
The Impact of Equivalent Mutants

Bernhard J. M. Grün � David Schuler � Andreas Zeller
Saarland University, Saarbrücken, Germany
fgruen, schuler, zellerg@st.cs.uni-saarland.de

Abstract

If a mutation is not killed by a test suite, this usually
means that the test suite is not adequate. However, it
may also be that the mutant keeps the program’s seman-
tics unchanged—and thus cannot be detected by any test.
We found such equivalent mutants to be surprisingly com-
mon: In an experiment on the JAXEN XPATH query engine,
8/20 = 40% of all mutations turned out to be equivalent.
Worse, checking the equivalency took us 15 minutes for a
single mutation. Equivalent mutants thus make it impossi-
ble to automatically assess test suites by means of mutation
testing.

To identify equivalent mutants, we are currently investi-
gating the impact of a mutation on the execution: the more
a mutation alters the execution, the higher the chance of it
being non-equivalent. First experiments assessing the im-
pact on code coverage are promising.

1. Introduction

One of the research areas at the chair for software en-
gineering at Saarland University is mining software repos-
itories—that is, learning patterns and rules from software
archives such as version and bug databases to summarize
past development and to predict future development. An
important issue is defect prediction—that is, predicting the
defect density of individual components. As we expect the
defect density to decrease with increasing test quality, we
studied mutation testing as an assessment for test quality.

When starting experimenting with mutation testing, we
expected a large usage of computing resources, which in-
deed happened to be the case. What we were not pre-
pared for, though, was the problem of equivalent mutants—
mutations that leave the program’s overall semantics un-
changed, and therefore cannot be caught by any test suite.

To illustrate the problem, consider the code in Fig-
ure 1. This code, excerpted from the JAXEN XPATH engine,
checks whether a string myPrefix is already contained in
a map nsMap. If not, a new node is created and added to
nsMap together with a new NamespaceNode object.

// org.jaxen.dom.DocumentNavigator, Line 360
String myPrefix = n.getPrefix();
if (!nsMap.containsKey(myPrefix)) ) if (true)
f
NamespaceNode ns =
new NamespaceNode((Node)contextNode,
myPrefix, myNamespace);

nsMap.put(myPrefix, ns);
g

Figure 1. Mutating the condition to true has no ef-
fect on JAXEN semantics.

A possible mutation to this code is to change the condi-
tion to a constant such as true. This updates the map en-
tries even if the prefix string already is in the map, and thus
should result in very different map contents. However, none
of the JAXEN tests detects (“kills”) this mutation. Does this
mean the test is inadequate?

Further investigation of the JAXEN code shows that the
above mutation does not affect the remaining code—it is
an equivalent mutant. This is because the values of the
contextNode and myNamespace variables have the
same values for every myPrefix instance—and thus, the
NamespaceNode objects are the same, too. The map
update as forced by the mutation does not alter the map
contents—it just replaces an existing node with a new,
equivalent node. Establishing that this property holds is
time-consuming, as one has to trace back the origins and
dependencies of all involved variables.

Equivalent mutants thus act as false positives: They ap-
pear to indicate a weakness in the test suite, but in fact
do not, as no test can detect them. The result of muta-
tion testing—”surviving” mutations not found by the test
suite—thus mixes the most valuable and the least valuable
mutations in one set.

False positives also occur using other test criteria. Using
statement coverage to improve a test suite, one may also
find statements that can not be reached by any test. This,
however, implies a defect in the code. Using branch cover-
age, basic condition coverage, or def/use coverage, a false
positive reveals a fault as well. Using mutation testing, a
false positive just wastes valuable time.



We could easily live with equivalent mutants if there
were few, or if assessing them was easy. Unfortunately,
neither holds: We found many equivalent mutants, and
we found that assessing them was very time-consuming.
In fact, equivalent mutants effectively prohibited any auto-
matic assessment of test quality by means of mutation test-
ing. We therefore postponed our initial plan to use muta-
tion testing for defect prediction, focusing on the problem
of equivalent mutants first.

