only works on a small part of the project, and has
only a broad understanding of the internals of the other parts. So interacting with
classes that another developer was responsible for may lead to the arise of errors
in areas where one didn’t expect them, because one didn’t change anything there.
The error might emerge as a wrong result in some computation, wrong behavior of
the software or even a crash of the whole program. The challenge is now to find
the source of the error, that is the component, and more precisely the instruction,
that has to be changed in order to fix the bug. This task is the most time consuming
one in debugging, after an erroneous behavior has been detected.

Beginners typically start by inserting special logging statements in areas where
they expect the defect to be located. Their goal is to catch the control flow of
the program and values of variables that they expect to have an influence on the
bug. More advanced developers use debugging tools to place breakpoints into the
same positions, which is already much better, but still has a big drawback: The
developer has to understand the program in such detail, that she can tell what parts
of the program could impact the observed bug, and has to manually set breakpoints,
check the variables’ values and analyze the control flow to finally find the cause of
the error.

Even though this procedure might be feasible for small projects with only very
few developers, it is very exhausting, because you rarely survey at first go the
method where the defect is actually located. And so there is plenty of time spent
on exploring dependencies in the source code to get an idea about all parts that may
affect the bug.

In bigger projects these methods cannot be applied at all, because usually a sin-
gle developer only has a deep understanding of a very limited part of the software,
so it is impractical to manually analyze the dependencies and possible control flows
of the whole program.

In the last 10 to 15 years, a lot of work has been done to automatize this first
step of fixing a bug. So called filtering techniques [5] can be used to filter out code
that cannot have influenced the becoming of the error. In this way, the amount of
code that the developer has to explore to find the cause of the bug can be narrowed
down.

The most important filtering technique is slicing: For any given program loca-
tion and for any variable, it tells you which components affected the value of the
variable in this program location. For Java programs, this slice - the result of the
slicing algorithm - contains single bytecode instructions, so that you know very

precisely which parts of the source code you have to examine.

The slicing can be performed statically on the source code of the program, but
because of special opportunities of object-oriented languages like dynamic bind-
ing, inheritance or polymorphism, the dependencies have to be resolved very con-
servatively in order to fetch all possibilities. Because of this constraints, the static
slice is usually relatively big, and so barely helpful.

Much more precise is the dynamic slice, which is a subset of the static slice and
is in most cases dramatically smaller, so it excludes much more code that cannot
contain the origin of the error.

Slicing has been studied extensively for imperative programming languages
like C, but there is no substantial progress for slicing object-oriented programming
languages like Java. There exists only one working dynamic slicer for Java [6], but
it is very outdated and difficult to use. So there obviously is the need for a modern
and flexible dynamic slicer for Java programs, to contribute to more sophisticated
automated debugging tools.

2 Related Work

There has been a lot of theoretical work regarding slicing in general, dynamic
slicing of object-oriented programs specifically, and ways to store the execution
trace in an efficient way.

We took many ideas from the work by Wang and Roychoudhury [11, 12], who
found a great way of storing the execution trace, which is based on Java bytecode.
They use lots of output streams that are separately compressed using an optimized
version of the SEQUITUR algorithm developed by Nevill-Manning and Witten [9].
In this way they achieve a much better compression than if they would just write
out the sequence of bytecode instructions as they are executed, and compress this
single sequence. Their focus was mainly on an efficient representation of the exe-
cution trace, rather than an efficient slicing algorithm based on the recorded trace.

Other people regarded especially dynamic slicing on object-oriented programs:
Zhao [14] as well as Xu and Chen [13] addressed the problems that arise from
advanced features like inheritance, polymorphism or dynamic binding. They ex-
tended the concepts of the dynamic dependence graph and control dependencies to
attain a precise dynamic slice.

But for our purposes, this is not necessary: By extending the definition of
a variable, we can effortlessly use conventional slicing algorithms. Variables in
object-oriented programs are all cells that carry independent information, like fields
of an object, or each single entry of an array.

Concerning practical implementations of all this theoretical work, it looks very
sparsely. To our knowledge, there exists only one dynamic slicer for Java, called
JSlice [0]. It has been developed by Wang and Roychoudhury, and its first version
is rather old. Since the mostly used Java VM by Sun was not published under
an open-source license at that time, they decided to modify the Kaffe VM [7], a
free clean-room implementation of the Java Virtual Machine as defined by Sun
Microsystems. Kaffe is written completely in C, so they patched the source code
to write out all information needed to reconstruct the trace of the program run. The
version they used for their modifications is 1.0b3, which is mostly compatible with
Sun-JDK 1.4. This old Java version is only rarely used today, but since the changes
are very deep inside the system, it is hard to carry it over to a newer Kaffe version
or even to another VM implementation.

The main disadvantage for users is that it is difficult to set up the Kaffe VM and
JSlice for most systems. One has to compile it for every platform, and install it in
parallel to the existing Java VM. The sourcecode they provide does only compile
with the antiquated GCC version 2.95, and the binaries only run on some specific
Linux distributions.

Its incompatibility with current Java versions makes it unusable for debug-
ging newly developed software. For this reason, we chose the DaCapo bench-
mark suite [4] for evaluating our newly developed tool against JSlice. The DaCapo
benchmarks consist of a collection of real life applications that have been selected
according to several new metrics. These metrics provide for a diversity with respect

to code complexity, memory usage, object behavior and multithreading. Besides,
this suite is compatible to JRE 1.4, which makes it usable with the Kaffe VM.

3 Background and Basics

3.1 Slicing

Program Slicing is a technique that is often used in automated debugging. As filter-
ing technique [5], it can assist in narrowing down the source code statements that
may have produced an error. It uses a well defined algorithm to find all statements
that may have an influence on a user-defined variable, which is typically a variable
that has been observed to hold an unexpected value. This form of slicing is called
backward slicing. As this name implies, there is also a counterpart called forward
slicing, which identifies all statements that are influenced in the future by a defined
variable. Since forward slicing is rarely used, we only focus on backward slicing
in this thesis.

Just like many other debugging techniques, slicing can either be performed
statically (by analyzing the source code of the program), or dynamically (on an
execution of the program with a specific input). For object-oriented programs,
static slicing is quite complicated, since you have to deal with extended concepts
like inheritance, polymorphism and dynamic binding. To capture all dependencies
in the program, you have to be very conservative when analyzing method calls for
instance. This fact often leads to very large static slices, that are not very useful in
practice and can hardly be used in automated debugging to isolate possible error
sources.

Dynamic slicing can compensate for most of these handicaps, since it actually
knows the type of each object and which method is called by a statement. To have
access to this information, it uses a frace of the program, that is recorded during
its runtime. The computation of this trace is the most critical part in dynamic
slicing, and takes a substantial part of this thesis. The resulting dynamic slice is
usually dramatically smaller than the static slice, and is always a subset of it. This
is obvious since the static slice contains all statements that may have influenced the
suspected variables, whereas the dynamic slice only contains those statements that
actually did influence them in this specific program run.

The slicing criterion, that is the only input of the slicing algorithm besides the
program itself, consists of a location in the source code, as well as a set of variables
referenced at this source code location. For dynamic slicing, the program location
is given more precisely by stating a concrete execution of this location, usually
given as the n’th or the n’th last execution of a certain statement.

Given the dynamic slicing criterion, the execution trace and the program itself,
the dynamic slicing algorithm iterates backward through the execution trace to
reconstruct the dynamic dependencies and in this way compute the dynamic slice.
The static dependencies are defined as follows:

1. A data dependency from statement s to statement ¢ by variable v exists, if
and only if v is defined (written) in s and referred to (read) in ¢, and there is
at least one execution path between s and ¢ without a redefinition of v.

