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ABSTRACT
Real production code contains lots of knowledge—on the do-
main, on the architecture, and on the environment. How can
we leverage this knowledge in new projects? Using a novel
lightweight source code parser, we have mined more than
6,000 open source Linux projects (totaling 200,000,000 lines
of code) to obtain 16,000,000 temporal properties reflecting
normal interface usage. New projects can be checked against
these rules to detect anomalies—that is, code that deviates
from the wisdom of the crowds. In a sample of 20 projects,
∼25% of the top-ranked anomalies uncovered actual code
smells or defects.

Categories and Subject Descriptors
D.2.1 [Software]: Software Engineering—Software/Program
Verification, Requirements/Specifications; D.3.4 [Software]:
Programming Languages—Processors

General Terms
Design, Experimentation, Languages, Verification

Keywords
lightweight parsing, language independent parsing, mining
specifications, temporal properties, formal concept analysis

1. INTRODUCTION
When interacting with existing code, programmers must

follow the underlying interaction assumptions. These as-
sumptions can come in the form of formal rules, such as
function signatures, argument types, or explicit precondi-
tions. Many assumptions, though, are informal, or even
implicit; and thus, anomalies only show up at run time.

In earlier work [19,18], we have worked on extracting such
assumptions from existing code. By observing how specific
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interfaces were normally used in a project, we would detect
anomalies—that is, deviations from normal interface usage.
While the approach was successful, it required usage exam-
ples to learn from—and a single project would not always
contain a sufficient number of such examples. Would it be
possible to learn from existing projects to detect anoma-
lies in other projects? In this paper, we show that such a
cross-project anomaly detection is indeed feasible. We have
automatically mined usage examples from over 6,000 open
source Linux projects, totaling more than 200 million lines
of code. The resulting knowledge base contains 16 million
temporal properties describing all interfaces used in these
projects. This database can be used to detect anomalies—
that is, code that deviates from the wisdom of the crowds.

Figure 1 shows such an anomaly in conspire-0.20, an IRC
client1.

dcc->sok = socket (..., ..., ...);
if (...) {

while (...)
bind (dcc->sok, ..., ...);

setsockopt (dcc->sok, ..., SO_REUSEADDR, ..., ...);
}
listen (dcc->sok, ...);

Figure 1: A defect: setsockopt has no effect.

This code, which sets up a network connection using sock-
ets, is not only an anomaly, but also wrong. The problem
with this code is that it attempts (in a call to setsockopt)
to allow the socket to be bound to the address that is already
in use after attempting to bind the socket. This mistake is
easy to make, because most of the SO_* options that can
be passed to setsockopt are effective even after the call to
bind. Our approach flags this as an anomaly because almost
all other projects using bind, setsockopt, and listen call
setsockopt before bind. Moreover, this defect cannot be
detected by single-project anomaly detection: the violated
pattern does not occur in conspire-0.20 at all.

Problems like this can only be discovered by comparing
interface usage against normal usage—and this “normal” us-
age is precisely what we extract from thousands of projects.
Our approach uses two major building blocks:

1. We introduce a lightweight, language-independent pars-
er that is able to perform analysis of programs written
in languages such as C, C++, Java, PHP, and others
with a similar syntax. Figure 2 shows the individ-
ual steps of the parser, detailed in Section 2. To the

1http://confluence.atheme.org/display/CON
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Figure 2: From source code to anomalies: A
lightweight parser extracts temporal properties
from source code, which are then checked against
the knowledge base to detect anomalies.

best of our knowledge, this is the first parser that is
lightweight, language-independent, and at the same
time accurate enough to actually allow detecting de-
fects in source code. Its usage makes our approach
directly applicable to programs written in multiple lan-
guages and lets us successfully deal with problems as-
sociated with analyzing source code statically.

2. We leverage the JADET [19] approach to detect object
usage anomalies, extending it to arbitrary languages
with function calls. We demonstrate its scalability by
learning a knowledge base (Section 3) from more than
6,000 C projects; and showing how new projects can
be efficiently checked for anomalies (Section 4); again,
Figure 2 shows the individual steps detailed in these
Sections. To the best of our knowledge, this is the
first time that interface usage has been mined across
projects and leveraged at such a massive scale.

The evaluation results are very promising. In a sample
of 20 projects, ∼25% of the top-ranked anomalies uncov-
ered actual code smells or defects (Section 5); in less mature
code, we would expect an even higher rate of defects and
anomalies. After discussing the related work (Section 6), we
present checkmycode.org , a public Web site where program-
mers can have their code checked against the wisdom of the
crowds. Section 7 closes with conclusion and consequences.

2. LIGHTWEIGHT PARSING
Our first challenge was to analyze large amounts of source

code. As other researchers before us [2], we found that
source code retrieved from code archives or web repositories
can be hard to analyze statically: The code may go through
various preprocessing steps (such as macros expansion); and
references across projects or packages are hard to resolve.
We therefore designed and implemented a lightweight parser
to extract information about function calls and code struc-

static int dcc_listen_init(struct DCC *dcc, sess *sess){
socklen_t len;
dcc->sok = socket(AF_INET, S_STREAM, 0);
if (send_port > 0) {

i = 0;
while (ls_port > ntohs(SAdr.sin_port) && br==-1) {

i++;
bind(dcc->sok, &SAdr, sizeof(SAdr)));

}
setsockopt(dcc->sok,SQL_S,SO_RA,&len,sizeof(len));

}
listen(dcc->sok, 1);
upnp_add_redir(inet_ntoa(addr), dcc->port);

}

Figure 3: Sample function from conspire-0.20.