In this paper, we present the current state of our investi-
gations. We make the following contributions:

Equivalent mutants may be widespread. We give a first
assessment on how significant the problem of equiva-
lent mutants actually is. In a sample of 20 mutations,
8 were equivalent—that is, no less than 40%.

Assessing mutation equivalence is time-consuming.
On average, it took us 15 minutes to assess the
equivalence of a single mutation. This effort makes
mutation testing prohibitive even for small programs.

Equivalent mutations have less impact on execution.
We have discovered that mutations that alter the dy-
namic control flow are less likely to be equivalent; the
higher the impact, the lower the chance of equivalence.

Our investigations are still at an early stage. We think,
though, that these early results are both disturbing (when it
comes to the extent of the problem) as well as promising
(when it comes to possible solutions).

2. The Javalanche Framework

Our original motivation for mutation testing was assess-
ing the adequacy of test suites of large-scale programs. Of
the existing mutation tools such as �Java [9], none met our
requirements in terms of automation and scalability. We
therefore decided to implement our own mutation engine
with special focus on these requirements.

The key features of our implementation, called
JAVALANCHE, are:

Focus on sufficient mutation operators. The idea of se-
lective Mutation is to use a small set of mutation opera-
tors that is a sufficiently accurate approximation of the
results obtained by using all possible operators [11].
JAVALANCHE therefore uses the same small set of op-
erators as proposed by Offutt [11] and later adapted by
Andrews et al. [2], listed in Table 1.

Use mutant schemata. Traditional mutation testing tools
produce a new mutated program version for every ap-
plicable mutation possibility. For a large-scale pro-
gram, this easily result in thousands of different mu-

Table 1. JAVALANCHE mutation operators

Replace numerical constant. Replace a numerical con-
stant X by X + 1, X � 1, or 0.

Negate jump condition. Replace a conditional jump by
its counterpart. This is equivalent to negating a con-
ditional statement in the source code.

Replace arithmetic operator. Replace an arithmetic op-
erator by another arithmetic operator, e.g. + by �.

Omit method calls. Omit a method call. If the method
has a return value, a default value is used instead,
e.g. x = Math:random() is replaced by x = 0:0

tated versions, which are too many to be handled effec-
tively. To reduce the number of generated versions, we
use mutant schema generation as proposed by Untch
et al. [15].

Use coverage data. Not all tests in the test suite execute
every mutant. In order to avoid executing those tests,
we collect coverage information for each test. When
checking mutants, we execute only those tests that are
known to cover the mutated statement.

Since JAVALANCHE additionally works directly on Java
byte code, it also avoids costly recompilation. As dis-
cussed in the next section, JAVALANCHE easily scales up
to medium-sized programs of 10,000 lines and more.

3. The Problem: Equivalent Mutants

The first program we experimented with is the JAXEN
XPATH query engine, as it has a reasonable size, comes
with an extensive test suite, and is being used in dozens
of projects. In version 1.1.1, JAXEN has 12,449 lines of
Java code, and comes with 8,371 lines of testing code, or-
ganized in 680 individual tests. These tests cover 66.79%
of all statements.

We ran JAVALANCHE on JAXEN, creating 9,819 individ-
ual mutations. Of these, 5,127 were not detected by any
test. When we started examining them, we noticed that a
number of them were equivalent, and thus did not help in
improving the test suite. Furthermore, we were surprised at
how long it took us to identify equivalence.

To quantify the extent of the problem, we set up an ex-
periment: We took a sample of JAXEN mutations, as pro-
duced by JAVALANCHE, and manually assessed whether the
resulting mutants would be equivalent or not; furthermore,
we measured how much time the assessment would take.



3.1. Experiment Setting

For the experiment, we divided the mutation testing re-
sults in three sets:

Not covered mutations. These mutations were not exer-
cised by the test suite, and thus cannot be detected. Of
the 9,819 mutations, 3,194 (32%) ended up in this set.

Whether such a mutation is equivalent or non-
equivalent does not matter much: The obvious first
step for improving the test suite is to increase cover-
age such that the mutation is exercised.

Killed mutations. The mutations in this set were exercised
and detected by the test suite. This set contained 4,692
(48%) mutations.