Control Dependencies Data Dependencies
int gcd(int a, int b)

int gcd(int a, int b) {

while (a != b) { while (a != b)
if (a < b)
b —= a; if (a < b) :{
else
a —= b; b=
} -=a
return a;
} a-=b

|
return a j—/

Figure 1: Illustration of data and control dependencies for a simple method

2. A control dependency from statement s to statement ¢ exists if and only if s
is a conditional predicate, for example the condition of an if- or while-loop,
and the execution of ¢ is controlled by s.

Figure 1 shows the static dependencies for a sample method.

The definition of dynamic data dependencies is straight forward since we know
the exact path that has been taken by the concrete execution of the program. The
dynamic control dependencies match their static counterparts, mapped to the con-
crete instances of the statements as they are executed.

The algorithm used to reconstruct these dependencies and to compute the slice
out of them is described in section 5.5. In short, the backward slice just consists of
the transitive closure of the dependencies starting at the variables and the location
defined by the slicing criterion.

3.2 Java Bytecode

One of the main advantages of Java is its platform independence. It is achieved by
not compiling the source code into machine code, that would only be executable on
specific systems. Instead, Java uses an intermediate form called bytecode. On the
target platform, this bytecode is loaded by the Java VM, and eventually translated
into machine code that can directly be executed on the machine.

This characteristic of Java is also often seen as its major disadvantage, since it
requires a Java runtime environment to be installed on the system that the program
should be run on. But it also opens great opportunities for debugging, since the
bytecode contains much more structural information than machine code. Besides,
you can analyze and modify the bytecode, before it is loaded into the VM (see
section 3.4).

The bytecode consists of more than one hundred different bytecode instruc-
tions, which look like some kind of assembler. Actually, bytecode instructions are
a level higher than assembler, since almost all of them are translated into several

O 00 1 O W R~ WwW N =

—
W N = O

machine code instructions. The Java VM is based on a stack machine. It con-
tains an internal operand stack, which the bytecode instructions use to load their
operands from and to store results. It is also used to pass parameters to called func-
tions: The parameters are just pushed onto the stack, then the method invocation
instruction is executed.

In the following example you can see how the operand stack is used to compute
an arithmetic expression. The method

private int divUp(final int a, final int b) {

return (a+b—1)/b;
}

is compiled to this bytecode:

ILOAD 1 // pushes the value of parameter 1 onto the stack
ILOAD 2 // pushes the value of parameter 2 onto the stack
IADD // pops the top two elements off the stack
// and pushes the sum of them back on the stack
ICONST_1 // pushes the constant 1 onto the stack
ISUB // pops the top two elements off the stack,
// subtracts the second—top from the top element and
// pushes the result back on the stack
ILOAD 2 // pushes the value of parameter 2 onto the stack
IDIV // pops the top two elements off the stack,
// divides the second—top by the top element and
// pushes the result back on the stack
IRETURN // pops the top element off the stack and returns it

In this short example you can see that the method parameters a and b are referred to
as the local variables 1 and 2, and the prepended [indicates that integer operations
are to be performed.

During the translation (also called compilation) of the Java source code into
bytecode, a .class-file is generated for each single Java class, including nested and
anonymous classes. These class files are often packed into a .jar-archive, which
can easier be delivered to the end-user. This archive is just a zip file containing
all class files plus some special meta information (like the main class, whose main
method should be called if the jar file is executed).

3.3 ASM

ASM [2] is a fast and powerful bytecode analysis and manipulation framework. It
provides a more usable representation of the bytecode than just the binary code
that is contained in the class file. Each class can be parsed into an object-oriented
representation, which can easily be modified using classes included in ASM, and
written out again as binary data to a class file. The format of the class file was
defined by Sun Microsystems, and is described very precisely by Lindholm and
Yellin [8].

Besides the raw conversion and presentation of bytecode instructions, ASM
inserts a label at each bytecode offset that is the target of a jump instruction, an

10

~N O R W~

00 N NN R W=

—_ = = e e
N A WD = O 0

Listing 1: Simple method with try-catch block

private Object arrayGet(final Object[] a, final int i) {

try {
return afi];

} catch (final ArraylndexOutOfBoundsException e) {
return null;

}

Listing 2: Bytecode corresponding to the method in Listing 1

// access flags 2
private arrayGet([Ljava/lang/Object;I)Ljava/lang/Object;
TRYCATCHBLOCK LO L1 L2 java/lang/ArraylndexOutOfBoundsException
LO
ALOAD 1
ILOAD 2
AALOAD
L1
ARETURN
L2
ASTORE 3
ACONST_NULL
ARETURN
MAXSTACK = 2
MAXLOCALS = 4

exception handler or the beginning of a new line number (if the compiler was told
to include debugging information in the class file).

These label objects are used in the corresponding jump instruction or try-catch-
block definition to refer to that jump target. An example of how this looks like in
ASM’s bytecode presentation is given in Listing 2.

ASM provides two different interfaces for analyzing and manipulating Java
bytecode: Either using the visitor pattern to present the elements to the user while
reading them from the class file, which is the fastest and most efficient way. The
other possibility is to let ASM read in the whole class and examine or manipulate
it in a tree structure. This second way is slower since the whole class first has to
be read in and held in memory, then the user has the possibility to work on it as he
wants, and possibly afterwards the whole class has to be written out again. This
way should only be chosen if the manipulations are too complex to be performed
by a visitor, or if you need information about elements that appear later in the
class file. Obviously, in this second presentation, the user has much more freedom
to inspect the bytecode by iterating through the methods, the instructions of the
methods, or other information like try-catch-blocks or annotations in any direction
and insert, remove or change elements.

In Listing 3, we show how the bytecode of Listing 1 can be produced using

11

O 00 1 O L W N =

BN DD BN NN NN = = = = = = = = = =
O 00 1 O N A W = O 0 0NN W= O

Listing 3: ASM code producing the bytecode of Listing 2

ClassWriter cw = new ClassWriter (0);

cw. visit(V1_6, ACC_PUBLIC + ACC_SUPER, "de/unisb/cs/st/A", null,
"java/lang/Object", null);

MethodVisitor mv = cw. visitMethod (ACC_PRIVATE, "arrayGet",
"([Ljava/lang/Object;I)Ljava/lang/Object;", null, null);

mv. visitCode ();

Label 10 = new Label ();

Label 11 = new Label ();

Label 12 = new Label ();

mv. visitTryCatchBlock (10, 11, 12,
"java/lang/ArraylndexOutOfBoundsException");

mv. visitLabel (10);

mv. visitVarInsn (ALOAD, 1);

mv. visitVarInsn (ILOAD, 2);

mv. visitInsn (AALOAD);

mv. visitLabel (11);

mv. visitInsn (ARETURN);

mv. visitLabel (12);

mv. visitVarInsn (ASTORE, 3);

mv. visitInsn (ACONST_NULL);

mv. visitInsn (ARETURN);

mv. visitMaxs (2, 4);

mv. visitEnd ();

cw. visitEnd ();

byte[] classBytecode = cw.toByteArray ();

ASM and the visitor pattern.

3.4 Java Agents

A Java Agent is a bundle of Java classes that is able to manipulate classes as they
are loaded into the Java VM - and since Java 1.5 even afterwards.

To understand where in the VM the Java Agent attaches, we have to take a
look at how classes are loaded into the VM. Each class is loaded by so called class
loaders on the first time that it is needed (on demand). The queried class loader is
responsible for finding the class’s bytecode and passing it to the VM.

After start-up of the VM, there is only one class loader: the system class loader.
It uses the classpath that has been set for the Java process to locate class files in the
local file system or inside jar archives.