FUNCTION dcc_listen_init (2) {
dcc.sok : socket(AF_INET, S_STREAM, CONST);
IF () {

LOOP (ntohs(SAdr.sin_port)) {
bind(dcc.sok, &SAdr, sizeof(SAdr)));

}
setsockopt(dcc.sok,SQL_S,SO_RA,&len,sizeof(len));

}
listen(dcc.sok, CONST);
upnp_add_redir(inet_ntoa(addr), dcc.port);

}

Figure 4: Information extracted by the parser from
the source code above.

ture from source code. Since we are only interested in dis-
covering function calls and structure, many of the details
present in source code can be disregarded. This is what
makes our parser lightweight: it only parses selected parts
of source code and disregards irrelevant statements.

As an example, consider the source code fragment in Fig-
ure 3. Receiving this fragment as input, our parser extracts
information about function calls and code structure. The
extracted information is shown in Figure 4. The basic struc-
ture of the function, the if-statement and the while-loop
are retained, as are all the function calls. However, instruc-
tions not containing function calls are unimportant for our
purposes and therefore disregarded; this includes variable
declarations such as socklen_t len; as well as the if con-
dition which does not contain a function call. We use a
specially designed generic abstract representation to store
the extracted information. This representation is similar to
an abstract syntax tree but differs in that it does not store
all information that was present in the source code and it is
not bound to a specific programming language.

Retaining code structure is important because it allows us
to partially reconstruct control flow information with which
we can determine the order in which function calls are made.
This information is critical to the creation of function models
which will be discussed in Section 2.4.

Since many programming languages share very similar
syntax for function calls and basic structure (e.g. loops and
if-statements), it is possible for our parser to work in a
language-independent fashion. Our parser is not bound to
a specific programming language but rather to a subset of
syntax that many programming languages (such as C and
Java) share. This lack of direct focus makes the parser ap-
plicable to programs in all languages with syntax similar to
the ones mentioned above.
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The parsing process can be broken down into three main
steps: creating tokens, identifying structure and extracting
function calls. Creating tokens, as its name suggests, takes
source code, filters it and separates it into tokens. In the
structure identification step, tokens are classified as certain
types of statements; the final extract calls step performs
the crucial identification and extraction of function calls.
The three steps are discussed in more detail in the following
sections. Full details about the implementation of the parser
can be found elsewhere [6].

2.1 Creating Tokens
Our parser receives source code as input and starts with

preliminary filtering, such as removing comments and re-
placing line breaks with spaces. The remaining code is sep-
arated into tokens based on the following delimiters: “{”,
“}”, and “;”. Our choice of delimiters was motivated by the
syntax that the parser is based on: curly braces (“{}”) to
indicate blocks and semicolons (“;”) to indicate the end of
an instruction. Thus, each token contains exactly one in-
struction or the beginning or end of a block2. For instance,
during this step, the source code shown in Figure 3 is sepa-
rated into 14 tokens—in this case each line is a token.

2.2 Identifying Structure
It is important for our parser to recognize code structure

so that the majority of control flow information can be re-
constructed. After the source code has been broken down
into tokens, each token goes through a classification pro-
cess. The purpose of this process is to determine the kind
of statement that the token contains. This process consists
of matching the token against several regular expressions
constructed to match a specific type of statement: class def-
inition, function definition, loop, if-statement, or switch-
statement. Whichever regular expression the token matches
it is treated as that kind of statement. These are the only
types of structural statements the parser is able to recognize,
which means that in some cases the extracted code structure
may not fully reflect the actual code structure.

Note that most of the time a token will not contain an en-
tire statement, only the part of the statement up to the
first delimiter. For instance the token if (send_port >

0){ from the source code in Figure 3 is classified as an if-
statement; however, this token does not contain the whole
if-statement, as the body of the statement is missing. To
obtain the entire statement, more tokens are parsed until
one that indicates the end of the statement is found. In
our example, the body of the if-statement is identified by
continually parsing more tokens until the token containing
the matching closing curly brace (“}”) is found. As they
are parsed, the tokens representing the body of the state-
ment recursively undergo the structure identification pro-
cess. Through this recursion, we identify nested structures
such as the while-loop and its body.

If a token is part of the body of a statement, but is not
identified as a structure statement, it is assumed to be an
expression. For instance, the token listen(dcc->sok, 1);

is part of the function body in Figure 3 but is not a structure
statement. Expressions are important because these are the
parts of the source code that contain function calls. The
extraction of function calls from these tokens is discussed in
Section 2.3.

2Note that this is different than in conventional parsers.

In the case that a token is identified as a loop or as an
if-statement (e.g. if (send_port > 0)), its condition is ex-
tracted and treated as a separate token (e.g. send_port >

0), which is considered an expression.

2.3 Extracting Function Calls
Function calls can be present in expressions (see Section

2.2) and are identified on a purely syntactic level. This
means that when parsing an expression token the parser
searches for the syntax of a function call: an identifier fol-
lowed by a set of parentheses (id(...)). If such syntax is
found, it is assumed to be a function call: no further analysis
of whether such a function with the given parameters and
name exists is performed. Once a function call is identified,
our parser extracts the name of the function that is called,
the arguments and, if applicable, the target. Each argument
of the function call is then considered an independent token
and treated as an expression.

Consider the following token that is classified as an ex-
pression:

upnp_ad_redir(inet_ntoa(addr), dcc->port);

The function call contained in this token is recognized by
the parser and the function name upnp_add_redir and the
arguments inet_ntoa(addr) and dcc->port are extracted.
Then each argument is regarded as a separate token and
parsed. The token inet_ntoa(addr) is also identified as
a function call and its name inet_ntoa and arguments are
extracted. The token dcc->port does not contain a function
call and is marked as an identifier.

For the sake of conformity, all instances of the arrow oper-
ator (“->”) in an identifier are replaced with the dot operator
(“.”). This causes some inaccuracies since in C and C++.
“->” is a shortcut for dereferencing and accessing a member.
However, in other languages such as PHP this operator is a
simple member access. It is not possible to distinguish these
two cases in a language-independent fashion. Therefore, we
perform additional filtering (see Section 2.4) and do not dif-
ferentiate between referenced and dereferenced objects.

