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Abstract

Context: Boolean expressions are a central aspect of speci�cations and pro-
grams, but they also o�er dangerously many ways to introduce faults. To
counter this e�ect, various criteria to generate and evaluate tests have been
proposed. These are traditionally based on the structure of the expressions, but
are not directly related to the possible faults. Often, they also require expres-
sions to be in particular formats such as disjunctive normal form (DNF), where
a strict hierarchy of faults is available to prove fault detection capability.

Objective: This paper describes a method that generates test cases directly
from an expression's possible faults, guaranteeing that faults of any chosen class
will be detected. In contrast to many previous criteria, this approach does not
require the Boolean expressions to be in DNF, but allows expressions in any
format, using any deliberate fault classes.

Method: The presented approach is based on creating test objectives for in-
dividual faults, such that e�cient, modern satis�ability solvers can be used to
derive test cases that directly address the faults. Although the number of such
test objectives can be high depending on the considered fault classes, a number
of optimizations can be applied to reduce the test generation e�ort.

Results: Evaluation on a set of commonly used benchmarks shows that despite
guaranteeing fault coverage, the number of test cases can be reduced even further
than that produced by other state of the art strategies. At the same time, the
fault detection capability is not a�ected negatively, and clearly improves over
state of the art criteria for general form Boolean expressions.

Conclusion: The approach presented in this paper is shown to improve over
the state of the art with respect to the types of expressions that can be handled,
the fault classes that are guaranteed to be covered, and the sizes of test suites
generated automatically. This has implications for several �elds of software test-
ing: A main application is speci�cation based testing, but Boolean expressions
also exist in normal source code and need to be tested there as well.
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1. Introduction

Boolean expressions are frequently found in logical predicates inside pro-
grams and speci�cations to model complex conditions under which some code is
executed or an action is performed. In theory, a Boolean predicate p with n vari-
ables requires 2n test cases in order to be distinguished from any other predicate
not equivalent to p. In practice, n can be quite big, as for an example shown in
a study by Chilenski and Miller [8], who found Boolean expressions with 30 or
more conditions in an electronic �ight implementation system. Consequently,
exhaustive testing is not feasible in practice and therefore testing criteria are
applied to select subsets of all possible test cases. Thanks to these criteria test
suites become tractable, but the fault detection capability of the test suites is
reduced with respect to exhaustive testing.

As a consequence of this problem new criteria are introduced and existing
criteria are improved, with two contrasting goals: reducing the number of test
cases while maximizing the fault detection capability. Some of these criteria
are even mandated in certain domains, as in the case of MCDC [8] for avionic
software. Traditionally, test criteria are de�ned by an algorithm or rules to build
test cases starting from a given Boolean expression. Such algorithms consider
the syntactical structure of the Boolean expression but not explicitly the fault
classes, and therefore the fault detection capability must be proved later. Some
criteria, like MAX-A and MAX-B [41], and MUMCUT [44] require that the
Boolean expression under test is �rst translated to a normal form (like the
Disjunctive Normal Form) and then the algorithm for test generation is applied.
In such cases, the fault detection capability with respect to the original Boolean
expression (if it is not already in DNF) may be a�ected by the translation to
DNF and must be further investigated [5].

The fault detection capability is measured using explicit fault classes � each
fault class represents a di�erent type of error that can occur in a Boolean expres-
sion, similar to mutation operators of Boolean expressions in mutation testing.
There is a hierarchy of such fault classes [32, 7], and research is performed in
order to discover further fault classes or new relations among fault classes.

In this paper, we investigate an approach in which test cases are generated
directly from general form (GF) Boolean expressions targeting speci�c fault
classes and several reduction policies are applied to minimize the size of re-
sulting test suites without reducing the desired fault detection capability. This
guarantees that all considered fault classes are fully covered while reducing the
number of test cases more than any single previously introduced criterion could
achieve. A change of perspective from classical coverage criteria is required:
The test case generation process is based solely on the faults the tester targets,
and the structure of the Boolean expression is not explicitly considered. In this
approach, a test case is generated for each possible fault of a fault class, given
a Boolean predicate. This by itself may lead to larger test suites than other
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test criteria would create. However, as we show in this paper, a reduction larger
than that achieved by any single test criterion can be achieved by optimizing the
test case generation process instead of the test criteria, while still guaranteeing
that the considered fault classes are fully covered.

In particular, we explore a range of optimizations: When generating test
cases explicitly for faults it is possible to check if a fault has been covered before
actually generating the test case, and only if the fault has not previously been
covered a new test case is generated; we call this optimization monitoring of
faults. The order in which faults are considered during test case generation
has an impact on the size of resulting test suites, therefore we apply di�erent
heuristic orderings of faults. Collecting is a technique where several independent
faults are considered at the same time to be detected by just one test case,
which leads to a signi�cant reduction of test cases. Finally, we also consider
traditional minimization, which is an optimization that is applied to test suites
after generation; a heuristic selects a subset of a test suite that guarantees full
coverage with respect to a criterion or fault class.

In order to automatically generate the test cases we formalize the goals of
the test case generation as Boolean predicates and the problem of �nding a test
case that covers a test goal reduces to the problem of �nding a model for a
Boolean formula. This problem can be e�ciently solved by means of several
techniques; in the experiments in this paper we use both SAT and SMT solvers
for test case generation and we compare them.

*** In this paper we build on our past experience [18] on generating test
cases that explicitly target speci�c faults. This paper extends our previous
work [15] in the following ways: (i) It considers not only DNF expressions
but also General Form Boolean expressions, which have di�erent fault classes
and a di�erent hierarchy among them. (ii) It extends the original approach
in order to deal with constraints over the variables in the expressions; such
constraints for example arise in source code to describe when a predicate is
reached. (iii) The discussed optimization techniques are thoroughly evaluated
and statistically analysed. (iv) A comparison with other testing criteria for
DNF and GF Boolean expressions in terms of test suite size and fault detection
capability is presented. (v) We evaluate the use of a SAT solver besides an SMT
solver to compare them in terms of performance.

This paper is organized as follows: First, we introduce some basic de�nitions
and the notation used as well as a background on test criteria and fault classes
in Section 2. Section 3 describes our approach to generate test cases speci�cally
to address certain fault classes, and Section 4 presents the optimizations we
apply in order to reduce the number of test cases that are generated. Section 5
describes the setup, aims, and results of experiments performed in order to
evaluate this approach. Section 6 discusses related work. Finally, Section 7
summarizes and concludes the paper.
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2. Background

Programs and speci�cations often use Boolean expressions as guards for con-
ditional instructions, cycles, or transitions. Many speci�cation formalisms such
as the often used AND-OR tables (as those used in RSML [34] or in SCR [21])
can also be seen as Boolean expressions. This section gives all necessary de�ni-
tions for the remainder of the paper and introduces fault classes.