Once the core system of Java has started, arbitrarily complex class loaders can
be defined, which load the class definitions over a network for example, or generate
the classes’ bytecode on the fly.

Class loaders can even be nested in an arbitrary depth, and can cooperate to

12

load a class.

When the bytecode is available - regardless of which class loader found or
generated it - one classloader calls the method defineClass to give the new
class definition to the VM.

Now this is the time where Java Agents come into play: Before the VM in-
terprets or compiles the bytecode to machine code, it passes it through the instru-
mentation framework. Java Agents, that are declared by command line arguments
of the Java VM, have the possibility to register class file transformers with the
instrumentation framework. Each of these transformers will get the chance to ma-
nipulate the bytecode of the class being loaded. There are no restrictions how the
transformers can modify the class: They can add, change, or remove methods,
fields, implemented interfaces, annotations, and everything else that defines a Java

class.

Machine
Code

()
w2
of
oL
° 8
m Q
e)
&g

Libra: Agent
2 \ £ Virtual Machiny

Figure 2: Sketch of the Java toolchain

Starting from Java 1.5, it is even possible to redefine (or retransform) classes
that are already loaded into the VM. There is only a small difference between a
redefinition and a retransformation of a class: A redefinition completely replaces a
previous definition of the class, while a retransformation just modifies some pieces
of the class. Nevertheless, (at least) up to Java 1.7, there are some restrictions
when redefining or retransforming a class: These procedures may change method
bodies, the constant pool or attributes, but it must not add, change or remove fields
or methods or change inheritance of the class.

3.5 Sequitur

Sequitur is a compression algorithm worked out by Nevill-Manning and Witten [9].
The basic idea is to build a context-free grammar, that accepts exactly the sequence
that has been compressed. If the sequence contains many repetitions, this would
result in a very good compression rate.

The algorithm starts with a grammar containing exactly one rule that assigns
the empty sequence to the start symbol. Whenever a new symbol is appended to
the sequence, it is just appended to the rule defining the start symbol. Then the

13

grammar is adjusted to conform to the following invariants:
1. No pair of adjacent symbols appears more than once in the grammar

2. Every rule (except for the one defining the start symbol) is used more than
once

Using the term digram, which is defined as two adjacent symbols occurring at
least once in the sequence, we can restate the first invariant as ‘every digram in the
grammar is unique’.

The algorithm is designed to exactly ensure these invariants. It achieves this by
maintaining a set of already seen digrams, and for every new digram that occurs
(either by appending a symbol to the start symbol’s rule, or by restructuring rules),
it checks whether it is already contained in the set of known digrams. If this is
the case, it replaces both occurrences (the one stored in the set of known digrams
and the new one) by a new non-terminal symbol, that refers to a newly built rule
mapped to the digram that has been replaced. If the duplicate digram matches
exactly the body of a rule in the grammar, then of course no new rule has to be
generated, but the non-terminal can just refer to the rule that maps to that digram.
In this way, a rule can be referenced more than twice.

This procedure is recursive, since after restructuring, there are up to four new
digrams that have to be checked: For each of the locations where the new non-
terminal was inserted, there could be one digram including the previous symbol
and the new one, and one including the new one and its successor. One starting
at the symbol preceding the first inserted non-terminal, one starting at that non-
terminal, and the same for the second non-terminal.

Whenever a new rule is built, it may happen that another rule is exclusively
used in the body of the new rule. In this case, the non-terminal referring to this
uniquely used rule is replaced by the body of that rule and the rule is removed from
the grammar.

Table 1 shows an example of how the algorithm works on a small sample string.

3.5.1 Runlength Encoding

If the grammar contains many long repetitions of the same terminal or non-terminal
symbol, the original Sequitur algorithm cannot compress them in an efficient way.

Consider the string containing n times the constant ¢. The grammar that is
built by the algorithm to match this string will consist of log(n) rules. Using a
small enhancement, this drawback can be removed: If every terminal and non-
terminal symbol has an additional count parameter, the string can be represented
by just one symbol.

This enhancement was described by Wang and Roychoudhury [11], and we
took it over to our Sequitur implementation.

14

[B O R S

New Symbol | Grammar

S —e€
S—1
S—12
S—123

S —1234

S —12342
S —123423
S—1A4A
A—23

4 S —1A4A4
A—23
S—1BB
A—23

B — A4
S—1BB
B — 234

W B W~

Table 1: Example of the Sequitur algorithm compressing a sample sequence of
integers

3.5.2 Shared Grammar

Normally, Sequitur is used to compress one sequence of symbols (the input string),
and the grammar constructed by the algorithm is used as a compressed representa-
tion of the input string.

As described in section 4.1.3, the tracer generates a lot of sequences, under
which many are very similar. When compressing them, their grammar will also be
similar. To avoid writing this redundant information into the trace file, we modify
Sequitur in such a way, that all sequences share the same grammar (which now con-
tains several start symbols). This global grammar is usually dramatically smaller
than the sum of all separate grammars. In particular, if there are several identical
strings, they together do not need more space than just one of them, since they
refer to the same start symbol. The situation of identical or at least very similar se-
quences occurs very often in tracing, for example if writing to several object fields
in a method. Consider for example the following method:
private void set(int val) {

this.a = val;

this.b = 2xthis.a;

if (this.a != this.b)
this.c = 0;

In this method, there are six sequences that store object identities: One in line
2, two in line 3 (one for the read and one for the write), two in line 4, and one in line

15

5. The first five sequences are always identical, since the reference to this cannot
change. The sixth sequence will probably be very similar to the others, since the
object identity is only omitted if the parameter val is zero. So these six sequences
do not need much more space than just the first one alone.

This modification introduces only one slight drawback: The grammar now has
to be stored separately from the compressed strings, so these are not independent
any more. When reading in the compressed sequences, we first have to read in the
grammar, and then we pass a reference to the already read grammar for reading in
the sequences.

16

4 Design

4.1 Tracer

Tracing the execution of the program is the most complicated and most time con-
suming part of dynamic slicing. So for designing the tracer, a major challenge is
efficiency in runtime, memory and disk space used to collect and store the trace.

4.1.1 Instrumentation

The concept of Java agents has already been introduced in Section 3.4.

We use a Java agent to instrument the bytecode of all classes that are currently
loaded into the VM, and new classes as they are loaded. This includes classes con-
tained in the JRE, since it is not sufficient to just instrument user classes. If a user
program uses a Vector for example, we have to know which instruction wrote
which single element in the vector in order to be able to compute a precise slice.
The instrumentation of these standard library classes introduces some problems
that are discussed in Section 5.2.

The instrumentation procedure inserts new bytecode instructions before or after
certain instructions, so that we can write out a file (called trace file), which contains
all information needed to compute the dynamic slices on this program run that the
user may request.

The information that the slicer needs is the precise sequence of bytecode in-
structions that have been executed, as well as some dynamic information as dis-
cussed below. So we can split up tracing in two parts: tracing the control flow, and
tracing dynamic data.

For tracing the control flow of the execution, we have to consider all possibil-
ities for jumps in the control flow, where a jump denotes the contiguous execution
of two instructions that are not direct neighbors in the bytecode.

There are several ways how jumps can occur: The most obvious way are uncon-
ditional jump instructions (goto, jsr) and conditional branches (ifnull, ifle, if_implt,
...). The next and more complicated instructions are method invocations. Java uses
four different bytecode instructions for method invocation: Two of them make use
of dynamic binding (invokeinterface, invokevirtual), the other two do always refer
to the same method (invokestatic, invokespecial). Because of dynamic binding, it
is very complicated to find out the instruction succeeding the method invocation.
We would have to dynamically find out the type of the object on which the method
is invoked (a reference to that object is located on the internal operand stack), and
resolve the method call manually, which is very time consuming.