All these mutations are non-equivalent, since the dif-
ferent behavior was detected by the test suite.

Covered and not killed mutations. The mutations were
exercised, but not detected by the test suite. This set
contained 1,933 (20%) mutations.

Such mutations can either be equivalent or non-
equivalent, because it is unknown if they change the
observable behavior of the program. Therefore, we
took our sample from this set.

Of the set of covered and not killed mutations, we took a
sample of 20 mutations that were chosen randomly in such
a way that each mutated a different Java class.

This set of 20 mutations was then assessed by two au-
thors of this paper independently. We had worked with the
program previously, but had no detailed knowledge about its
implementation. For every mutation, each of us two classi-
fied it to be non-equivalent, proven by writing a test case
that kills the mutation, equivalent, or undecided. We also
recorded how much time it took to asses the mutation.

After finishing the study individually, we merged the re-
sults. If at least one author wrote a test case that kills the
mutation, it was considered to be non-equivalent. If there
was no test case, and both authors classified it as equivalent,
the mutation was considered to be equivalent. Otherwise,
the mutation remained classified as undecided.

3.2. Results

Out of 20 mutations taken from 20 different classes,

� 10 (50%) were considered to be non-equivalent,

� 2 (10%) were undecided, and

� 8 (40%) were considered equivalent.

JaxenHandler handler = new JaxenHandler();
handler.setXPathFactory(new DefaultXPathFactory());
) call to setXPathFactory(...) gets omitted

Figure 2. An equivalent mutation in unneeded
code.

Assessing a single mutation took between 1 and 50 min-
utes. Investigating all mutations took both of us a total of
10 hours, which results in a mean average of about 15 min-
utes per mutation for one person.

For all mutations that were considered to be non-
equivalent, we wrote tests. A few mutations could be eas-
ily checked for, because a function or constructor returns a
different value. Most of the tests were derived from exist-
ing tests, e.g. by using modified XPATH queries or writing
stronger asserts. A rather complex test involved using a dif-
ferent locale (Turkish) to trigger some special upper-case
behavior that was altered by a mutation.

Out of the eight mutations that where considered equiv-
alent, we found four reasons why they were equivalent:

Mutations in unneeded code. Some parts of the code just
duplicate some default behavior, or set a value that is
later reset without using it in-between. When mutating
these parts, the program is not affected.

As an example for such a mutation, consider Line
104 of org.jaxen.pattern.PatternParser,
which suppresses the call setXpathFactory()
(Figure 2). This call is equivalent, as the standard con-
structor of JaxenHandler sets the appropriate field
to DefaultXPathFactory() anyway. Thus, this
mutation has no effect on the program execution.

Mutations that suppress speed improvements. These
mutations suppress some performance improvement,
but the results of the computation remain the same.

An example for this type is the mutation that adds the
same key-value pair to a Map several times, which was
shown in Figure 1 and discussed earlier.

Equivalent mutations that alter state. These mutations
alter the private state of a class or the return value of
private methods. However, given the way these altered
values are used in the program, the behavior remains
unchanged.

As an example, take the mutation in Line 147
in class org.jaxen.expr.NodeComparator
(Figure 3): It initializes a value to start the depth com-
putation with 1 instead of 0, which causes different
depth values to be returned by the method. Since this
method is private, and the depth for all nodes that are
compared are increased by 1, the comparison of nodes
remains correct.



private int getDepth(Object o)
throws UnsupportedAxisException f

int depth = 0; ) depth = 1;
Object parent = o;
while ((parent = navigator.getParentNode(parent))

!= null) f
depth++;

g
return depth;

g

Figure 3. An equivalent mutation that alters state.

NamespaceNode (Node parent, Node attribute)
String attributeName = attribute.getNodeName();
if (attributeName.equals("xmlns")) f
) if(false) f
this.name = "";

g
else if (attributeName.startsWith("xmlns:")) f
this.name = attributeName.substring(6);
// the part after "xmlns:"

g
else f // workaround for Crimson bug;

// Crimson incorrectly reports the
// prefix as the node name

this.name = attributeName;
g
this.parent = parent;
this.value = attribute.getNodeValue();

g

Figure 4. An equivalent mutation that could not be
triggered.