2.4 Function Models
Once the source code has been parsed and all relevant

information has been stored in the abstract representation,
function models are created. A function model represents
all possible sequences of function calls in a specific function.

When creating function models, we assume that the argu-
ments of calls as well as the arguments of binary operators
are evaluated from left to right. This is only of importance
if multiple arguments of a function call are return values of
function calls because it then influences the order in which
these functions are called.

For each function that was identified during the parsing
process and stored in the abstract representation, one func-
tion model is created. The states of a function model rep-
resent locations in the code, and the transitions are labelled
with events. Each event represents a function call; it stores
the name of the function that is called—annotated with the
number of parameters the function takes—and a list of all
objects associated with the call. Objects associated with a
function call are its arguments, return value, and if applica-
ble, the target.3

3There is a risk of the parser confounding functions with the
same name and number of arguments, but different types.
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static void glade_editor_reset_toggled (
GtkCellRendererToggle *cell, gchar *path_str,
GtkTreeModel *model) {

GtkTreePath *path =
gtk_tree_path_new_from_string (path_str);

GtkTreeIter iter;
gboolean enabled;

/* get toggled iter */
gtk_tree_model_get_iter (model, &iter, path);
gtk_tree_model_get (model,

&iter, COLUMN_ENABLED, &nabled, -1);
gtk_tree_store_set (GTK_TREE_STORE (model),

&iter, COLUMN_ENABLED, !enabled, -1);
gtk_tree_path_free (path);

}

Figure 5: Sample function.

gtk_tree_path_new_from_string(1)

[path@-1, path_str@1]

gtk_tree_model_get_iter(3)

[model@1, iter@2, path@3]

gtk_tree_model_get(5)

[model@1, iter@2,

COLUMN_ENABLED@3, enabled@4]

GTK_TREE_STORE(1)

[<temp0>@-1, model@1]

gtk_tree_store_set(5)

[<temp0>@1, iter@2,

COLUMN_ENABLED@3, enabled@4]

gtk_tree_path_free(1)

[path@1]

Figure 6: Function model created by the parser from
the function in Figure 5.

Furthermore, each object is expressed through an iden-
tifier and annotated with information about how it is as-
sociated with the function call. An annotation is an “@”
character followed by a number. This number indicates the
relationship between function call and object. For a return
value this number is -1, for a target 0, and for an argument,
it is the number of the argument—the leftmost argument
has number 1.

As a result of the conflicting semantics for the “->” op-
erator discussed in Section 2.3 all instances of “*” and “&”
are filtered from the identifiers. Hence we do not distinguish
between a referenced and dereferenced object.

Consider the following line of code taken from the function
presented in Figure 5:

In C, such usage is very rare; in other languages, we would
still expect all instances of the same name to follow common
usage rules.

GtkTreePath *path =

gtk_tree_path_new_from_string (path_str);

We create an event for the function call gtk_tree_path_
new_from_string. Since the function that is called takes
one argument its name is annotated with “(1)”. The list of
associated objects contains the argument path_str and the
return value path. Since path_str is the first—in this case
the only—argument of the function call it is annotated with
“@1”, and since path is the return value of the function call
it is annotated with “@-1”. The event then looks as follows:

gtk_tree_path_new_from_string(1)

[path@-1, path_str@1]

The function model for the code in Figure 5 is presented
in Figure 6. It shows the order, in which the function calls
are made, and how they are related in terms of objects. For
instance, the function gtk_tree_path_new_from_string is
called before gtk_tree_model_get_iter. Notice the use of a
variable named <temp0> that appears in the function model
but is not present in the source code. This variable name is
explicitly introduced to represent the return value of the call
to GTK_TREE_STORE(model). In the source code, this return
value is not assigned anywhere but is immediately passed
to the function gtk_tree_store_set. In cases like this it
is necessary to introduce temporary variable names such as
<temp0> to be able to express the fact that the return value
of one function call is used as an argument for another.

3. THE KNOWLEDGE BASE
The capability to extract function models from massive

amounts of source code allows us to create a knowledge base
containing data about all the projects we want to learn from.
Information from this knowledge base will then be used for
cross-project anomaly detection (see Section 4). We store
two types of information for each reference project : general
information about the project—its name, and names and
locations of functions that are part of that project; and in-
terface usage information that will be of direct use when
detecting anomalies—the set of events and temporal prop-
erties [19] that occur in the reference project’s functions’
models. Analysis of a single project consists of two steps:
(1) applying the lightweight parser to extract function mod-
els from the project; and (2) extracting temporal properties
from function models. The extracted data is then stored in
the knowledge base.

3.1 Applying the Lightweight Parser
In the first step, we invoke the lightweight parser on every

source file of the project to be analyzed. As a result of
this analysis, we get a set of function models, one for each
function identified by the parser. Information about the
project and the functions found is inserted directly into the
knowledge base.

It is possible to create only one knowledge base that will
contain information about projects written in multiple pro-
gramming languages. However, cross-language cross-project
information does not seem nearly as useful as single-language
cross-project information, so it makes more sense to create
a separate knowledge base for each programming language
of interest. Therefore, it suffices to invoke the parser on files
that contain only source code written in this language (e.g.,
.c files for C).
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3.2 Extracting Temporal Properties
In the second step, we transform each function model into

a set of temporal properties that represent the flow of values
between function calls. For this purpose, we leverage the
notion of a temporal property from the JADET tool [19]. In
JADET, temporal properties represent a pair of events that
occur in a specific order (such as lock ≺ unlock meaning
that a call to lock occurs before a call to unlock). We extend
this definition to include information about the argument
position in our events (e.g., the same value is first passed as
the first argument to lock and then as the first argument
to unlock). Thus, instead of only being able to express the
ordering of function calls, we can also tell which argument
is responsible for this ordering.