Another cause of jumps are exceptions. They can not only occur at athrow
instructions, but also on any instruction that accesses an object through a refer-
ence that it reads from the operand stack, for example array or field accesses, or
method invocations. These instructions would throw a Nul 1PointerExcep—
tion if the reference is null. Other instructions throw ClassCastExcep-

17

tions, ArrayIndexOutOfBoundsExceptions or ArithmeticExcep—
tions, so there are a lot of locations that may throw exceptions where is it not
obvious.

So the naive approach of tracing whenever a jump takes place (or could take
place) is very hard to implement, and very time consuming during the execution of
the program.

Since we are only interested in the backward traversal of the execution trace, we
take another approach. It is based on the premise that if the control flow changes,
it always continues at a label. This is obvious for jumps and conditional branches,
since their argument is a label. But also every catch block starts with a label, and
since finally blocks are translated into catch blocks that catch every Throwable,
they are covered as well. Nevertheless, we have to take care of method invocations.
In order to trace them adequately, we insert additional labels at the beginning of
each method body (to catch the jump into the method body), and after each method
invocation instruction (to catch the return from a method). The special bytecode
instructions jsr and ret, that call local subroutines inside the same method, and
are used by the Java compiler to implement finally blocks, are just handled like
ordinary method calls, so they introduce no additional difficulties here.

With these tricks, our premise is correct, and the tracing during the execution
of the program in order to be able to reconstruct the control flow is very easy:
Every time we cross a label, we store the index of the bytecode instruction that we
come from (this is the bytecode instruction that was executed just before the label
was crossed). The indexes are assigned statically to the instructions during the
instrumentation. This is sufficient in order to enable us to reconstruct the sequence
of executed bytecode instructions (the control flow) from the trace file.

But for dynamic slicing, we need some more information: Since for every
variable in the program, the algorithm needs to know when it is read and when it
is written, we have to trace the identity of the involved array during array-load or
array-store instructions, and the identity of the object whenever one of its fields is
read or written. The object reference that is used by these instructions is located on
Java’s operand stack. In front of each of these instructions, we add some bytecode
instructions that get the object reference off the stack and trace its identity (as long
value) to the trace file. See Section 4.1.2 for the details of how the long values are
assigned to the objects.

This covers all accesses to shared state, but still there is a problem with local
variables: They are just accessed by their index inside the method being executed,
but in order to resolve the dependencies correctly, we have to know the stack frame
in which the instructions are being executed. Under normal circumstances it is easy
to simulate the stack frames: Whenever a method is entered, we push a “fresh”
stack frame onto the stack, and when a method is left, we pop one off the stack.
Once again, the concept of exceptions breaks this beautiful simplicity. When an
exception is thrown, we have to trace through how many stack frames it falls until
it is catched.

To do so, we put a try-catch block around each method body that catches any

18

exception, traces this event, and rethrows the exception. With this information we
can reconstruct the method frame stack depth for any instruction of the execution
trace.

4.1.2 Identifying Objects

The tracing algorithm often needs to write out the identity of an object. Java al-
ready provides something similar, called the hashcode of an object. The hashcode
is an integer value that can be accessed through the Object .hashCode () and
System.identityHashCode () methods. But for our purposes, it is not good
enough: If two objects are semantically identical (if they are equal), the JRE de-
fines that they should yield the same hashcode. But even in this case, we want to
distinguish the two objects, since their fields may have been written by different
instructions, and the objects may later change so that they are not equal any more.
And even if two objects are not equal, they could have the same hashcode, either
due to weaknesses in the hashcode computation, or more fundamentally because
there are only 232 different hashcodes.
So we define the requirements of object identities as follows:

1. The identity of an object does not change over time.
2. Two distinct objects do never have the same identity.

To achieve these requirements, we have to use long values (64-bit integers) as
data type, because even in relatively short programs, there can be more than 232
objects. This is boosted by Java’s autoboxing feature, which makes it easy to con-
vert between primitive types like int or byte and their corresponding wrapper
classes Integer and Byte. But since programmers often do not recognize when
this autoboxing is performed, it leads to the creation of many short-living objects,
which nevertheless get their own identities assigned.

The assignment and access of identity values have to be very efficient, since it is
done frequently during tracing. The most efficient way would be to add a new field
to the Ob ject class that holds the identity value of each object. This field would
be initialized in the Ob ject constructor (which is called by any constructor), and
would not change afterwards. But due to the restrictions of retransforming already
loaded classes (see Section 3.4), this is not possible, since Object is one of the first
classes that is loaded by the VM.

So we decided to maintain a map, that assigns each object its corresponding
identity value. Of course this map has to be implemented in such a way that objects
that are not needed anymore are removed from this map. Fortunately, Java provides
a great way of implementing such maps, that still allow the garbage collector to
clear the objects if they are not referenced elsewhere. The way to do this are weak
references, through which the object can be accessed as long as it exists in memory,
and when the garbage collector recognizes that the object is only reachable through
weak references, it reclaims it and notifies us about that.

19

The JRE contains an implementation of a hashmap that uses weak references to
reference its keys, but on the basis of our described requirements, we decided to use
a special combination of the three classes WeakHashMap, IdentityHashMap
and ConcurrentHashMap, which all only cover one part of the requirements.

A performance related improvement, that evades this map in certain cases, is
described in Section 5.4.

4.1.3 Trace File

All information fetched during instrumentation and during the run of the instru-
mented program is written into one file. This information contains a representation
of all classes, including their bytecode instructions, as well as all traced informa-
tion.

The traced information is split in many distinct sequences, since each instru-
mented location in the bytecode generates its own sequence during runtime. The
sequences do either contain an integer value (for the backward instruction pointer
at labels, and for array indexes) or a long value (to identify objects). In order to
be able to read each of these sequences individually when reading in the traced
information, each sequence is written to a separate stream.

Since it would be very inefficient and unhandy to write each stream to a sep-
arate file, all streams are written into just one file. Therefore, the trace file imple-
ments a specialized virtual filesystem (it is more a virtual streamsystem actually),
where several streams can be read and written simultaneously. The file is split
in blocks, each of which is assigned to at most one stream. Some details of the
implementation and performance issues are discussed in Section 5.4.

4.14 Compression

Since the trace file grows rapidly during the runtime of the instrumented program,
it makes sense to compress it in some way. We implemented several compression
algorithms, that can be selected by the user. They all have one property in common:
They do not compress the whole trace file, but only the streams contained in it. This
is necessary because during slicing, we only need to traverse some of the sequences
stored in the trace file, and it would be inefficient to first decompress the whole file.

Another requirement is backward-iterability: During slicing we iterate back-
ward through the execution trace. But since during the execution of the program,
the sequences are generated and written out in the order in which they occur, the
compression algorithm used must either support backward-iterability natively, or
we have to reverse and compress each sequence when it is finished, which is not
very efficient.

A comparison of the different compression algorithms regarding their runtime
and compression efficiency can be found in Section 6.3.1.

20

4.2 Slicer

For dynamic slicing we are basically using the algorithm presented by Wang and
Roychoudhury [11, 12]. But since this algorithm is not designed for object-oriented
programs, we have to extend the definition of a variable. In pure imperative pro-
gramming languages there are two kinds of variables: Global variables can be
accessed from within any method and by any thread (they are shared between all
threads). In contrast, local variables can only be accessed from within the method
they are declared in. Both memory locations can hold array types: data structures,
in which several elements are grouped together.