Mutations that cannot be triggered. These are mutations
that would cause the program to fail under specific
conditions. However, meeting these conditions causes
other failures upstream.

For instance, consider the mutation in Line 147 of
org.jaxen.dom.NamespaceNode (Figure 4).1

It replaces the contents of the first if condition with
false, such that the body is never executed. How-
ever, supplying an XML Document that would evaluate
the non-mutated condition to true causes an exception
by the XML parser.

We do not know whether an equivalent mutation rate
of 40% is common for other programs; nor do we know
whether examining another sample would have yielded
other results. For us, the results effectively meant that mu-
tation testing can not be used for an automatic assessment
of test quality; a false positive rate this high is far too much
to ignore.

We concede that more work should be done to put this
proportion of 40% into perspective. The phrase “more work
should be done” is not to be taken lightly, though. If we
were to assess all 1,933 undetected exercised mutations,

1Yes, this is again Line 147. Some coincidences just happen.

Table 2. Impact on coverage versus equivalence.
non-equivalent equivalent undecided

impact 6 2 2
no impact 4 6 0

spending a total of 2 � 15 minutes on each sums up to
�1,000 working hours, or one person-year—indeed, a lot
of “more work”, and just for one single program.

4. A Solution: Assessing Mutation Impact

Equivalent mutants are defined as having no impact on
the program execution. The impact of a mutation can be as-
sessed by checking the program state at the end of a compu-
tation, as tests do. However, we can also assess the impact
of a mutation while the computation is not complete. In par-
ticular, we can measure changes in program behavior be-
tween the mutant and the original version. One aspect that
is particularly easy to measure is control flow: If a mutation
alters the control flow of the execution, different statements
would be executed in a different order—an impact that is
easy to detect using standard coverage measurement tech-
niques. But would such an impact imply non-equivalence?

In order to test the relationship between coverage and
non-equivalence, we developed a program that computes
the code coverage of a program, and integrated it into the
JAVALANCHE framework. The program records the state-
ment coverage for each test case and every mutation—that
is, the number of times a statement is executed.

By comparing the coverage of the original execution
with the coverage of the mutated execution, we can deter-
mine the coverage difference. As an impact measure, we
have chosen the number of classes that have different code
coverage. This measure is motivated by the hypothesis that
a mutation that has non-local impact on the coverage is
more likely to change the observable behavior of the pro-
gram. Furthermore, we would assume mutations that are
undetected despite having impact across several classes to
be particularly valuable for improving the test suite, as they
indicate inadequate testing of multiple classes at once.

4.1. Mutations and Impact

In a first experiment, we checked the hypothesis that mu-
tations with high impact would be more likely to be non-
equivalent. We therefore took the 20 JAXEN random muta-
tions, as already assessed in Section 3, and checked whether
the mutation would also impact the code coverage.

Our results are summarized in Table 2: We can see that if
a mutation had impact on code coverage, it was more likely
to be non-equivalent; if it did not have impact on code cov-
erage, it was more likely to be equivalent.



Figure 5. Impact of killed and non-killed mutations.

4.2. Kill Rate and Impact

In a second experiment, we examined the relation be-
tween kill rate and impact. The idea is that if the test suite
detects a mutant, it is by definition non-equivalent. The hy-
pothesis followed that mutations with high impact would be
more likely to be detected, establishing a relationship be-
tween impact on code coverage and impact on testable be-
havior. We therefore measured the impact of all killed and
non-killed mutations on code coverage.

Our results are summarized in Figure 5, showing the cov-
erage impact on different classes for killed and non-killed
mutations. The x-axis gives the percentage of mutations
(note that the x-axis has a reverse logarithmic scale), and
the y-axis the number of classes with coverage differences.
A data point (x; y) in this diagram means that x percent of
mutations have at least an impact on y classes.

The diagram shows that more killed mutations have an
impact on the coverage than not killed and that they also
have an impact on more classes. 98% of the killed mutations
had an impact on the coverage, while only 27% of the not
killed mutations had an impact.

These results suggest that there is a strong correlation
between a mutation being killed by the test suite and its
impact on the coverage.