2.1. De�nitions and notation

In this paper we do not assume that Boolean expressions are given in minimal
disjunctive normal form (DNF) but we consider general form (GF) Boolean
speci�cations. Boolean expressions are those involving Boolean operators like
AND, OR, and NOT (denoted by ∧, ∨, ¬). We follow the de�nitions and
notations used by Kapoor and Bowen [26]: the symbols x1, x2, etc. are referred
to as inputs or variables, and an occurrence of an input in a formula is referred
to as a condition. For example, the formula x1 ∧ x2 ∨ x1 contains two variables
(x1 and x2), whereas the number of conditions is three (two x1's and one x2).
There are no restrictions on how operators and conditions are joined together
in general form expressions, while DNF requires disjunctions of conjunctive
conditions. In the context of testing Boolean predicates, a test case is a value
assignment to every Boolean variable in the formula (a �complete� model of the
formula). A test suite simply is a set of test cases.

2.2. Fault classes

Fault-based testing methods �rst hypothesize certain types of faults that
may be committed by programmers, and then design test cases targeted at
these faults [35]. In contrast to other testing methods, fault-based testing can
demonstrate the absence of hypothesized faults in speci�c classes, called fault
classes. In this paper we use the classical fault classes studied by Weyuker et al.
[41], DeMillo and O�utt [11], Okun et al. [36], and Kapoor and Bowen [26].

We use the same Boolean expression (x1 ∨ ¬x2) ∧ (x3 ∧ x4) to explain the
classical 10 fault classes which are organized into two categories, as follows.

Operator Faults

• Operator Reference Fault (ORF). An occurrence of a logical connective
∧ replaced by ∨ or vice versa. For example, (x1 ∨ ¬x2) ∨ (x3 ∧ x4) is an
ORF of (x1 ∨ ¬x2) ∧ (x3 ∧ x4).

• Expression Negation Fault (ENF). An ENF is a mutant with a subexpres-
sion (except conditions) replaced by its negation. For example, ¬ (x1∨
¬x2) ∧ (x3 ∧ x4) is an ENF of (x1 ∨ ¬x2) ∧ (x3 ∧ x4).

• Variable Negation Fault (VNF). An occurrence of a condition is replaced
by its negation. For example, ( ¬ x1 ∨ ¬x2) ∧ (x3 ∧ x4) is a VNF of
(x1 ∨ ¬x2)∧ (x3 ∧ x4).
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Figure 1: Hierarchy among fault classes: Lines between fault classes indicate subsumption
relations, dotted lines represent subsumption relations which were initially established [26]
but were later proved not to hold [7].

• Associative Shift Fault (ASF). ASF is caused by omission of the brackets
because of the misunderstanding about operator evaluation priorities. For

example, x1 ∨ ¬x2∧ (x3 ∧ x4) is an ASF of (x1 ∨ ¬x2)∧ (x3 ∧ x4).

Operand Faults

• Missing Variable Fault (MVF). An occurrence of a condition is omitted in
the expression. For example, (x1∨¬x2)∧ ( x3 ) is an MVF of (x1∨¬x2)∧
( x3∧ x4 ). Note that a condition of MVF may be connected by ∧ or ∨.

• Variable Reference Fault (VRF). An occurrence of a condition is replaced
by another possible condition. A condition is said to be possible if its
variable has already appeared in the expression. For example, (x1∨¬x2)∧
( ¬x1 ∧x4) is a VRF of (x1 ∨ ¬x2) ∧ ( x3 ∧x4).

• Clause Conjunction Fault (CCF). An occurrence of condition c is replaced
by c∧c', in which c' is a possible condition. For example, (x1 ∨ ¬x2) ∧
( x1 ∧ x3 ∧x4) is a CCF of (x1 ∨ ¬x2) ∧ ( x3 ∧x4).

• Clause Disjunction Fault (CDF). An occurrence of condition c is replaced
by c∨c', in which c' is a possible condition. For example, (x1∨ ¬x2 ∨ x3 )∧
(x3 ∧ x4) is a CDF of (x1∨ ¬x2 ) ∧ (x3 ∧ x4).

• Stuck-At-0 Fault (SA0). An occurrence of a condition is replaced by 0 in
the expression. For example, (x1∨ 0 )∧(x3∧x4) is an SA0 of (x1∨ ¬x2 )∧
(x3 ∧ x4).

• Stuck-At-1 Fault (SA1). An occurrence of a condition is replaced by 1 in
the expression. For example, (x1∨ 1 )∧(x3∧x4) is an SA1 of (x1∨ ¬x2 )∧
(x3 ∧ x4).

Among fault classes, there is a hierarchy of subsumption relations. We say
that a fault class F1 subsumes another class F2 if a test suite that is able to
detect all the faults in F1 will also detect all the faults in F2. The hierarchy
for the 10 fault classes presented above has been studied by Kapoor and Bowen
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[26] and by Okun et al. [36], and was later corrected by Chen et al. [7]. Figure 1
depicts the hierarchy, where arrows denote subsumption. Dotted arrows show
the subsumption relations stated by Kapoor and Bowen [26] which were later
proved not correct and removed by Chen et al. [7] by also considering equivalent
mutants. Chen et al. [7] also introduced the notion of co-subsumption: two
classes F1 and F2 co-subsume another class E if the test suite generated for
both F1 and F2 is guarantee to detect also all the faults in E. They found that
CCF and CDF co-subsume VRF, and SA1 and SA0 co-subsume both MVF and
VNF. Practical experiments [18] suggest that in many cases the VNF subsumes
the ORF which in turn subsumes the ENF (but there is no guarantee of this
relation). The ORF can be considered in-between VNF and ENF.

A hierarchy among fault classes is useful when generating tests: if one gen-
erates a test suite detecting fault classes at the top of the hierarchy, then also all
the other faults in the hierarchy will be detected by the same test suite. For this
reason, hierarchies are used to devise new testing criteria, for example in the
case of DNF Kaminski and Ammann [24] exploit this weak subsumption relation
between LIF and LRF and between LRF and LOF in the Minimal-MUMCUT
strategy to obtain test suites with the same fault detection capability with fewer
test cases than MUMCUT.