In object-oriented languages like Java, there is one more location where ele-
ments can be stored: in the fields of an object, which is stored on the heap. Be-
sides, global variables are encapsulated in classes, and are called static fields. So
in object-oriented languages, a variable as for slicing is either a local variable, a
static field, a field of an object, or an element of an array.

With this definition of a variable, Wang and Roychoudhury’s algorithm can
easily be adapted for our purposes. See Section 5.5 for a description of the precise
implementation and Section 5.3 for the limitations of this approach.

21

Listing 4: Simple class implementing the lazy initializing pattern

public class InstrumentationExample {
public static class Helper { }
private Helper helper;

private Helper getHelper () ({
if (this.helper == null)
this . helper = new Helper();
return this.helper;
}
}

5 Implementation

5.1 Instrumentation

In Section 4.1.1, we already described briefly where new instructions are added
in the bytecode, and what information they record. In this section, we will show
in detail how the instrumented bytecode looks like and how the generation of the
trace file works.

We start with an example of a naively instrumented simple method without any
effort to increase performance. Consider the small class shown in Listing 4, which
consists of a lazy-initialized field and a getter-method.

In bytecode, this method already has 11 instructions. Since the instrumenta-
tion increases the method’s body to 105 instructions, we only show a decompiled
version of the instrumented code (see Listing 5).

The first thing to notice is that Tracer is a singleton class, whose instance can
be obtained by the static method Tracer.getInstance (). It is also evident
that each thread has an associated ThreadTracer object, that is obtained by the
method get ThreadTracer () on the Tracer object.

The instrumented method code starts in line 8 with writing the index of the last
executed instruction to the stream 1000 (assuming that at the time that this method
was instrumented, there were 1000 streams and 4000 instructions in previously
instrumented classes). This index is stored inside the ThreadTracer object,
and is changed to 1 by acall to passInstruction (i).

The index of the last executed instruction is written out at the beginning of each
method, and is needed when reconstructing the backward trace of the program:
When the algorithm reaches the beginning of the method, the next integer in stream
1000 tells him where to continue (which instruction called this method).

In line 9, a try/catch block starts as described in Section 4.1.1. If any exception
occurs, the catch block starting in line 24 first writes out the index of the instruc-
tion at which the exception was raised and then passes the special instruction 4003.
During the reconstruction of the trace, this instruction tells the algorithm that the

22

Listing 5: Instrumented version of the class in Listing 4

public class InstrumentationExample {
public static class Helper { }
private Helper helper;

private Helper getHelper () {
/+x abbreviated as getThreadTracer():
Tracer. getlnstance (). getThreadTracer (). */
getThreadTracer (). traceLastInstructionIndex (1000);

try {
getThreadTracer (). traceObject (this, 1001);

getThreadTracer (). passInstruction (4000);

if (this.helper == null) {
getThreadTracer (). passInstruction (4001);
Helper tmp = new Helper ();
getThreadTracer (). traceLastInstructionlndex (1002);
getThreadTracer (). traceObject(this, 1003);
getThreadTracer (). passInstruction (4002);
this . helper = tmp;

}

getThreadTracer (). traceLastInstructionIndex (1004);
getThreadTracer (). passInstruction (4002);
return this. helper;

} catch (final Throwable t) {
getThreadTracer (). traceLastInstructionIndex (1005);
getThreadTracer (). passInstruction (4003);
throw t;

method was not exited normally by a return statement, but that an exception termi-
nated the execution of the method.

Inside the body of the try/catch block, the instrumented code of the original
method reemerges. Line 10 and 11 correspond to the statement in line 12, which
contains a getfield instruction. For this getfield instruction, the identity of the ob-
ject on which it is performed is written out into sequence number 1001. After that,
the ThreadTracer is notified that instruction number 4000 is about to be exe-
cuted. This call to the method passInstruction isinserted before every single
bytecode instruction, so in bytecode, there are much more than in this simplified
example.

In line 14, a new Helper object is created. This contains a call to the default
constructor of the Helper class. After this method call, again the last executed
instruction (a return statement of the Helper.<init> () method) is written to
the sequence 1002, just as after any other method call.

Afterwards, the identity of this is written to sequence 1003, because in line

23

18, a putfield operation is performed on that object.

The last interesting point is line 20. Because this is a jump target of statement
12, we have to trace the last executed instruction, to know whether we came from
instruction 4002 or 4000.

5.2 Challenges

During implementation some major challenges appeared that took a lot of time to
cope with.

The first one arises from the instrumentation of classes contained in the JRE.
The necessity of instrumenting these classes was discussed in Section 4.1.1. Un-
fortunately, some of these classes are also used in our implementation of the tracer,
so we have to ensure that we only trace code that has been invoked by the user pro-
gram, and not by the tracer itself. Ignoring this would not only result in incorrect
slices, but it would also result in stack overflows during runtime.

The solution to this is to pause tracing whenever entering a tracing method, and
continuing when the method is left.

5.3 Limitations

Unfortunately, there are some limitations of our implementation of the tracer and
slicer. Some of them are general for every tracer that is based on a Java agent,
others are specific to our implementation.

5.3.1 Native code

In Java methods can be declared as native, to indicate that the method body is not
implemented in Java. Instead, it is loaded from a dynamically linked library and
called by the JNI (the Java Native Interface). These methods are implemented in
C, C++, or in raw assembly to evade limitations of the Java language definition,
to use a library written in C or C++, to speed up critical sections of a software
product, or to call system-specific functions, that are not available through the Java
APL

This native code cannot be accessed and modified by the class file transformers,
so they cannot be instrumented and hence cannot be traced. If the native code
changes any values, be it static fields, field values in objects, or array elements, we
do not see this. So this leads to imprecise traces, resulting in imprecise slices.

If native code calls another method that is implemented in Java, this method
call is recognized by the tracer, but it does not know where the call comes from.
The tracer misses all stack frames that belong to native methods, so if we refer to
the top two elements of the reconstructed frame stack as A and B, the slicer cannot
tell whether A called B directly, or whether one or several native methods were
involved between them.

24

In most Java projects, native code is rarely used, since it breaks the platform-
independence of Java and is difficult to use and to debug. But there are many
classes in the standard library of Java (the JRE), that use native code either to
directly access resources managed by the operating system (such as I/O access or
sound capabilities), to speed up execution (for instance in System.arraycopy),
or to make direct use of processor instructions to implement methods like At om—
icInteger.compareAndSet. Even though the first case is not that critical
for slicing, the other two are, since we lose data dependencies here.

One possibility to limit the flaws introduced by native methods would be to
identify the most important parts of the JRE that are implemented natively, and
during slicing, whenever one of these methods is called, we update the dependen-
cies manually. This includes analyzing the implementation of the native methods
and hardcode the dependencies in the slicing algorithm. This has not been done for
this thesis, so it stays future work.

5.3.2 Reflection

In Java, a program can examine its own structure using a technique called reflec-
tion. This provides for example the ability to get a list of all fields or methods of
a class, to call methods, and to get or modify the values of object fields. Since the
low-level parts of this framework are implemented using native code (see Section
5.3.1), these accesses cannot be traced. This constraint leads to imprecise slices,
but reflection is only rarely used, especially in critical parts of the software.

5.3.3 Shutdown hooks

Shutdown hooks are threads that can be registered with the Runt ime object by the
Java program during its execution. They are started when all non-daemon threads
have finished, thus when the Java VM otherwise would terminate. The termination
is postponed until all shutdown hooks have finished execution.

Since we use a shutdown hook to stop tracing, finish and write out the trace file,
it is possible to miss information about the execution of other shutdown hooks.

A possible workaround would be to wait for all other non-daemon shutdown
hooks to finish before stopping tracing, but this is not that easy: We do not know,
what other shutdown hooks exist, since they are started one after the other, and
even if we would solve this, we could provoke deadlocks if other (user-)threads do
the same.