4.3. Ranking along Impact

In our third experiment, we examined whether there
would be a relationship between the amount of the impact
and the likelihood of non-equivalence. The hypothesis was
that those mutations with the highest impact would be those
that are least likely to be non-equivalent, and vice versa.
The hypothesis implies that when faced with thousands of
surviving mutations, one should focus on those mutations
with the highest impact—as one would run little risk to
spend time on equivalent mutations, and as one may also
obtain particularly valuable mutations, as discussed earlier.

For this experiment, we ranked the mutations that were
not detected by the test suite according to their impact. We
then took

� the 20 mutations that had the most impact (i.e., that
induced coverage differences in a maximum of classes)

� the 20 mutations that had the least impact, effectively
showing no difference in coverage.

As in Section 4, we made sure to choose only one mutation
per class. Otherwise, both sets would have been populated
with several mutations in the same class which happen to
have the same big or little effect. We then manually as-
sessed these mutations as discussed in Section 4, again tak-
ing manual effort.

These are our results:

� For the 20 not killed mutants with the highest impact,
we found 18 non-equivalent mutants and 2 equivalent.
The rate of 90% non-equivalent mutants is higher than
the rate of 50% that we found in our study of randomly
chosen mutations.
The mutation with the highest impact was applied to
the JAXEN verifier; altered the code coverage in 25 dif-
ferent classes. It causes JAXEN to ignore all characters
with a ASCII code of 192 or higher (say, a UTF-8 char-
acter such as a e sign), which caused several changes
downstream, as branches were no longer taken. None
of the JAXEN tests checks for this condition; however,
it is easy to improve the test suite by writing a test
which detects the mutation.

� For the 20 not killed mutants with the lowest impact,
we found 9 non-equivalent mutants and 11 equivalent
mutants. The rate of 55% of equivalent mutants is
higher than the 10% for the mutations with the high-
est impact and also improves upon the 40% from our
random sample.

The implications of these results are clear: One can ef-
fectively reduce the number of non-equivalent mutants by
focusing on those mutants with the highest impact. At the
same time, one obtains mutations that effectively change
many aspects of program execution, yet are undiscovered
by the test suite.

The drawback of our approach is that it creates bias in
the set of mutations. Rather than assessing a set of muta-
tions that is applied evenly across the program, one would
now deal with a very specific subset, which may or may
not be helpful to assess test quality suite. At this point,
our assumption is that such mutations are particularly valu-
able (such as the verifier mutation); this assumption is also
backed by the fact that mutations with impact also tend to be
detected by the test suite (Section 4.2). The benefits of such
a choice for general test assessment are to be demonstrated
in future work, though.



4.4. Killed without Impact

Finally, we examined a sample of 20 mutations which
had no impact on coverage, but were killed by the test suite.
These mutations indicate that it is possible to impact pro-
gram execution, but leave coverage unchanged, which im-
plies possible improvements of our technique. We identified
two classes of mutations that fell into this category:

1. Mutations that alter the string representation of a
class. These faulty string representations have no im-
pact on the program execution, but are checked for by
the test suite.

2. Mutations that alter return values of methods. These
mutations alter a return value of a method that is just
passed through from this point in the program and is
not used in conditional expressions anymore. How-
ever, the test suite checks for this return value.

These results suggest that besides impact on control flow,
as indicated by coverage, one should additionally assess the
impact of mutations on data values and data flow.

4.5. Threats to Validity

Like any empirical study, this study has limitations that
must be considered when interpreting its results.

Threats to external validity concern our ability to general-
ize the results of our study. Our results are taken from
just one program, JAXEN, and while we think that the
results form a good starting point for discussion and
further inquiry, we cannot claim that the results would
be generalizable to other programs. Prospective users
are advised to conduct a retrospective study like ours.

Threats to internal validity concern our ability to draw
conclusions about the connections between our inde-
pendent and dependent variables. Regarding the as-
sessment of equivalence or non-equivalence, our own
assessment may be subject to errors, incompetence, or
bias. We advise and support independent confirmation
of our results and make the necessary data available;
see Section 6 for details.