Let us consider the sample function shown in Figure 5.
Its function model is shown in Figure 6. Because the model
contains dataflow information (such as the fact that the re-
turn value of the call to gtk_tree_path_new_from_string

was later used as the third argument of the call to gtk_tree_

model_get_iter), we can extract temporal properties that
will capture the order, in which values flow through func-
tion calls. One temporal property that we can extract is
gtk_tree_model_get_iter(3)@3≺ gtk_tree_path_free(1)

@1, because the variable called path is passed as an argument
to both those calls, and it is not redefined between them.
Another is GTK_TREE_STORE(1)@-1 ≺ gtk_tree_store_set

(5)@1, because there is an unnamed value which, upon be-
ing returned as a return value of the first one of those calls,
was passed as the first argument to the second one of those
calls. Extracted temporal properties are inserted into the
database, just like the events that form these properties.

It is important to note that it is not enough that a function
call may occur before another function call for a temporal
property to be constructed. As an example, consider the two
calls to gtk_tree_ store_set and gtk_tree_path_free in
the function model in Figure 6. These two functions are not
directly related, and we can discover this fact by noticing
that there is no variable that would be associated with both
of them. Therefore, no temporal property gets constructed
based on these two calls. In addition, a light dataflow anal-
ysis detects reassignments between function calls.

4. ANOMALY DETECTION
Once we have a knowledge base available, we can detect

anomalies in a single project by comparing its interface us-
age with that of reference projects stored in the knowledge
base. Figure 2 contains an overview of our cross-project
anomaly detection approach. We combine the novel cross-
project analysis (highlighted in Figure 2 by a grey back-
ground) with the anomaly detection mechanism used by
JADET to achieve cross-project anomaly detection capa-
bilities. The whole process consists of the following steps:

Parsing. The program P to be analyzed is parsed by the
lightweight parser resulting in function models being
created. The process used here is the same as the
one used when constructing the knowledge base (see
Sections 2 and 3.1).

Extracting temporal properties. We extract temporal
properties from the function models. The process used
here is the same as the one used when constructing the
reference database (see Section 3.2).

Choosing minimum support. The minimum support val-
ue to be used for anomaly detection is determined (see
Section 4.1).

Finding frequent temporal properties. We find tempo-
ral properties that are related to the events occurring
in P , and at the same time occur frequently enough in
the reference projects (see Section 4.2).

Anomaly detection. We look for anomalies by applying
concept analysis to the data we have both gathered
from P and extracted from the reference projects (see
Section 4.3).

Ranking and filtering. We rank and filter anomalies be-
fore presenting them to the user (see Section 4.4).

4.1 Choosing Minimum Support
Minimum support is the number of functions that must

adhere to a certain pattern (understood as a set of temporal
properties) for this pattern to be acknowledged. For typi-
cal single-project anomaly detection this value is constant,
but for cross-project anomaly detection choosing a constant
value results in too much reference data (and thus loss of
scalability) for larger projects. We deal with this problem
by having a fixed constant range, in which the minimum
support must lie, and applying binary search to find the
lowest minimum support value that is in that range and
at the same time keeps the amount of reference data4 be-
low a fixed threshold. The important thing here is that the
threshold can be changed at will, so that our approach can
actually use higher threshold (i.e., lower minimum support
values) if the user is willing to pay the price in memory and
time that will be spent on analysis. In practice, the higher
the threshold value the better, and it should be chosen so
as to maximize the amount of memory that is used by the
process without causing swapping.

4.2 Finding Frequent Temporal Properties
To be able to do cross-project analysis, we need to take

into account the temporal properties that are stored in the
knowledge base. However, it does not make sense to con-
sider all of them, because not all of them are useful when
looking for anomalies in P . If some of them express rela-
tionships between functions that are part of a certain API
that P does not use, they are not going to be of any use
for finding anomalies. Also, including them would make the
whole approach infeasible, or at the very least applicable
only in cases where the number of reference projects would
be relatively small. Therefore, we limit ourselves to only
those temporal properties that pertain to P .

We say that a temporal property pertains to P if at least
one of the events it consists of occurs in P . Such tempo-
ral properties are of the form a ≺ b, where either a, b, or
both a and b, are events that occur in P . We would like to
emphasize the fact that this rather conservative approach
allows the analysis to make use of temporal properties that
do not occur in P . This very important property allows us
to find cases where the anomaly is caused not only by wrong
ordering of function calls, but also by absence of a certain
call or a set of calls.

However, not all temporal properties that pertain to P are
useful. If some of them occur in only a handful of functions

4expressed as the size of the final concept analysis matrix
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Figure 7: Detecting anomalies via concept analysis.
Each rectangle corresponds to a pattern; gaps indi-
cate potential anomalies [10]. The matrix contains
entries for functions of the analyzed project as well
as for functions of reference projects.

(including reference functions from the knowledge base in
addition to those from P ), we cannot really trust that these
are not accidental. Therefore, we limit ourselves to only
those properties that are frequent enough—understood as
occurring in at least minimum-support-many functions.

4.3 Detecting Anomalies
The process of detecting anomalies consists of two phases:

discovering patterns, and discovering violations of those pat-
terns. The idea is to first find patterns—sets of temporal
properties—that occur together in many functions, and then
to look for anomalies (i.e., violations of those patterns). For
this purpose, we use the Colibri-Java tool [7] that imple-
ments formal concept analysis [5]. We give Colibri-Java a
binary matrix as an input, where rows are functions (those
coming from P as well as those stored in the knowledge
base), and columns are temporal properties. The matrix
contains an entry for a specific function and a specific tem-
poral property if the property occurs in the function. Figure
7 shows a sample concept analysis matrix.