So we decided to constrain tracing so that we do not guarantee whether shut-
down hooks are traced.

5.4 Performance Tuning

Since our implementation of the tracer should be usable in practice, the main goal
during design of the tracer was to make it easy to use by developers who are testing

25

their software product. In the implementation step, the main problem - beside
ensuring correctness - is to make the tracer as efficient as possible. Unfortunately,
the first version of the tracer had an overhead of more than 1000, so the execution
time increased by a factor of at least 1000 when the tracing Java agent was added.
It is quite evident that it is necessary to improve the efficiency by reducing the
overhead introduced by the instructions that were added during instrumentation.
On the next pages, we will show what we have done in order to achieve a feasible
efficiency.

Since the runtime overhead of the tracing agent is dependent on the program
that is executed and on the input, we only state the relative improvement of each
optimization that is discussed below.

The first approach to reduce the runtime overhead is to reduce the amount of
inserted bytecode instructions. Like described in Section 4.1.1, we insert instruc-
tions at each label that occurs in the bytecode, in order to trace the control flow.
It turns out that ASM adds a lot of labels that are not used as jump targets or
markers for starting catch blocks. They are used for example to associate source
code line numbers to the bytecode instructions, or as start marker for a try block.
So for these labels, we do not have to trace the index of the previously executed
instruction, since this will always be the instruction right in front of it.

Beside this, the additional labels added at the beginning of each method and
after each method invocation are sometimes not necessary, since there already is a
label in exactly that position. The removal of all these labels resulted in a decrease
of the tracing overhead to 90%.

Another improvement aiming at the avoidance of unnecessary method calls is
very obvious when looking at the example in Section 5.1. The call to Tracer.
getInstance () .getThreadTracer () appears at every inserted instruc-
tion and is very expensive. It results in a map lookup that has to be synchronized
with other threads, so we should try to avoid as many of these calls as possible.
The method getThreadTracer () returns a ThreadTracer object, that is
responsible for all tracing actions of the particular Thread executing the current
method. So in one Thread, this call will always return the same object. Hence it is
possible to get this object only once at the beginning of each method, and store it
in a local variable. This reduces the overhead greatly to 4.5%.

To even avoid the call at the beginning of each method, we tried to pass the
ThreadTracer object between methods. To do so, we duplicated each method,
and added an additional parameter to the copied method, that gets the Thread-
Tracer object. Unfortunately, this is only possible for newly loaded classes, since
in retransformation, it is not allowed to add methods. So if we modify the method
invoking instruction by adding the additional parameter, we have to ensure that ev-
ery class that this call could be bound to could be modified by adding new methods.
Since we cannot statically assure this for invokeinterface and invokevirtual, we can
only use this improvement for private, non-native methods. With a restriction to
these method calls, an effect on efficiency could not be measured.

To further reduce the number of calls to the ThreadTracer object, we could

26

determine bytecode instructions whose successor during execution is always the
successor instruction in bytecode. These are all instructions that do never jump to a
label, and cannot throw any exception. For these instructions, it is not necessary to
call the method passInstruction () which stores the index of the instruction
into the ThreadTracer object, since in any case the next instruction is executed
afterwards, which overwrites this information.

When implementing this, it effectively reduces the size of the classes that are
produced, but it does not decrease the runtime at all. It turns out that the hotspot
optimizer contained in Sun’s Java VM already throws these instructions away, that
do not have any effect on the later execution of the instrumented method.

The optimizations described so far do all aim at reducing the amount of in-
structions that are inserted during instrumentation. Now we want to discuss some
approaches that are based on heuristic assumptions or other considerations, that are
not straight intuitive.

As described in Section 5.2, all tracing methods (passInstruction (),
tracelnt (), ...) first check whether the ThreadTracer is currently paused.
If this is the case, they have no effect. When analyzing when the paused flag is
set and reset, it turns out that if it is set at the beginning of one method, it will
be set during the whole method. So we could evaluate the paused flag once at the
entry of each method, and leave the tracing method calls out, if the flag is set. To
achieve this in the most efficient way, the original (uninstrumented) bytecode of
each method is copied at its end, after a special label. At the beginning of each
method, we immediately jump to this label, if the ThreadTracer is currently
paused. In this way we save all the tracing method calls, which improves the
performance by about 3%.

An even better way to save the overhead of the instrumented bytecode is to use
special classes in all tracing-related methods, which are not instrumented. In gen-
eral, all classes contained in packages of the tracer are not instrumented, because
this would immediately lead to a loop, and hence a stack overflow. So by replacing
some frequently used classes like DataOutput Streamor ArrayList by own
implementations, which are not instrumented, we could save another 66% of the
introduced overhead.

The last low-level optimization concerns the writing of all traced information
into one single file. For this job, we wrote aMultiplexedFileWriter class,
which implements a stream based virtual file system, where each file (or stream)
is accessed by an integer identifier. With this class, several thread can write si-
multaneously to different streams, which are all stored in one file. Like other file
systems, the file is organized in blocks, and each stream consists of a collection of
blocks in this file.

By caching each block and only writing it out when it is full, we could linearize
the write operations to the file, so that there are no seeks necessary - new blocks are
just appended to the file. This reduces the runtime by 30%, and by using memory-
mapped files, it can be reduced by another 10 to 20%. With memory-mapped
files, large pieces of the file are mapped directly into the (virtual) main memory

27

of the running Java process by the operating system, and when the process writes
to this memory sections, the operating system is responsible for eventually writing
back these changes to the file. This memory-mapping is only feasible on 64 bit
platforms, since on 32 bit, the virtual address space of the size 232 bytes (= 4
gigabytes) is too small to map large pieces of the file in there.

After all these optimization steps, the runtime of a program increases by the
factor of 30 for tracing into an uncompressed file, and 40 if compressing using

8zip.

5.5 Slicing Algorithm

Our algorithm used for computing the slices is based on the one presented by
Wang and Roychoudhury [11, 12]. The main challenge that remained was the
computation of control dependencies. Since the dynamic intra-procedural control
dependencies do relate to the static control dependencies mapped to the dynamic
instances of the instructions, it is useful to precompute the static intra-procedural
control dependencies.

For this computation, we build the complete control flow graph for each method,
and store a mapping that assigns each instruction the set of all instructions depend-
ing on this one. This computation takes some time, but since it is only done once
per method, this has no negative consequences for the overall efficiency.

28

Listing 6: Demonstration of a simple slice
public class MethodSlicing {

public static void main(String[] args) {
int a = 1;
int b = 2;
int ¢ = getFirst(a, b);
return ; slicing criterion: ¢

}

private static int getFirst(int first, int second) {

return first;

}

6 Evaluation

The evaluation of our tool, which we called JAVASLICER, is performed in several
steps: To show the correctness of the algorithms used, we first compute traces and
slices for small pieces of code (Sections 6.1.1 and 6.1.2). After that, we apply
JAVASLICER to some of the programs contained in the DaCapo benchmark suite,
which has been introduced in Section 2.

6.1 Case Studies
6.1.1 Assignments and Methods

Our first case study includes simple assignments and a method call (see Listing
6). We want to check whether this method call is traced correctly, and whether
the slicer computes the correct data dependencies. To be able to observe this, we
chose the local variable c at line 7 as the slicing criterion. This allows us to detect
all statements, that led to the assignment of c in line 6. In Listing 6, the slicing
criterion has been marked in light grey.