Threats to construct validity concern the appropriateness
of our measures for capturing our dependent vari-
ables. We already have commented on the risk of
bias by focusing on the mutations with the highest
impact. Regarding the assessment of equivalence nor
non-equivalence, being able to write a test is the ulti-
mate measure whether a mutant is non-equivalent.

5. Related Work

We were not the first to be frustrated by the problem of
equivalent mutants. Frankl et al. [6] made a revealing state-
ment on the enormous amount of work needed to eliminate
out equivalent mutants:

Although our experiments were designed to mea-
sure effectiveness, we also observed that using
these criteria, particularly mutation testing, was
costly. Even for these small subject programs, the
human effort needed to check a large number of
mutants for equivalence was almost prohibitive.

A number of researchers have tackled the problem of de-
tecting equivalent mutants. Baldwin and Sayward [3] were
the first ones to suggest heuristics for detecting equivalent
mutants. Their approach, based on detecting idioms from
semantics-preserving compiler optimizations, was shown
by Offutt and Craft [10] to detect approximately 10% of
equivalent mutants.

In 1996, Offutt and Pan [12] realized that detecting
equivalent mutants is an instance of the infeasible path
problem which also occurs in other testing techniques. They
presented an approach based on solving path conditions
that originate from a mutant. If the constraint solver can
show that all subsequent states are equivalent, the mutant
is deemed equivalent. The technique was reported to de-
tect 48% of equivalent mutants. A similar approach, based
on program slicing, was presented by Hierons and Har-
man [8]; this approach additionally provides guidance in de-
tecting the locations potentially affected by a mutant. Mod-
ern change impact analysis [14] can do this in presence of
subtyping and dynamic dispatch. The recent concept of dif-
ferential symbolic execution [13] brings the promise of eas-
ily detecting potential impact of changes.

All of these techniques are orthogonal to ours; indeed, if
we can prove statically that a mutation will have no impact
on control flow, we can effectively omit the run-time tests.
The question is how well these static approaches scale up
when it comes to detecting mutant equivalence in real pro-
grams. Offutt and Pan [12]’s technique, for instance, was
evaluated on eleven Fortran 77 programs which “range in
size from about 11 to 30 executable statements”. In con-
trast, the JAXEN program we have been looking at is larger
by several orders of magnitude.

6. Conclusion and Future Work

The effort it takes to identify equivalent mutants is an
important problem. A rate of 40% equivalent mutants, as
observed in our JAXEN sample, may be tolerable if pro-
grammers are willing to spend much time on improving test
suites anyway. However, it threatens to make the results of



mutation testing useless for any kind of automatic or unin-
terpreted assessment.

We found that if a mutant alters control flow, it is more
likely to be detectable by an actual test. When improv-
ing test suites, test managers therefore may focus on those
surviving mutations that have the greatest impact on code
coverage. However, all these results are premature; further
studies involving more subjects and more assessment will
be needed to fully validate the approach.

Besides generally evolving JAVALANCHE, our future
work will concentrate on the following topics:

Focusing on mutations with impact. One of our assump-
tions is that mutations with a high impact not only cre-
ate fewer equivalent mutants, but also are more valu-
able for test suite improvement than other, low-impact
mutants. The main obstacle for this kind of work is
the high amount of work it takes to classify mutant
equivalence; we are currently investigating evaluation
schemes that allow for a higher degree of automation.

Alternative impact measures. While we consider
changes of coverage to be useful as predictors of
non-equivalence, there are many ways to determine
the impact of a change. One can measure impact in
anything that characterizes a run; including dynamic
invariants on variable values [5], numerical ranges
of data and increments [7], or sequences of executed
methods [4]. We want to examine how these charac-
teristics are suited for assessing the impact of a change
and the usefulness of the resulting mutation.

Adaptive mutation testing. If we establish large impact
or similarity to defect history as desirable properties,
one can also evolve appropriate mutants—by assess-
ing the properties of the “fittest” mutants and propa-
gating them to another generation of mutants [1]. This
will allow for automated natural selection of mutants,
optimizing them towards a specific goal—a maximum
impact or a maximum similarity with history.