However, considering that the correct hierarchy contains only very few sub-
sumption relations for Boolean speci�cations in Generalized Form, it seems very
di�cult to devise a technique targeting just some fault classes and guarantee
that also all the other fault classes are covered as well. For this reason, a
method to generate tests directly targeting all the faults, like that presented in
this paper, seems more suitable for fault-based tests generation for GF Boolean
expressions.

2.3. Fault-based testing

The erroneous implementation ϕ′ of a Boolean expression ϕ can be discov-
ered only when there exists a test case t in which the condition ϕ ⊕ ϕ′, called
detection condition [30], evaluates to true, i.e., t |= ϕ⊕ ϕ′ where ⊕ denotes the
logical exclusive or operator, and t |= φ means that t is a model of φ. Indeed,
ϕ⊕ϕ′ is true only if ϕ′ evaluates to a di�erent value than the correct predicate
ϕ. This detection condition is also called Boolean di�erence or derivative [1].

The erroneous implementation ϕ′ is also used in the context of mutation
analysis, which is a technique to evaluate the quality of a test suite by the num-
ber of arti�cially introduced faults that can be distinguished from the original
program. For every fault class C it is possible to de�ne a mutation operator
µC , which can be seen as a function that returns all possible faulty Boolean
expressions that can be obtained from a given Boolean expression according to
the fault class. In mutation testing, the erroneous implementation ϕ′ is called
mutant, since it can be obtained by applying a small syntactical change (mu-
tation) to ϕ. Each mutation can be seen as belonging to a fault class, and
it can be automatically generated by applying mutation operators to Boolean
expressions.

6



In accordance with test case generation from logical predicates, we call the
predicate ϕ⊕ ϕ′ test predicate or test goal.

Example 1. If the Boolean predicate a ∧ b is implemented as a (a missing
variable fault � MVF), then the test predicate is a∧ b⊕a which is equivalent to
a ∧ ¬b. Only a test case in which a is true and b is false can uncover the fault.

Let ϕ be a predicate and C a fault class. We denote with FC(ϕ) the set of
all the possible faulty implementations of ϕ according to the fault class C (as
explained in Section 2.2). FC(ϕ) can be obtained by repeatedly applying the
mutation operator µC that represents the fault class C to ϕ. The test predicates
to discover the fault class C in ϕ are the expressions ϕ⊕ϕ′ for all ϕ′ in FC(ϕ).

Example 2. Consider the expression a ∧ b and let the fault class C be VNF,
then FV NF (a ∧ b) = {¬a ∧ b, a ∧ ¬b} and the test predicates are the following
two expressions: (a∧ b)⊕¬a∧ b (which is equivalent to b ) and (a∧ b)⊕ a∧¬b
(which is a).

De�nition 1. Test Predicates. Let ϕ be a Boolean predicate. The set ΓC(ϕ)
of test predicates for the fault class C is given by the expressions {ϕ⊕ϕ′ | ϕ′ ∈
FC(ϕ)}.

A test suite T is adequate to test the predicate ϕ with respect to a fault class
C if it covers every test predicate generated for ϕ and C: i.e., if for every test
predicate tp in ΓC(ϕ) there exists a test case t in T such that t is a model of
the test predicate tp (i.e., it evaluates to true in t).

De�nition 2. Fault Detecting Adequacy. The test suite T is adequate
to test the predicate ϕ with respect to the fault class C if and only if ∀tp ∈
ΓC(ϕ)∃t ∈ T : t |= tp.

3. Generating Fault Detecting Test Cases

This section presents a general method to derive test cases for speci�c fault
classes. Given a Boolean predicate ϕ and a fault class C, one can easily derive
the set of test predicates ΓC(ϕ). Given any test predicate tp ∈ ΓC(ϕ) represent-
ing a concrete fault of the predicate, De�nition 2 reduces the problem of �nding
a test case that covers the test predicate to the problem of �nding a model for
a Boolean formula (tp).

Finding a model of a Boolean expression, if there exists one, can be e�ciently
solved by means of several techniques. Previously [18], we used a model checker
for operational speci�cations, which, however, is less e�cient for our current
scenario considering that here we deal only with test predicates that are simple
Boolean expressions. In this paper we evaluate SAT and SMT solvers, which
can solve the problem of satis�ability of a Boolean expressions e�ciently, and
they are therefore well suited in this setting.
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Figure 2: The basic process of generating tests: Given a set of fault classes and Boolean
expressions, test predicates are generated (1). The test suite generator (2) uses a SAT or
SMT solver to look for a model for each of these test predicates; if a model exists, this can
serve as a test case.

In this paper we investigate the use of both techniques, as both approaches
have their advantages and disadvantages. Note that the choice of one algorithm
over another should only in�uence the time taken to solve the problem and not
the size, assuming models can be found for all feasible test predicates.

SAT solvers. SAT solvers are e�cient tools for solving instances of the Boolean
satis�ability problem. They, however, cannot immediately be employed in our
process because: (1) not all SAT solvers return the actual model of a Boolean ex-
pression; some of them just solve the satis�ability problem by checking whether
a model exists or not without printing out this model, and (2) the SAT solvers
available generally have their input Boolean expressions in CNF (Dimacs for-
mat) while our test predicates are an exclusive or between two general form
expressions. The e�cient conversion of a generic Boolean expression � contain-
ing the ⊕ operator � to a CNF formula is itself a research problem.

SMT solvers. SMT solvers apply to Satis�ability Modulo Theories (SMT) prob-
lems which are decision problems for logical formulas containing some functions
and predicates symbols which have additional interpretations (like numbers, and
so on). Generally SMT solvers are built on top of powerful SAT solvers and they
attempt to solve SMT instances by translating them to Boolean SAT instances.
The input language of SMT solvers is surely powerful enough to allow complete
use of Boolean operators, including the ⊕ operator.

The entire process of generating a test suite using a SAT/SMT solver for
test case generation is depicted in Figure 2. The test predicate generator (1)
takes the Boolean predicate ϕ and the fault classes and generates a list of test
predicates ΓCi

(ϕ) for every fault class Ci. The generation of test predicates con-
sists of �rst taking the original predicate ϕ and applying the mutation operator
for the fault class Ci in order to obtain all the possible faulty versions ϕ′k of ϕ.
Then, test predicates are obtained by simply combining the original predicate
with all the mutants as tpk = ϕ ⊕ ϕ′k. The test suite generator (2) takes one
test predicate tp that has not been considered yet and �nds a test case t that
satis�es the chosen test predicate (3), i.e., t |= tp. By iterating the activities
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(2) and (3), one can build a test suite that is adequate to cover ϕ with respect
to the desired fault classes.