In line 6, there are data dependencies between the local variables a and b
and the parameters of the method getFirst. Another data dependency exists
between the return statement in line 11, and the assignment of variable c in line 6.
To detect these dependencies, the slicer already has to examine the operand stack.
The values of a and b are pushed onto the stack, then getFirst is called, and
after the method call returns, its result is popped off the stack and stored in the
local variable c.

Since the method getFirst does not use its second parameter, the value of ¢
on line 6 should only depend on the assignment of variable a in line 4, the method
call in line 6, and the body of the method in line 11.

29

6.1.2 Exception Handling and Advanced Data Dependencies

This case study includes throwing exceptions, controlled by variable values, and
catch blocks (see Listing 7). The challenge for the tracer is to correctly trace the
control flow, which is disarranged by the abnormal abortion of the method execu-
tion. We expect the slicer to compute the control dependencies in such precision
that it finds out why the exception has been thrown, and where the exception mes-
sage comes from. To complicate this task, we define the error message as a static
field, which gets passed to the constructor of the NullPointerException.
After several super-constructor calls, it is finally stored in the detailMessage
field of the class Throwable. In line 16, the method getMessage () reads it
from there, and assigns it to the local variable e rror, which makes up the slicing
criterion.

As shown in Listing 7, the slicer determines that only variable b is responsible
for the NullPointerException, and that the error message that is assigned
at line 16 depends on the assignment in line 8.

6.2 Real Life Applications

After these first case studies which show that our implementation works in general,
we apply it to some of the real life applications contained in the DaCapo suite.

In order to demonstrate the correctness of the computed slices, we intend to run
both our implementation and JSlice on the same program using the same slicing
criterion, and compare the results. The first remark is that JSlice does only output
the name of the source code file and the line number for each instruction contained
in the slice. JAVASLICER outputs each precise bytecode instruction. But since the
bytecode instructions can easily be mapped to their line numbers, we can compare
the results at line level.

Unfortunately, it turns out that JSlice does not work with any program con-
tained in the DaCapo suite. There is always aNullPointerException thrown
before the actual test program starts running. Hence, we have nothing to check our
computed slices against. We checked a few of them manually, but this is only fea-
sible for very small slices. There is no possibility to ensure that our slicer works
for bigger slices, even if we have confidence in that.

6.3 Performance

Since a major issue concerning the usability of JAVASLICER is performance, we
spent a lot of work in this (see Section 5.4). In order to proof that the tool is
efficient enough to be used in daily debugging, we conducted performance tests
regarding the runtime of the tracing and the slicing component, as well as the size
of the trace file.

30

Listing 7: Slice computation including exceptions

public class ExceptionSlicing {

private static String ERROR A;
private static String ERROR B;

public static void main(String[] args) {
ERROR A = "a_is_null";

ERROR_B
int[] a = new int[1];
int[] b = null;

String error = null;

"b_is_null";

try {
addLengths(a, b);
} catch (NullPointerException e) {

error = e.getMessage ();

return; slicing criterion: error

}

private static int addLengths(int[] a, int[] b) {
if (a == null)
throw new NullPointerException (ERROR_A);
if (b == null)
throw new NullPointerException (ERROR B);
return a.length + b.length;

6.3.1 Compression

As described in Section 4.1.4, we provide different compression algorithms, that
the user can select when creating the trace file:

e no compression: Each sequence is written to a separate stream in the trace
file, using 4 byte per integer and 8 bytes per long value. In this way, the
stream can easily be iterated backwards.

e gzip: Each sequence is compressed individually using the common gzip al-
gorithm. Since gzip does not provide backward-iterability, we compress the
reversed sequence. To save memory, we temporarily store the sequence in
a stream of the trace file just as for no compression, but when the sequence
is finished, we read it from behind, compress it, and write it into another
stream. After that, the uncompressed stream is removed, freeing the blocks
in the trace file that it consumed.

31

Traced Execution (s) Trace File Size (MB)

Subject Runtime (s) Raw GZip Sequitur Raw GZip Sequitur

antlr 0.8 232 356 36.1 4292 11.3 2.8
bloat 1.8 369 577 103.8 6145 19.5 8.5
fop 6.0 21.8 258 33.1 178.2 14.3 3.6
hsqldb 1.1 27.0 403 488 4039 712 53
Jjython 6.1 98.6 2379 233.3 28348 247 8.7
luindex 24 36.5 63.6 91.0 874.6 13.2 5.8
lusearch 1.5 874 162.2 175.8 2989.6 28.6 10.2
pmd 1.2 15.8 17.0 18.0 471 12.1 2.8
xalan 2.6 94.0 2034 193.1 25225 106.7 29.6

Table 2: Comparison of different compression algorithms. Sequitur produces much
smaller files than gzip in acceptable execution times

o Sequitur: The Sequitur algorithm was introduced in Section 3.5. The major
drawback of this algorithm is that the whole compressed sequence has to be
hold in memory, since whenever a digram occurs, which has already been
used in an arbitrary position in the sequence before, it has to be replaced by
a new rule. But as shown in Table 2, this investment of memory and runtime
can pay off in most cases: Sequitur does always yield better compression
results than gzip, sometimes the size of the resulting trace file is less than
10 % of the size produced by gzip.

Table 2 shows a comparison of the different compression algorithms, as well
as the respective runtime overhead. All tests have been performed on a quad-core
machine (4 x 2.4 GHz) with 8 GB of main memory.

It is obvious that using no compression yields the best execution times, but
often produces huge trace files. Due to the organization of the trace file as described
in Section 4.1.3, gzip and Sequitur both result in excellent compression rates. In
most cases, Sequitur does only need slightly more time than gzip, but produces
trace file of one third to one tenth of the size.

6.3.2 Slicing

Measuring the slicing performance is not that simple since the execution time
strongly depends on the selection of the slicing criterion. To reduce this impact
as far as possible, we perform several hundred slice computations on randomly
chosen slicing criteria.

The results of this test series are visualized in Figure 3. It is clearly visible
that there is a strong correlation between the resulting slice size and the runtime of
the slicing algorithm. We had to exclude the two test programs jython and xalan
from this graph, since their execution times were much higher and hence not rep-
resentable in this diagram.

32

900

800 4

700

600

=¥-antlr

& bloat
»=fop

=%+ hsqldb
X |uindex
=-lusearch
& pmd

runtime [seconds]

0 5000 10000 15000 20000 25000

slice size [instructions]

Figure 3: Comparison of the slicer runtime against the size of the resulting slice
shows a linear correlation

Figure 4 shows a weak relation between the length of the execution trace and
the average time consumed for a slice computation. Jython has by far the longest
execution trace (about 1.7 billion instruction), but it fits in the row of the other
programs, since it also has a much higher runtime of slicing on average.

The only program with a completely different behavior is the xalan program.
Although it has a very short trace length of about 19 million instructions, the time
needed to compute slices on this trace is very high. This discrepancy already
showed up in Table 2, where xalan has by far the largest compressed trace file
sizes. These curious observations can be partially explained when looking at the
peculiarities of xalan [4]. Under all programs contained in the DaCapo suite, it
uses the most heap space and allocates the most objects. Its complex memory us-
age patterns seem to increase the size of the trace file while likewise increasing the
slicing runtime.

6.4 Comparison with JSlice

Comparing our tool to JSlice brings up some major differences:

e Usability:
As objected before, JAVASLICER is much easier to deal with than JSlice.
There is only one thing a developer has to do to write out the execution trace
of a program: Specifying the Java Agent along with some parameters at the

33

xalan
3000 *

z
c
3
&

2000 jython
é Y
3 1500
2
£ 1000 blgit
I antlr @ [uindex
z 500 pmd hsildb *

/'S fop® YV &
0 lusearch
10 100 1000

trace length [mio instructions]

Figure 4: Comparing the trace length to the average slicing execution time shows

a weak connection

command line!

command is also very intuitive.