To support this research, we have made the description
of all JAXEN mutants and tests publicly available, allowing
for easy replication (and extension) of our experiments. For
more information, visit

http://www.st.cs.uni-sb.de/mutation/

Acknowledgments. Valentin Dallmeier and Yana Mileva
gave helpful comments on an earlier revision of this paper.

References

[1] K. Adamopoulos, M. Harman, and R. M. Hierons. How
to overcome the equivalent mutant problem and achieve tai-
lored selective mutation using co-evolution. In Genetic and

Evolutionary Computation—GECCO 2004, volume 3103 of
Lecture Notes in Computer Science, pages 1338–1349, Seat-
tle, Washington, 2004. Springer.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experiments? In ICSE ’05: Pro-
ceedings of the 27th International Conference on Software
Engineering, pages 402–411, New York, NY, USA, 2005.
ACM.

[3] D. Baldwin and F. Sayward. Heuristics for determining
equivalence of program mutations. Technical Report 276,
Yale University, Department of Computer Science, 1979.

[4] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight de-
fect localization for Java. In ECOOP ’05: Proceedings
of 19th European Conference on Object-Oriented Program-
ming, number 3586 in Lecture Notes in Computer Science,
pages 528–550. Springer, 2005.

[5] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution. IEEE Transactions on Software En-
gineering, 27(2):99–123, Feb. 2001.

[6] P. G. Frankl, S. N. Weiss, and C. Hu. All-uses versus muta-
tion testing: An experimental comparison of effectiveness.
Journal of Systems and Software, 38:235–253, 1997.

[7] S. Hangal and M. S. Lam. Tracking down software bugs
using automatic anomaly detection. In M. Young and
J. Magee, editors, ICSE ’02: Proceedings of the 24st Inter-
national Conference on Software Engineering, pages 291–
302, Orlando, Florida, 2002.

[8] R. Hierons and M. Harman. Using program slicing to as-
sist in the detection of equivalent mutants. Software Testing,
Verification and Reliability, 9(4):233–262, 1999.

[9] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. MuJava: a mutation
system for Java. In ICSE ’06: Proceedings of the 28th Inter-
national Conference on Software Engineering, pages 827–
830, New York, NY, USA, 2006. ACM.

[10] A. J. Offutt and W. M. Craft. Using compiler optimiziation
techniques to detect equivalent mutants. Software Testing,
Verification, and Reliability, 4:131–154, 1994.

[11] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf.
An experimental determination of sufficient mutant oper-
ators. ACM Transactions on Software Engineering and
Methodology (TOSEM), 5(2):99–118, 1996.

[12] A. J. Offutt and J. Pan. Detecting equivalent mutants and
the feasible path problem. In COMPASS ’96: Proceedings
11th Conference on Computer Assurance, pages 224–236,
Gathersburg, MD, 1996.

[13] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Păsăreanu.
Differential symbolic execution. In FSE 08: Proceedings
of the 16th International Symposium on the Foundations of
Software Engineering, Atlanta, Georgia, 2008.

[14] B. G. Ryder and F. Tip. Change impact analysis for object-
oriented programs. In PASTE ’01: Proceedings of the 3rd
Workshop on Program Analysis for Software Tools and En-
gineering, pages 46–53, New York, NY, USA, 2001. ACM.

[15] R. H. Untch, A. J. Offutt, and M. J. Harrold. Mutation anal-
ysis using mutant schemata. In ISSTA ’93: Proceedings of
the 1993 International Symposium on Software Testing and
Analysis, pages 139–148, New York, NY, USA, 1993. ACM.

http://www.st.cs.uni-sb.de/mutation/

	1 . Introduction
	2 . The Javalanche Framework
	3 . The Problem: Equivalent Mutants
	3.1 . Experiment Setting
	3.2 . Results

	4 . A Solution: Assessing Mutation Impact
	4.1 . Mutations and Impact
	4.2 . Kill Rate and Impact
	4.3 . Ranking along Impact
	4.4 . Killed without Impact
	4.5 . Threats to Validity

	5 . Related Work
	6 . Conclusion and Future Work