3.1. Feasibility problem

Not all faults of a fault class can be distinguished from the original Boolean
predicate: For some faults ϕ′ of a predicate ϕ it may be the case that for
any model t |= ϕ it also holds that t |= ϕ′ and vice versa. In this case, ϕ′

is logically equivalent to ϕ. In mutation testing, such faults are referred to
as equivalent mutants, and in the general case of program mutants, detecting
equivalent mutants is not decidable. Under the assumption that the Boolean
space is complete, i.e., there are no constraints among the inputs and every
combination of the Boolean variables is feasible, equivalent faults of Boolean
predicates can be detected by the SAT/SMT solver by proving that the test
predicate tp = ϕ ⊕ ϕ′ is unsatis�able, i.e., 6 ∃t : t |= tp or, brie�y, 6|= tp. We
say that the test predicate is infeasible. Taking infeasible test predicates into
account requires a modi�ed version of De�nition 2:

De�nition 3. Fault Detecting Adequacy with Infeasible Test Predi-
cates. The test suite T is adequate to test the predicate ϕ with respect to the
fault class C if and only if ∀tp ∈ ΓC(ϕ) (6|= tp ∨ ∃t ∈ T t |= tp).

Note that equivalent faults consume time during test case generation in
order to be detected but do not contribute to the resulting test suite. The main
problem in our scenario is in the case when a SAT/SMT solver takes a long time
to �nd a solution and is timed out by the user or the system � in this case it is
not known whether the fault is equivalent or not.

3.2. Dealing with constraints over the variables

In general, some input combinations may be infeasible due to dependencies
over the inputs of the Boolean expression. For example, when a predicate is
embedded in source code, there might be constraints on the variables that are
required to hold for the predicate to be reached in the �rst place. Deriving the
constraints (e.g., using symbolic execution [27]) and determining inputs that
drive variables to appropriate values is out of the scope of this paper, but such
constraints can easily be integrated into our approach.

Generally, these dependencies are included in original Boolean speci�cation
as conjoints (e.g., [41]). However, this approach cannot distinguish assignments
to the Boolean inputs which make the condition fault from those which are
simply not valid. Furthermore, it may result in further tests because also the
constraints are considered in the test generation process as they were part of
the condition under test. Including them in the speci�cation is necessary only
if one wants to �nd faults also in the constraints, otherwise they should not be
part of the expression under test.

Example 3. Consider for example the expression 20 used by Weyuker et al. [41]
ēf ḡā(bc+ b̄d). Weyuker et al. [41] discovered in the speci�cation that conditions
c and d could never be both true, so they transformed the original speci�cation
into speci�cation 9 as ¯(cd)ēf ḡā(bc+ b̄d).
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Figure 3: The improved test case generation process: By monitoring coverage (4) generation
of redundant tests can be avoided; the order of test predicates (5) can a�ect the number of
iterations and therefore of the tests; several test predicates can be collected to conjoint test
predicates (6), further reducing the number of tests; and after the test case generation the
resulting test suite can be minimized (7).

Our approach can be extended by considering also the constraints among
the variables in ϕ without including them in ϕ. Given the constraints δ1, · · · , δn
as Boolean expressions which must be satis�ed by any valid test, we search for
tests which cover the test predicates while satisfying all the constraints.

De�nition 4. Fault Detecting Adequacy in the Presence of Con-
straints. Let ϕ be a Boolean predicate and ∆ = δ1 ∧ · · · ∧ δn the constraints
over the variables in ϕ. The test suite T is adequate to test ϕ with respect to
the fault class C if and only if ∀tp ∈ ΓC(ϕ) (6|= (∆ ∧ tp) ∨ ∃t ∈ T t |= (∆ ∧ tp)).

Our method is still capable of �nding valid tests, as models for the test
predicates and the constraints. Note that ϕ′ may be an equivalent mutant of ϕ
even though ϕ⊕ϕ′ has a model but such model does not satisfy the constraints
∆. In this case, the SAT/SMT solver can still discover equivalent faults by
proving that ∆ ∧ (ϕ⊕ ϕ′) is infeasible.

4. Improving the Test Case Generation Process

The basic process of generating test cases consists of generating a set of
test predicates for a given Boolean predicate and a set of fault classes and
then deriving one test case per test predicate. This process can be improved
with respect to the number of test cases generated by several activities, as
summarized in Figure 3.

4.1. Monitoring coverage ((4) in Figure 3)

A test case explicitly generated for one test predicate may satisfy a number
of further test predicates (collateral coverage). Consequently, it is not strictly
necessary with respect to achieving the test objective (i.e., satisfaction of all
test predicates) to generate test cases for all test predicates. Instead, each time
a test case is generated the remaining uncovered test predicates can be checked
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against the new test case (i.e., they are monitored for satisfaction), and any
satis�ed test predicate can be omitted from test case generation because it is
already covered.

Checking whether a test predicate tp is covered by a test case t already
generated for another test predicate simply requires evaluating the test predicate
with the model that t represents. If t |= tp then t also covers tp. This process is
usually cheaper than running a SAT/SMT solver on each test predicate, even if
the number of test predicates is large.

4.2. Ordering test predicates ((5) in Figure 3)

When monitoring is applied, the order in which test predicates are selected
may impact the size of the resulting test suite. In theory, there might be cases
where choosing a single test predicate leads to satisfaction of all other test
predicates, and other cases where a bad order leads to one test case for every test
predicate. We have previously investigated the ordering of test predicates [16],
showing that the ordering of the test predicates can have an impact on the
number of test cases generated. Some orders that are applicable to the test
predicates for fault classes are:

1. Random order: We use random order as a sanity check; any feasible heuris-
tic should achieve better results. Otherwise a strategy to achieve good
results is to use several runs with di�erent random order and pick the
best result, which minimizes the risk that a bad ordering leads to larger
test suites. Our previous research [16] showed that it is di�cult to �nd a
heuristic that improves over the average random case.

2. Subsuming order : If the subsumption relation between fault classes is
known, or at least a subsumption relationship is suspected to be in place
due to some empirical data, one can choose a test predicate ordering de-
pending on that relation. The hierarchies of fault classes for speci�cation-
based testing have been established to prioritize test cases so as to achieve
earlier detection of more faults [32]. Fault classes could be used before
the classes they subsume in order to reduce the number of test cases that
are generated (if F1 subsumes F2, the test cases for F1 will cover also
the test predicates for F2). For example, CCF and CDF subsume most
of all the other fault classes presented in Section 2.2, so subsuming order
would start with test predicates from these fault classes. Note that in this
paper we use the corrected version of the fault hierarchy which takes into
account also the feasibility problem (see Section 3) of testing criteria and
therefore the order will be ASF, CCF, CDF, VRF, SA0, SA1, MVF, VNF,
ORF, and ENF.