. For computing one or several slices out of this trace, the

In JSlice, the situation is more complicated: After accomplishing to install
JSlice on the target system, you need to create a text file containing the slic-
ing criterion. Since the format of this file is not defined anywhere, you have
to use the Eclipse plugin to create it. This plugin also provides the possibility
to perform the slicing, but this failed on all systems that we tried. The JSlice
documentation gives a hint how to perform the slicing on command line?,

which results in a text file containing the result.

e Separation of Tracing and Slicing:

In contrast to JSlice, our tool strictly separates the tracing from the slicing
component. This allows a developer to create the trace file on one machine,
and compute one or several slices on another system. The trace file does not
only contain the execution trace, but also a representation of all classes that
have been instrumented. Hence the trace file is the only input needed by the

slicer.

e Accuracy:

Running JSlice on the source code given in Section 6.1.1 and 6.1.2 shows
that it does not dissolve the dependencies as precise as JAVASLICER: In the
first example, it additionally points out lines 5 and 7, in the second example
the lines 9, 19 and 23. This indicates that JSlice does not correctly resolve
the dependencies of the parameters of method calls. Additionally, it always

adds the slicing criterion to the slice, which is not always useful.

ljava -javaagent:tracer jar=tracefile:my_trace.log,compression:gzip -jar buggy_program.jar
2command for slicing all occurrences of line 21 in method myMethod of Class1:
java -jar slicer.jar my_trace.log 1 Class1.myMethod:21
3 fusr/local/kaffe/bin/java -noclassge -slicing -foreclipse _criterions result.log -classpath
/ust/local/kaffe/lib/Klasses.jar:/ust/local/kaffe/lib/kjc.jar:buggy_program.jar MainClass

34

7 Conclusions and Future Work

In Sections 1 and 2 of this thesis, we clearly emphasized the helpfulness of dynamic
slicing, especially for automated debugging. The amount of research put on this
topic indicates that there is a big interest in dynamic slicing. So far, the main
problem was that the only tool available (JSlice) is unusable for most software
projects, since it cannot slice most modern Java programs.

We showed that JAVASLICER has the ability to succeed JSlice. Its design makes
it easy to integrate it into existing debugging tools. The most interesting question
for us is how much dynamic slicing can improve other automated debugging ap-
proaches. The evaluation of this question was quite hard so far, since JSlice does
not aim at being used by other tools. Using the well-designed API of JAVASLICER,
maybe another bachelor’s thesis could concentrate on this task.

Our work is just the basic implementation of a dynamic slicer. There are a lot
of ways how to extend JAVASLICER to make it even simpler to use or to improve
its capabilities. Furthermore, there are various ways how our tool can improve the
efficiency of other automated debugging approaches.

Some of our ideas are listed below.

e One way to extend the capabilities as well as the fields of application of
JAVASLICER is to make it better trace multithreaded programs. So far, we
trace each thread separately, which means that we are able to reconstruct the
precise execution trace for each single thread.

For multithreaded programs, it would be most interesting to reconstruct the
data dependencies between threads, as well as the precise interleaving of
instructions executed by arbitrary threads. To trace these informations is
by far not easy. To our knowledge, it has not been shown so far whether
is it actually possible to do this using bytecode instrumentation. Of course
it would be easy to extend each traced event by a timestamp which is fine
granulated enough to distinguish the order of the events, but this would not
incorporate caching effects for example. So this approach is not adequate.

e Even if the runtime of the tracer and the compression efficiency of the trace
file are already quite impressive, there is still a lot of room for improvements.
Using static analysis techniques, the runtime of the tracer as well as the size
of the trace file could be further reduced. Furthermore, the serialization of
a Sequitur grammar has been implemented quite straightforward. Using ad-
vanced techniques like arithmetic coding, the size of the resulting trace file
could be decreased by a constant factor of at least 2 or 3.

e In order to make JAVASLICER more easily usable by developers, it would
be nice to have an Eclipse plugin that allows the selection of the slicing
criterion, as well as the slicing itself on any open Eclipse project.

35

e There are many automated debugging approaches that compare successful
program runs with failing runs to estimate for each instruction the proba-
bility that it contributes to the erroneous behavior. Some of them use spec-
trum based fault localization techniques [1] for computing these probabili-
ties. Dynamic slicing could also be used to further narrow down the source
of the error.

One concrete work that was lacking a dynamic slicer for Java has been de-
veloped at our chair by Kevin Streit [10]. He had to fall back on simpler
methods that just use the intersection of the whole execution trace, which
had much worse results than using a dynamic slicer.

36

References

[1] Rui Abreu, Peter Zoeteweij, and Arjan J.C. van Gemund. On the accu-
racy of spectrum-based fault localization. In Phil McMinn, editor, Test-
ing: Academia and Industry Conference - Practice And Research Techniques
(TAIC PART’07), pages 89-98. IEEE Computer Society, September 2007.

[2] ASM - Home Page. http://asm.objectweb.org/.

[3] Melinda-Carol Ballou. Improving software quality to drive business agility.
Technical report, IDC, June 2008. Sponsored by: Coverity Inc.

[4] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovic,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo bench-
marks: Java benchmarking development and analysis. In OOPSLA ’06: Pro-
ceedings of the 21st annual ACM SIGPLAN conference on Object-Oriented
Programing, Systems, Languages, and Applications, pages 169-190, New
York, NY, USA, October 2006. ACM Press.

[5] M. Ducasse. A pragmatic survey of automated debugging. In Proc. st Work-
shop on Automated and Algorithmic Debugging, volume 749 of LNCS, 1993.

[6] JSlice - a Java Dynamic Slicing Tool. http://jslice.sourceforge.net/.
[7] The Kaffe JVM. http://www kaffe.org/.

[8] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Sun
Microsystems, Inc., 1999.

[9] C. G. Nevill-Manning and I. H. Witten. Linear-time, incremental hierarchy
inference for compression. In Data Compression Conference, 1997. DCC
'97. Proceedings, pages 3—11, 1997.

[10] Kevin Streit. APS - Using automated predicate switching to locate errorprone
code regions in java programs, June 2008. Bachelor’s Thesis.

[11] Tao Wang and Abhik Roychoudhury. Using compressed bytecode traces for
slicing Java programs. In ACM/IEEE International Conference on Software
Engineering (ICSE), pages 512-521, 2004.

[12] Tao Wang and Abhik Roychoudhury. Dynamic Slicing on Java Bytecode
Traces. ACM Trans. Program. Lang. Syst., 30(2):1-49, 2008.

[13] Baowen Xu, Zhengiang Chen, and Hongji Yang. Dynamic slicing object-
oriented programs for debugging. In In IEEE International Workshop on
Source Code Analysis and Manipulation, pages 115-122, 2002.

37

[14] Jianjun Zhao. Dynamic slicing of object-oriented programs. IPSJ SIG Notes,
98(38):17-23, 19980515.

38

	Introduction
	Related Work
	Background and Basics
	Slicing
	Java Bytecode
	ASM
	Java Agents
	Sequitur
	Runlength Encoding
	Shared Grammar

	Design
	Tracer
	Instrumentation
	Identifying Objects
	Trace File
	Compression

	Slicer

	Implementation
	Instrumentation
	Challenges
	Limitations
	Native code
	Reflection
	Shutdown hooks

	Performance Tuning
	Slicing Algorithm

	Evaluation
	Case Studies
	Assignments and Methods
	Exception Handling and Advanced Data Dependencies

	Real Life Applications
	Performance
	Compression
	Slicing

	Comparison with JSlice

	Conclusions and Future Work
	References