Colibri-Java first finds patterns in the matrix: these
are the sets of temporal properties that occur in at least
minimum-support-many functions. Intuitively, a pattern is
a rectangle (not necessarily contiguous) in the matrix. Fig-
ure 7 shows two sample patterns. It is important to notice
that we are actually able to find patterns induced by refer-
ence data; patterns that might not be present in P at all.

After finding patterns, Colibri-Java looks for anomalies.
The idea here is to find functions in P that violate the pat-
terns found earlier. A function violates a pattern if it ex-
hibits some of its temporal properties, but not all of them.
Detecting such violations is equivalent to finding “gaps” in
the concept analysis matrix [10]. In Figure 7 we can see
that the function f1 violates the pattern represented by the
set of temporal properties {p1, p2, p3}, because it exhibits
p1 and p2, but not p3. For more details about formal concept
analysis and using it for detecting patterns and anomalies
the reader can consult the publications cited in this section
as well as the work on JADET [19], which also uses formal
concept analysis for detecting anomalies.

4.4 Ranking and Filtering Anomalies
Anomaly detection typically results in discovering a large

number of anomalies, most of them being false positives.

We deal with this problem by first ranking the anomalies,
and then filtering them, so that the user has less anomalies
to inspect and can focus only on the top-rated ones. For
ranking anomalies, we compare their lift measures.

Formally, we can treat each anomaly (i.e., violation of a
pattern) as a violation of an association rule A→ B, where
A and B are sets of temporal properties, A ∪ B is the set
of temporal properties that constitutes the pattern, and B
is the set of temporal properties that are missing in the
function violating the pattern. Lift of an association rule
A → B is a well-known metric that measures how many
times more often A and B occur together than expected if
they were statistically independent.

When it comes to filtering, we leave only one anomaly
for each function—the highest ranked one. While this may
lead us to miss some true positives, more often than not
it results in simply removing duplicates. The reason for
this is that it frequently happens that a certain function
does not exhibit certain important temporal properties, thus
violating multiple patterns in the same way (i.e., in all those
anomalies the same properties are missing, and mostly the
same properties are present).

5. EVALUATION

5.1 Evaluation Setup
To evaluate our approach in terms of efficiency and effec-

tiveness, we use the following evaluation scheme:

1. We create a knowledge base consisting of data from
C projects being part of the Gentoo Linux distribu-
tion. (see Section 5.2.) The reason for our choice is
that Linux is widely used (the distribution would thus
be expected to contain mature code to learn from) and
contains the greatest possible variety of projects. We
chose Gentoo because it is a distribution that provides
the source code for each and every package it contains.
The reason for focusing on C programs is that C is
the dominant programming language in the Gentoo
Linux distribution. However, we would like to empha-
size the fact that our approach is not limited to C. C
is our language of choice for the evaluation, but our
approach works without any changes for other, similar
programming languages, such as C++, Java, or PHP
(see Section 2).

2. We randomly choose 20 C projects from the distribu-
tion and apply anomaly detection to them. We clas-
sify the anomalies found and calculate the true pos-
itive rate (Section 5.3). The rationale for choosing
20 projects is that this is a sample of sufficient size
to minimize the risk of bias towards a specific type of
project; also, 20 projects was the amount of code that
we realistically could review for classification.

3. We apply anomaly detection to C projects from the
Gentoo Linux distribution (i.e., all projects, whose
data we have in our database) and use the total num-
ber of anomalies found and the true positive rate cal-
culated earlier to find the expected number of true
positives we could theoretically discover in all of the
distribution. (Section 5.7)

When detecting anomalies, we applied two changes to the
procedure described in Section 4:
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First, for the time of the analysis, we excluded from the
knowledge base the project that was being analyzed. This is
because when analyzing a project that is at the same time
a reference project (and thus has its temporal properties
stored in the knowledge base) we do not want the temporal
properties from this project count twice: as being part of the
analyzed project, and as being part of a reference project.

Second, not all events and temporal properties extracted
from reference projects are useful. It can happen that some
events occur so often as to become “dead weight” that not
only makes anomaly detection slower, but also causes false
warnings to appear. One such example is for instance the
family of printf functions. They occur many times in many
projects, but the temporal properties in which they occur are
typically not interesting. We deal with this issue by ignoring
two kinds of events during the calculations:

• Events related to printf, fprintf, sprintf, as well
as scanf, fscanf, sscanf are ignored.

• Events that occurred too frequently (relatively) are ig-
nored. For this purpose, we calculated statistics for
the events set in the reference projects, and ignored
all events whose occurrence frequency was so large as
to exceed the third quartile by more than 1.5 times the
interquartile range (third quartile minus first quartile).
This is one of the standard measures for identifying
outliers in a data set; in practice this meant ignoring
events occurring more than 5742 times.

There were 262 such events (out of 3,592,375 events
in total; less than 0.01%). The ignored events include
for example strncpy(3)@1 and malloc(1)@-1. These
have the same characteristic as the events described
above: they occur many times in many projects, but
the temporal properties in which they occur are typi-
cally not interesting.5

The need to do this kind of filtering depends very much on
the knowledge base. Ours is quite varied and contains many
very different projects, so it is reasonable to assume that
filtered events would really not be helpful. If the knowledge
base is more homogenous, filtering might be unnecessary.

5.2 The Knowledge Base
We have included in our knowledge base almost all projects6

that satisfy the following condition: The project is stored in
one package, contains at least one .c file and the parser is
able to create at least one function model out of it (interest-
ingly, some files just contained data declarations).