4.3. Collecting test predicates ((6) in Figure 3)

Instead of generating one test case for each test predicate, one can collect
many test predicates [2] in a unique conjoint in a way that a model for the
conjoint is a model of all the collected test predicates, as proved by the following
theorem:
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Theorem 1. Given a test predicate TP = tp1 ∧ . . . ∧ tpn, a model t of TP (i.e.
t |= TP) is a model for tp1, . . . , tpn.

Proof. The proof for Theorem 1 follows directly from the interpretation of ∧:
t |= (Φ ∧Ψ) i� t |= Φ and t |= Ψ.

Consequently, one can collect many test predicates not covered yet and gen-
erate one test case that covers them all. However, when collecting test predicates
we must add a test predicate tp to the collected TP only if it is consistent with
TP, i.e., there exists a model for both TP and tp. Furthermore, special care
must be given to infeasible test predicates: Since they are never consistent with
any other test predicate they should be detected as early as possible to avoid
repeatedly trying to collect them. The resulting process of collecting is pre-
sented in Algorithm 1, which shows the single activity of obtaining a collected
test predicate and its test case from a set of test predicates TPS.

The algorithm works on the set TPS of test predicates that still need to be
considered. In a loop it randomly chooses one test predicate tp out of this set
at a time, and checks if there exists a model for the conjunction of the variable
constraints ∆, the set of selected test predicates C, and the newly selected test
predicate tp. If there is a model then this tp is covered and removed from
TPS and added to C, else we need to check if tp by itself is feasible or not.
If there is no model that satis�es tp and the constraints ∆, then we know it
is infeasible and can remove it from TPS. In the end, the algorithm returns a
test case that is a model for the set of selected test predicates in C, while the
remaining test predicates are still in TPS. If one does not bound the number
of test predicates that can be collected at a time, then after the �rst run all
infeasible test predicates are removed from TPS and the feasibility check can be
omitted in the next run. The algorithm also removes from TPS infeasible test
predicates and predicates that are covered because they are collected. Initially
TPS contains all the test predicates and the algorithm must be iterated until
TPS becomes empty.

4.4. Post reduction (minimization, (7) in Figure 3):

A test suite is minimal [20] with regard to an objective if removing any
test case from the test suite will lead to the objective no longer being satis�ed.
The problem of �nding the optimal (minimal) subset is NP-hard, which can be
shown by a reduction to the minimum set covering problem [17]. In this paper,
we use a simple greedy heuristic to the minimum set covering problem for test
suite minimization: The heuristic selects the test case that satis�es the most
test predicates and remove all test predicates satis�ed by that test case. This
is repeated until all test predicates are satis�ed.

Monitoring and minimization1 can behave very di�erently: Minimization re-
quires existing, full test suites while monitoring checks test predicates on the �y

1In the remainder of the paper, we will use the terms �minimization� and �post reduction�
interchangeably.
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Algorithm 1 collection process

Require: TPS : set of all the test predicates to be considered
C ← {}
for tp ∈ TPS do
if ∃t : t |= ∆ ∧

∧
c∈C c ∧ tp then

C ← C ∪ {tp}
TPS← TPS\{tp} {tp is covered}

else if 6 ∃t : t |= ∆ ∧ tp then
TPS← TPS\{tp} {tp is infeasible}

else
{ tp cannot be collected together with C }

end if
end for
return t : t |= ∆ ∧

∧
c∈C c

during test case generation. On the other hand, monitoring does not guarantee
minimal test suites. Note that like any reduction strategy, the post reduction
may reduce the fault detection capability of the test suite, but not with respect
to the fault classes it initially covered since the set of test predicates covered
remains the same.

5. Experiments

To evaluate the approach described in this paper, we performed a set of
experiments, trying to answer the following research questions:

• What are the e�ects of the described optimizations?

• How does the presented approach compare to other criteria?

5.1. Experimental setup

Boolean expressions. For experimentation, we considered the same set of pred-
icates introduced by Weyuker et al. [41], who selected 13 Boolean conditions
from the speci�cation of TCAS II, an aircraft collision avoidance system. They
also added 7 speci�cations after having identi�ed variable dependencies. This
set was originally used by Weyuker et al. [41] to evaluate several testing criteria
and generation techniques, and the same set (except for one expression � num-
ber 12 � which contains a typo) is still commonly used as benchmark for test
generation techniques.

Chen et al. [3] translated these Boolean speci�cations to irredundant disjunc-
tive normal form to allow the application of the testing criterion MUMCUT,
which was later improved by Yu et al. [44]. The same set has also been used by
Kobayashi et al. [28] for evaluating the combinatorial and random/anti-random
approaches to test generation, and by Kaminski and Ammann [24] to evaluate
the Minimal-MUMCUT strategy.

13



For the 7 speci�cations with the constraints representing input dependencies,
we use two versions: one with the constraints added as conjoints (as originally
done by Weyuker et al. [41] and in literature thereafter), and another with the
constraints modeled separately, as explained in Section 3.2. In total, we have 26
speci�cation: 12 expressions without constraints, 7 with the constraints added as
conjoint and 7 with the constraints explicitly modeled. We ran the experiments
on a Linux cluster with 2 Intel(R) Xeon(R) CPUs E5430 @ 2.66GHz and 16 GB
of RAM

SAT/SMT solvers. We have chosen as SAT solver SAT4J [33], because SAT4J
is a mature, open source library of SAT-based solvers in Java. The library has
been adopted by several academic projects, and it provides SAT, MaxSat and
pseudo-Boolean solvers for easy integration in Java programs. Those solvers
have been evaluated regularly in the corresponding international competitive
events.

As SMT solver, we decided to use Yices [13], which we have also used in the
past and which includes a very e�cient SAT solver; it claims to be �competitive
as an ordinary SAT and MaxSAT solver � [13].

Test predicates. We have generated the test predicates for all the fault classes
presented in Section 2.2, obtaining 12752 test predicates (with an average of
490 test predicates per expression). Table 1 lists details of the expressions and
resulting test predicates. The fault classes with most test predicates are VRF
with 4209 (33% of the total) and CDF with 3616 (28%).