This gives in total 6097 projects, with 5,985,193 function
models created in the process. There are 3,592,375 differ-
ent events and 15,803,766 different temporal properties in
our database. The database itself takes around 5.9 GB of
space under MySQL. The number of source lines (SLOC)7

5It is interesting that events of the first kind (printf and
scanf family) are not detected as outliers. The reason for
this is their large variety that results in a lot of events that
are related to them, but that in themselves do not occur
frequently enough to be classified as outliers. As an example,
there are 1504 distinct events related to printf, with printf
taking up to 47 arguments.
629 small-sized projects have been used for testing purposes
and were thus not included in the knowledge base.
7SLOC were calculated using David A. Wheeler’s ‘SLOC-
Count’; only .c files were taken into account.

Table 1: Details of 20 analyzed projects.

Analysis time

Project SLOC Parsing Total Anomalies

cacao-0.95 91,226 0:08 3:13 0
cksfv-1.3.13 784 0:01 0:04 1
concentration-1.2 1,715 0:01 0:01 0
daudio-0.3 1,476 0:01 0:05 0
dhcpdump-1.8 478 0:01 0:01 0
ggv-2.12.0 13,149 0:02 3:22 3
gimp-2.6.6 595,664 1:54 17:49 61
glade3-3.6.4 53,159 0:07 4:04 18
httrack-3.43-4 41,017 0:03 2:32 8
LDL-2.0.1 904 0:01 0:01 0
memcached-1.3.3 5,412 0:01 0:07 0
mpich-1.2.7p1 196,609 0:13 5:20 12
otp src R13B 201,553 0:13 5:18 14
psycopg-1.1.15 3,160 0:01 0:03 6
python-scw-0.4.7 69 0:01 0:01 0
tclxml-2.4 12,354 0:01 0:05 8
vdr-arghdirector-0.2.6 1,109 0:01 0:01 0
viewres-1.0.1 927 0:01 0:02 1
xf86-video-savage-2.2.1 10,950 0:01 0:03 0
Yap-5.1.3 124,410 0:09 4:53 4

of the projects ranges from 7 (for openssl-blacklist 0.4.2 and
openvpn-blacklist 0.3) to 5,491,951 (for linux-2.6.29), with
the total SLOC of all projects being 201,321,237. This is
over 200 million lines of code of reference data. Creating
the database took a little less than 18 hours, with an av-
erage time of less than 11 seconds per project on a 16-core
2.9 GHz Intel Xeon machine with 24 GB of RAM. However,
we used a single thread only, so the process can be sped up
by actually exploiting parallelization. Also, this computa-
tion must be done only once; afterwards the knowledge base
is easily used, and—if needed—easily and quickly updated.

We learn typical API usage from over 6000 projects,
encompassing more than 200,000,000 lines of code, in less

than 11 seconds per project.

5.3 The Random Sample
We have randomly chosen 20 from the 6097 projects we

had in our database and applied our anomaly detection
mechanism to each one of them in turn. Table 1 shows
for each of the projects the following data: its name, its
size in SLOC7, the time it took to do parsing and produce
function models, the total time it took from parsing to out-
putting anomalies, and the number of anomalies found. As
can be seen, the projects are quite varied, ranging from tiny
(python-scw-0.4.7 with 69 SLOC) to large (gimp-2.6.6 with
595,664 SLOC). Analysis time was mostly less than 10 sec-
onds per project. The larger projects needed much more
time, up to almost 18 minutes for gimp-2.6.6, but we deem
this still an excellent value for cross-project analysis that has
over 6000 reference projects at its disposal and makes full
use of them. Notable is the fact that our lightweight parser
can cope with almost all projects in several seconds.

Cross-project anomaly detection is not only possible, but
also fast enough to be of practical use.
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Table 2: Summary of results. Only projects with at least one anomaly are listed.

# Anomalies

Program Total Top ∼25% # Defects # Code smells # False positives Effectiveness

cksfv-1.3.13 1 1 1 0 0 100%
ggv-2.12.0 3 1 0 0 1 0%
gimp-2.6.6 61 22 1 2 19 14%
glade3-3.6.4 18 5 2 0 3 40%
httrack-3.43-4 8 2 0 1 1 50%
mpich-1.2.7p1 12 5 0 4 1 80%
otp src R13B 14 4 0 0 4 0%
psycopg-1.1.15 6 6 0 0 6 0%
tclxml-2.4 8 2 0 0 2 0%
viewres-1.0.1 1 1 0 0 1 0%
Yap-5.1.3 4 1 0 0 1 0%

136 50 4 7 39 22%

5.4 Classification
We have investigated the top 25% (rounded up) anomalies

for each of the analyzed projects and classified them into
three categories:

Defects. If code was defective, we marked it as such. An
example of defective code is a resource leak: obtaining
a resource (such as a file) and then forgetting to free
it (in the case of a file—by closing it).

Code smells. This category contains all anomalies that are
not defects, but the anomalous functions have proper-
ties indicating that something may go wrong [3] or they
might be improved in a way that improves readability,
maintainability or performance of the program. An
example might be a function that uses a for loop to
iterate through a collection and breaks unconditionally
out of the first iteration. If the collection can have at
most one element, this code will work, but it cannot
be treated as fully correct.

False positives. This category contains all anomalies that
are neither defects nor code smells.

We stayed on the conservative side when categorizing the
anomalies. If we were not sure if the code was correct, we
treated it as correct. We did not measure the time that
was needed to classify the anomalies found in the analyzed
projects, but in our past experiments the time measured was
roughly two and a half minutes per anomaly on average [17].

5.5 Results
The result of our categorization can be seen in Table 2.

For all analyzed projects we present the total number of
anomalies, the number of anomalies the top 25% amounts
to (these are the anomalies we investigated)8, the number
of defects, code smells, and false positives found by inves-
tigating them, and the effectiveness (i.e., the percentage of
anomalies that were defects of code smells).