We generated test suites for all expressions using all di�erent combinations
of options; Table 1 summarizes the sizes of the resulting test suites. To cover all
the test predicates we needed from a minimum of 508 to a maximum of 10249
tests, depending on the options used. The minimum time for completing the test
generation of all the test predicates and to discover the infeasible test predicates
was 3.38 seconds, while the maximum was 8.5 hours. We found that an average
of 18% of test predicates are infeasible, and only ASF has no infeasible test
predicates. The fault classes with higher percentage of infeasible test predicates
are CDF with 52%, CCF with 19%, and VRF with 18%. All the other classes
had a very low percentage of infeasible test predicates.

5.2. Experiment 1: Which options are best

Given the high variability in size and time of the test generation process,
we wanted to asses the in�uence of the options we have identi�ed in the pre-
vious sections on the test generation process: Post reduction or minimization
{yes/no}, monitoring {yes/no}, collecting {yes/no}, generation tool or solver
{Yices/SAT4J}, and ordering {subsume, random}. *** The hypothesis we want
to test is that each option has an impact over the test generation process in terms
of the size of the �nal test suite and the time taken to obtain it.

We have run the test generation algorithm with all the options (25 = 32)
for all the 26 speci�cations 30 times using di�erent random seeds, obtain-
ing 24960 completed runs. In this way, we obtained balanced observations
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Test Predicates Tests

Speci�cation Total Infeasible (1) (2) (3) (4)

1 462 107 24 24.0 24 28.3
2 919 143 37 37.9 39 40.6
3 1,478 467 38 39.3 45 59.3
4 73 3 8 8 8 8
5 519 92 18 18.7 21 23.7
6 768 175 30 32.3 32 35.3
7 522 117 22 22.4 26 28.1
8 364 32 19 19 19 19.2
9 212 34 13 13 13 13
10 493 74 24 24.7 36 36.4
11 696 131 25 27.5 56 62.3
13 388 56 14 16.6 26 29.1
14 229 15 16 16.1 19 20.5
15 426 77 13 13 24 26
16 1,185 148 36 38.8 71 75.2
17 365 13 16 16 29 36.3
18 334 18 19 19.8 32 40.3
19 222 7 11 11.3 16 17.5
20 168 26 9 9.2 12 12
21 229 15 13 13 13 13.7
22 426 77 18 18.0 18 19.2
23 1,185 362 32 32.8 36 44.8
24 365 13 16 16.9 17 17.6
25 334 18 11 11.7 12 12.9
26 222 7 14 14 14 14.3
27 168 26 12 12 12 12

Σ 12,752 2,253 508 525 683 745

Table 1: Test predicates and resulting tests: (1) minimum number of tests, (2) mean of number
of tests with all the best options activated, (3) minimum number of tests with all the options
except collecting, (4) average number of tests with all the options activated except collecting
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Optimization Minimiz. Monit. Collecting Solver Order

All Size ++ ++ ++ = =
Time = = +++ + =

All/Collecting Size + = = =
Time = = + =

All/No collecting Size +++ +++ = =
Time = + ++ =

Table 2: Kruskal�Wallis test output � p-value evaluation: higher + denotes higher signi�-
cance level of the option (also called factor), = denotes that the factor has no impact (null
hypothesis is accepted)

(i.e., an equal number of observations for every speci�cation and option). For
each run we have registered the �nal size and the time taken to complete
it. *** We have applied analysis of variance on the size and time depend-
ing on the options; because we found that the distribution of time and size is
not normal, we applied the Kruskal-Wallis one-way analysis of variance [29].
This is a non-parametric method for testing equality of population medians
among two or more groups identi�ed by factors. It does not assume a nor-
mal population, unlike the analogous one-way analysis of variance (anova).
However, the test does assume an identically-shaped and scaled distribution
for each group, except for any di�erence in medians. Because, in our case,
size and time strongly depend on the size and structure of the speci�cations,
we normalized the data with respect the data for the single speci�cation un-
der consideration before applying the Kruskal�Wallis test: We have computed
XNorm = (X−medianspec(X))/(maxspec(X)−minspec(X)) with X both size and
time. XNorm = 0 means that the value for the expression under test is equal
to the median for that speci�cation, while XNorm > 0(< 0) means that a value
greater (smaller) than the median is obtained. We then applied the test to the
normalized data. Table 2 reports the qualitative evaluation of the p-values com-
puted by the Kruskal�Wallis technique. Since we observed a strong correlation
between each factor and the collecting option, we applied the Kruskal�Wallis
test also to the subset of observations where collecting was applied and to the
subset without collecting applied, and the evaluation of the p-value is reported
in Table 2 as well.

We report here only a summary of the data collected during the experiments;
Figure 4 illustrates the distribution and the mean (as text) of the size depending
on the application of the options, and Figure 5 shows the average time for test
suite generation for one expression depending on the options used.

Post reduction. As proved by Table 2, minimization has a signi�cant e�ect on
the test suite size while it is unin�uential regarding the time (its application
requires a negligible amount of time). Its application proves to be e�ective in
reducing the test size (see Figure 4). On the average, post reduction is able to
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Figure 4: Size distribution and mean depending on the options

reduce the test suite size by 81% (22.9 instead of 120.5 tests). Considering only
the tests in which collection is not applied, the average is 87%, and when used
in conjunction with collection, it is very ine�ective reducing the size only by
2%.

Monitoring. Monitoring also has an impact over the �nal size and it is e�ective
in reducing it. The average size of the test suite with monitoring is 25.7 against
117.7 when monitoring is not applied, reducing the test suite size by 78%. Con-
sidering only the data where collection is not applied, monitoring improves on
the average of 84% the �nal test suite size. However it is not in�uential (as
proved also by a small F-value in Table 2) when collection is applied (improve-
ments of 0%). Using monitoring with collection has no impact over the time.
However, the time without collection is reduced to around 1/4 by monitoring
(see Figure 5).

Collecting. Table 2 proves that collecting has a great impact over both the size
and the time. Collecting proves to be a very powerful reduction technique which
is able to reduce by itself the test suite size by 83% (see Figure 4). It is the most
powerful reduction technique since it is able to produce by itself the smallest test
suite on average (19.5). The other techniques alone are not able to produce test
suites as small as those produced by collecting: Using all the optimizations tech-
niques except collect, the average size is 25.9 (+ 33%). Collecting reduces the
e�ectiveness of other techniques, although when used in combination of collect-
ing they produce even smaller test suites. All optimizations together are able to
obtain the smallest test suites we observed, with an average size of 19.38. While
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Figure 5: Average time in seconds to complete the test generation for one expression depending
on the options

the other optimization options improve both the size and the time, collecting
reduces the size but increases the time. This technique is computationally very
expensive, taking on average 44 times as long as without it. The user should
choose between optimization of the test suite size vs. having the test faster:
Applying monitoring and reduction without collect the average time is around
3 seconds instead of 393 seconds with collect.