As can be seen, the largest projects also have the largest
number of anomalies; however, only 11 out of the 20 projects

8Sometimes this is more than exactly 25%. The reason for
this is that some anomalies have the same ranking, so we
had to include all such equally-ranked anomalies.

actually show anomalies. We attribute this low number to
two reasons:

• First, we would expect mature production code such
as Linux distributions to show a high level of standard
conformance anyway; its maturity, combined with open
source peer review, naturally implies a low number of
remaining defects, and thus a low number of anomalies
as well. Still, 11 out of 50 violations (22%) pointed to
code smells or new defects; Section 5.6 lists some of
them. Applied to less mature or pre-production code,
we would expect a much higher number of defects—
and thus also a higher rate of true positives.

• Second, our lower threshold of 200 for the minimum
support value causes several patterns with smaller sup-
port to go unnoticed—and likewise their violations.
There is an obvious tradeoff involved, as lowering the
threshold will increase the time and memory needed
to do anomaly detection. An optimal threshold value
thus depends on the resources being allocated for a-
nomaly detection.

Cross-project anomaly detection can detect previously
unknown defects in mature software projects.

5.6 Examples
Let us now take a more qualitative perspective and ex-

amine some of the anomalies detected. Figure 8 shows the
skeleton of the defect found in cksfv-1.3.13. The problem
with this code is that it indirectly (using opendir) creates
a DIR structure allocating memory for it, but forgets to free
it using closedir. The violated pattern is present in our
knowledge base over 1700 times. The programmer was ob-
viously aware of the problem, because she included a call to
rewinddir at the very end of the function. Unfortunately,
this is not the function that should be called. find_file

will cause a memory leak each time it is called.
Figure 9 shows the skeleton of a code smell found in gimp-

2.6.6. It uses GTK iterators to iterate through a tree model.
The problem with this code is that it uses two different
things for the same purpose: the GTK_TREE_MODEL (priv-

>store) expression and the model variable. Both are equiv-
alent, as the first one gets assigned to the second near the
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static int find_file (...)
{

DIR *dirp;
struct dirent *dirinfo;
...
dirp = opendir(".");
if (dirp == NULL)
{

...
}
while ((dirinfo = readdir(dirp)) != NULL)
{

...
}
rewinddir(dirp);
return 1;

}

Figure 8: Skeleton of a defect in cksfv-1.3.13.

static gboolean gimp_page_selector_item_width_idle (...)
{

GimpPageSelectorPrivate *priv = ...;
GtkTreeModel *model = GTK_TREE_MODEL (priv->store);
GtkTreeIter iter;
...
for (... = gtk_tree_model_get_iter_first (model,

&iter);
...;
... = gtk_tree_model_iter_next (model,

&iter))
{

...
gtk_tree_model_get (GTK_TREE_MODEL (priv->store),

&iter, ..., ..., ...);
...

}
...

}

Figure 9: Skeleton of a code smell in gimp-2.6.6.

beginning of the function. However, the variable is used in
the head of the for-loop, whereas the expression is used in
its body. Such code is difficult to understand and to main-
tain. Moreover, it crucially depends on GTK_TREE_MODEL be-
ing a macro, not a function call, because otherwise the two
occurrences of the expression could yield different values.

Figure 10 shows the skeleton of a code smell found in
httrack-3.43-4. The anomaly here is that MD5Init, as oc-
curring in hundreds of projects, normally takes only one
argument; in httrack-3.43-4, though, it takes two. A closer
look reveals that the project uses its own implementation of
MD5; the additional argument determines whether MD5Init
should try to correct broken endian. This code is an obvious

int domd5mem (...)
{

int endian = 1;
...
MD5_CTX ctx;
...
MD5Init (&ctx, * ( (char*) &endian));
MD5Update (&ctx, ..., ...);
MD5Final (..., &ctx);
...

}

Figure 10: Skeleton of a code smell in httrack-3.43-4.

case of bad design, because callers of MD5Init are required
to do the job that should be done by the callee. Interest-
ingly, there are two calls to MD5Init in httrack-3.43-4, and
both use different second arguments. One of them is the
call shown in Figure 10, which obviously does some kind of
check; another one simply passes 0. It is highly probable
that the other call is defective.

As can be seen from the results, using the lightweight
parser incurs an effectiveness penalty (JADET, which uses
the same anomaly detection mechanism, is more effective),
but allows us to perform cross-project anomaly detection
in reasonable time and in a language-independent fashion.
Also, in spite of its simplicity it is accurate enough to allow
detecting real defects. As can be seen from the examples
given in this section and in the introduction, some issues
can only be found by a cross-project analysis. This is true
for the bad design of MD5Init shown in this section, and for
the wrong call to setsockopt shown in the introduction.

Some issues found by cross-project anomaly detection
cannot be found by single-project approaches.

5.7 Anomalies in Gentoo Linux distribution
We have run our anomaly detection on all 6097 projects

to find out how many anomalies our approach can detect
in the Gentoo Linux distribution. Our approach needed 3
days and 18 hours to analyze these; this gives an average
analysis time per project of about 53 seconds. During the
process, there were 21,562 anomalies found in total, ranging
from 0 for most projects, to 765 for open64-4.2.1-0.src, with
an average of less than 4 anomalies per project.

5.8 Threats to Validity
The results of our experiments are subject to the following

threats of validity:

Threats to external validity concern our ability to gen-
eralize the results of our study. We have focused our
evaluation on projects written in C and being part of
the Gentoo Linux distribution. This might influence
the effectiveness of both the parser and the whole ap-
proach. It might be that our results would be worse
if we focused on a different language or used a differ-
ent codebase. However, our earlier experiments with
the parser have shown it to be effective for other pro-
gramming languages too [6]. On the other hand, Linux
distributions contain as large a variety of programs, as
one can think of, so we think this threat is negligible.

Threats to internal validity concern our ability to draw
conclusions about the connections between our inde-
pendent and dependent variables. The results of the
categorization process performed on anomalies depend
on the expertise of the human applying the approach.
However, if anything, this would improve our results—
because we have marked anomalies as true positives
only if we were completely sure that they are indeed
defects or code smells. An experienced developer may
spot potential problems where we see false positives.