Solver. As expected, the use of one solver instead of the other has no impact
on the size of the test suites. In our experiments, the choice of solver had only
a minimal impact on the time. When using collection, Yices performed better
than SAT4J, while without collection SAT4J performs signi�cantly better than
Yices. However, we must consider a number of issues when using Yices: While
SAT4J o�ers an API we can access directly from our tool, we had to call Yices
by exchanging �les and running it as external program in a shell, and this may
reduce its responsiveness. We are working on integrating Yices directly in our
code using Java Native Interface (JNI).

Ordering. The order in which test predicates were considered had no impact on
the size and the time. In our previous work [16], we found that test predicate
ordering may have impact over the test generation process, but it is di�cult
to devise an e�cient heuristic to order the test objectives. Previously [15], we
found that subsumption was a good criterion to reduce the test suite size, but
in that case we considered DNF Boolean speci�cations, which have a stronger
fault hierarchy. For Boolean expressions in general form, the hierarchy is not so
strong as explained in Section 2.2 and it is not so useful.
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5.3. Experiment 2: Comparison with other testing criteria

We have compared our approach in terms of test suite size and fault detec-
tion capability with the following testing criteria by considering the original 19
Boolean TCAS expressions (1 to 20). *** The hypothesis we want to test is
that our method performs better than classical test generation techniques for
Boolean expressions in terms of test suite size and fault detection capability.

MUMCUT. Chen et al. [3] developed the MUMCUT coverage criterion specif-
ically to guarantee detection of all the faults of the seven fault classes (which
resemble our fault classes given for GF, and which are considered the classical
fault classes for DNF) in Boolean expressions given in irredundant disjunctive
normal form (iDNF). The MUMCUT strategy integrates three constituent cri-
teria: the Multiple Unique True Point (MUTP), Multiple Near False Point
(MNFP), and Corresponding Unique True Point Near False Point (CUTPNFP)
criteria. MUMCUT already proved to be able to reduce the test suite size with
respect to MAX-A and MAX-B [41] by 30% to 40%. Yu et al. [44] improved
MUMCUT and de�ned several versions; for comparison we also use their MUM-
CUT G-CUN strategy.

Minimal-MUMCUT. Later, Kaminski and Ammann [24] introduced the Min-
imal-MUMCUT strategy which improves the MUMCUT algorithm by taking
into account the feasibility problem of the three testing constituents of the
MUMCUT strategy. They found that Minimal-MUMCUT reduces the test suite
size without sacri�cing any fault detection capability with respect to the original
MUMCUT. Note, that also Minimal-MUMCUT accepts speci�cations only in
irredundant DNF.

MCDC. The Modi�ed Condition Decision Coverage (MCDC), originally intro-
duced by Chilenski and Miller [8], accepts Boolean expression in a general form
and requires a test suite such that every condition in the expression is shown to
independently a�ect the �nal outcome of the expression. This criterion is man-
dated for safety critical aviation software by the RCTA/DO-178B standard. Its
precise interpretation has been the subject of study for many years, in this paper
we used masking MCDC [9].

Table 3 reports the test suite size of our fault-based method with and with-
out collection, the size for the MUMCUT variants considered, and for MCDC.
For MUMCUT we used the data available in the literature, while for Minimal-
MUMCUT we used a web application developed by the inventors of the crite-
rion [22] and the translation to iDNF available in the literature. For MCDC, we
used our own code. For Minimal-MUMCUT and MCDC we were able to also ap-
ply our post reduction technique introduced in Section 4.4, although that is not
expected by their original de�nitions and the data is reported in Table 3 as well.
As proved by Table 3, our technique even without collect was able to produce
a test suite smaller than every other testing criteria except MCDC, which how-
ever does not target all the fault classes we consider. However, if one applies the
minimization technique presented in this paper to Minimal-MUMCUT, he/she
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Technique Form #Tests

Fault-based
all faults, all optimizations GF 392
Fault-based
all faults, all optimizations but collection GF 548
MUMCUT [3] iDNF 7,391
MUMCUT G-CUN [44] iDNF 1,413.6
Minimal-MUMCUT iDNF 936
MCDC GF 285

Minimal-MUMCUT + minimization technique of Section 4.4 iDNF 268
MCDC + minimization technique of Section 4.4 GF 273

Fault-based
SA, MVF, VNF, ORF, ENF faults, all optimizations GF 229
Fault-based
SA, MVF, VNF, ORF, ENF faults, all optimizations but collection GF 260

Table 3: Comparison of the size with other testing criteria

obtains a smaller test suite without reducing the fault detection capability with
respect to the classes we have introduced. This proves that minimization can be
e�ciently employed by other test generation methods as well. However, we need
to take a closer look at the fault detection capability of Minimal-MUMCUT and
MCDC in comparison with our technique.

For Minimal-MUMCUT and MCDC, we were also able to compute their
fault detection capability by evaluating the number of feasible faults covered
by their test suite. Table 4 reports the ratio of faults detected for all the fault
classes.

We found that Minimal-MUMCUT was able to detect only 64% of the faults
by covering 5145 test predicates out of 8088 feasible test predicates for the
original 19 TCAS Boolean expressions. For the CDF class, the test suite was
able to detect only around 50%. Minimal MUMCUT was not able to detect
all the faults in any class. Overall the quality seems questionable, because it
required 70% of the tests of the fault-based approach to cover only 64% of the
faults.

This provides further evidence that testing Boolean expressions in general
form (GF) using the IDNF-oriented approaches may result in bigger test suites
while missing many faults. This problem has been already presented by Chen
et al. [6], which found similar shortcomings of the iDNF testing approaches.

Note that there exists a similar empirical study [5] which investigates the
fault detection capability of the non minimized MUMCUT strategy with respect
to general form Boolean expressions as well as mutated expressions. It showed
that over 99% of the mutants were killed by MUMCUT test sets among all fault
types of the original GF expressions. It seems that minimizing the test suite
for iDNF expressions, as proposed by Minimal-MUMCUT, even if that does not
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Fault class Min. MUMCUT MCDC

ASF 93% 93%
CCF 66% 91%
CDF 51% 58%
VRF 64% 95%
SA0 66% 100%
SA1 68% 100%
MVF 60% 100%
VNF 77% 100%
ORF 75% 100%
ENF 89% 100%

Σ 64% 87%

Table 4: Percentage of faults detected by other testing criteria

change the fault detection capability with respect to the DNF faults, it reduced
the fault detection capability with respect to the original GF expressions.