Our sample of 20 projects can be biased and allow us
to achieve better results than could be achieved for the
whole Gentoo Linux distribution. This threat is real,
and unfortunately we cannot mitigate it. For this, one
would need to do cross-validation, but in practice this
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means classifying all or almost all anomalies found for
the whole distribution, which is practically infeasible.

Threats to construct validity concern the appropriate-
ness of our measures for capturing our dependent var-
iables. The greatest threat is that the tools we have
used or implemented could be defective. To counter
this threat, we have run several manual assessments
and counter-checks; so we believe that any defects left
affect only a small number of anomalies, and thus do
not spoil the results overall.

6. RELATED WORK
There are approaches that use large code bases to find

correct API usages—these are closely related to our work.
Zhong et al. created MAPO [21], which provides sample se-
quences of method calls. MAPO provides information about
the order in which the methods are typically called and also
provides a recommender that helps the programmer decide
if he is following a correct pattern or not. In contrast to
MAPO, our approach is able to express how objects flow
through calls, is language independent, and includes auto-
matic anomaly detection. Thummalapenta and Xie [16] de-
scribe Alattin: an approach for finding neglected conditions
by comparing the code with sample code obtained using a
code search engine. This is similar to our approach in that
it aims for cross-project anomaly detection. The main ad-
vantage of Alattin, and one that could theoretically be in-
tegrated into our approach, is that it recognizes so-called
“infrequent patterns”. The main drawback is that it is lim-
ited to recognizing only neglected conditions, and it is not
language independent. Also, one major drawback of all ap-
proaches that use code-search engines is that they cannot
control the quality of code that is used for learning, because
they do not have influence on the code that is being returned
by code-search engines. In contrast, when using knowledge
bases, users can create knowledge bases that are particularly
well-suited to their needs.

Our work builds on the anomaly detection mechanism of
JADET by Wasylkowski, Zeller, and Lindig [19]. We im-
prove on that technique by not only adding cross-project
capability and language independence, but also by making
temporal properties more expressive: JADET does not in-
clude arguments’ numbers in its temporal properties, and
therefore cannot detect patterns where it is not only order-
ing of calls that matters, but also the flow of values between
arguments. Also, we have improved the ranking system.

Some existing anomaly detection approaches could theo-
retically be adapted to our infrastructure and then used for
the purposes of cross-project anomaly detection while still
preserving scalability. PR-Miner [9] by Li and Zhou with
its patterns being essentially sets of events from our function
models is an obvious candidate. Tikanga by Wasylkowski
and Zeller [18] is another, improving on JADET by, among
others, using the concept of operational preconditions and
operating on much more expressive CTL formulas instead
of temporal properties. These improvements seem possi-
ble to incorporate in our approach. Ramanathan et al. [14]
use a form of temporal properties extended with axiomatic
preconditions, resulting in fairly expressive specifications—
which could perhaps be incorporated into our approach. All
of these are based on static analysis, and it is not clear how
any of the dynamic analysis approaches— [4, 20, 8], etc.—

could be used for cross-project anomaly detection. The same
problem occurs for approaches that mine structurally com-
plicated specifications— [13,15], etc.

Several approaches that extract information from code in
a lightweight fashion exist. Murphy and Notkin [12] devel-
oped a lexical lightweight approach for source model extrac-
tion and Moonen [11] used island grammars to create robust
parsers. Both these approaches provide a general framework
for extracting information from source code that needs to
be customized by the user. Our parser is specialized for the
extraction of code structure and function calls. Collard et
al. [1] developed an XML-based lightweight fact extractor for
C++. Dagenais and Hendren [2] developed partial program
analysis for Java. These tools, unlike our parser, are bound
to a specific language. Ctags9 is a tool that can recognize
language objects and supports many different programming
languages. However, Ctags is only capable of creating an
index file with such objects, and this makes it inapplicable
for program analysis purposes.

7. CONCLUSIONS AND CONSEQUENCES
In modern software systems, correct interface usage is

more than just signatures and types; you need to do the
right things in the right order and at the right time. In
this paper, we have shown that (a) a lightweight parser is
efficient, yet effective enough to mine usage rules from large
bodies of almost arbitrary source code; that (b) the resulting
properties efficiently determine anomalies in new projects;
that (c) a significant amount of these cross-project anoma-
lies indicates defects or code smells; and that (d) despite its
maturity, the Linux distribution still contains thousands of
such issues.

Despite the advances, there is still much room for improve-
ment. Our future work will focus on the following topics:

Using CTL specifications. Our Tikanga tool [18] mines
CTL formulae rather than simple temporal properties.
This dramatically increases the number of true posi-
tives (42% rather than 25% for JADET). Combining
light-weight parsing with CTL formula mining should
improve precision for the present approach as well.

Explore API evolution. Usage rules may change over time.
We are working on identifying these changes—to keep
our recommendations up to date, and to identify ob-
solete usages that must be updated as well.

Early programmer support. Once mined, usage rules can
be easily integrated into the programming environ-
ment, warning the user about potential problems be-
fore they become serious (“Most Linux programmers
think otherwise”) Likewise, temporal properties can
become part of the documentation or the specification.
The mined properties can also be checked against given
ones, giving additional opportunities for validation.

User feedback. To put the approach to full use, we are
currently building a web site checkmycode.org where
interested programmers can have their code checked
against “the wisdom of Linux code” (Figure 11). We
expect the feedback from this service to further guide
and shape our future research.

9http://ctags.sourceforge.net
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Figure 11: On our web site www.checkmycode.org, pro-
grammers can have their code checked against our
knowledge base, or “the wisdom of Linux code”.

For future and related work on anomaly detection, see

http://www.st.cs.uni-saarland.de/models/
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