MCDC detected all the faults in 6 classes con�rming the theoretical studies
presented by Kapoor and Bowen [25]. Overall, MCDC covered 87% of the faults
with 69% of tests of the fault-based approach, which seems a positive aspect of
MCDC. However, we have generated with our method the tests for the same
subset of faults MCDC guarantees to detect. The last two rows of Table 3 list
the resulting test suite sizes: Both with and without collecting, our method
is able to generate a smaller test suite than that produced by MCDC. This
proves that our approach is competitive with any testing criterion because the
set of targeted faults can be easily modi�ed, and still the resulting test suite is
compact.

5.4. Threats to validity

Threats to construct validity are on how the performance of a testing crite-
rion is de�ned. An intrinsic feature of our approach is that all considered fault
classes are guaranteed to be covered, so we focused in our evaluation on test
suite size and generation time. In practice, a concrete testing scenario might
have di�erent requirements. For example, given a limited amount of time, it is
not clear which criterion will achieve the highest fault coverage. However, by of-
fering di�erent optimizations one can adapt our technique to di�erent demands
of di�erent testing scenarios.

Threats to internal validity might come from how the empirical study was
carried out. To reduce the risk of having faults in our testing framework, it
has been carefully tested. As randomized algorithms (such as the ordering) are
a�ected by chance, we ran each experiment 30 times. Another possible threat to
internal validity might come from suboptimal use of the SAT and SMT solvers.

Although we used the standard benchmark for testing Boolean expressions,
there is the threat to external validity regarding the generalization to other
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speci�cations and types of software, which is common for any empirical analysis.
*** Moreover, we assume that only a single fault may occur in the expres-

sion under test. Multiple faults in a single expression should be rare accord-
ing to the competent programmer hypothesis DeMillo et al. [12], which states
that programmers tend to develop programs very close to the correct version.
According to the coupling e�ect [12] hypothesis, multiple faults in a single ex-
pression should also be detected by tests generated for single faults. However,
interactions between individual faults in a multiple fault scenario may still lead
to faults that pass undetected by our test suites. In general, all the minimiza-
tion techniques we presented may reduce the residual fault detection capability,
that is the capability of detecting faults not directly targeted by the testing
criterion. Other criteria, like MCDC or MUMCUT, while leading to bigger test
suites, may have a better residual fault detection capability than ours. We plan
to adapt our technique to deal with multiple faults and to compare it in this
case with other testing criteria.

6. Related Work

This paper joins fault-based testing with testing of Boolean expressions.
Fault-based testing methods �rst hypothesize certain types of faults that may
be committed by programmers, and then design test cases targeted at these
faults [35]. In contrast to other testing methods, fault-based testing can demon-
strate the absence of hypothesized faults. There has been an increasing interest
in the use of a fault-based approach to generate test cases from software speci-
�cations in the past years [18, 26]. Since logic expressions are extensively used
in both software speci�cations and codes, many investigations of fault-based
testing have been conducted on logic Boolean expressions [14, 40, 41, 3, 23].

For this reason there exist many testing criteria for Boolean expressions. Tra-
ditional criteria include (using the nomenclature common in white box testing
literature) decision coverage, condition coverage, or multiple condition cover-
age. Modi�ed condition/decision coverage (MCDC [8]) is a popular criterion
that gives a compromise between the large number of test cases that multiple
condition coverage creates and the fault detection capability o�ered by that
amount of test cases. Several testing criteria have been developed to directly
target common faults in Boolean expressions. For instance Weyuker et al. [41]
introduced a family of strategies for automatically generating test cases from
Boolean expressions. The MAX-A and MAX-B strategies are the most powerful
in this family of criteria, as they subsume all the others.

Chen and Lau [4] introduced three testing criteria: theMultiple Unique True
Point (MUTP), the Multiple Near False Point (MNFP), and the Corresponding
Unique Tree Point and Near False Point par (CUTPNFP) strategies. Chen et al.
[3], Yu et al. [44] introduced the MUMCUT testing strategy which integrates
MUTP, MNFP and CUTPNFP and (1) guarantees to detect seven types of
fault in Boolean expressions in irredundant disjunctive normal form as MAX-
A and MAX-B, and (2) requires only a subset of the test suites that satisfy
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the previously proposed MAX-A and MAX-B strategies. Kaminski and Am-
mann [24] presented a new extension of MUMCUT, called Minimal-MUMCUT.
Minimal-MUMCUT takes into account the feasibility of the three components
of MUMCUT and guarantees to detect the same types of faults with fewer test
cases. There exists another attempt to reduce the size of MUMCUT test suites,
which employs a SAT solver [42]. In this case SAT is used to improve the MUM-
CUT generation process and although some advances are reached, in the few
cases published, their test suite was on average 2.5 times the size of test suites
generated by our method.

Because Boolean expressions in realistic programs or speci�cation are often
not in the restricted form and the faults are introduced in the context of general
form (GF), there exist several studies to assess the fault detection capability of
DNF testing approaches and several attempts to explicitly target faults in GF
expressions. Chen et al. [5] found that a fault in general form Boolean expression
induces a large number of possible faults in the corresponding iDNF, but that
MUMCUT was able to detect from 97.8% to 99.5% of the faults. A similar
result is presented by Sun et al. [39]. However, the size of the test suites is not
considered and, as proved in this paper, optimizing the size of the MUMCUT
strategy reduces its fault detection capability. This could mean that the non
minimized MUMCUT test suite has many tests which are useless with respect
to the DNF faults, but still can detect faults in the GF counterparts.

There are some attempts to extend the DNF testing criteria to GF expres-
sions, in order to avoid the expensive translation to DNF, which increases the
size of the speci�cation and of the test suites and hides some faults such that they
could pass undetected. Sun et al. [38] analyze MUMCUT to �nd how to improve
it to detect all the faults in GF expressions. Chen et al. [6] introduce two gen-
eral fault-based testing strategies, called general meaningful impact strategies
GBMIS and GMMIS, which extend the BMIS [41] and MUMCUT strategies to
GF expressions. Applied to the TCAS expressions, GBMIS could not detect all
the faults, while GMMIS achieved 100% mutation score. However, the GMMIS
test suite was about 86% of the one of MUMCUT, i.e., around 6,000 tests � still
much bigger than the test suites found by our method.

Several other testing criteria target faults in Boolean expressions regard-
less of their form. A survey on most logic based testing criteria is presented
by Kaminski et al. [23] (12 testing criteria are considered) where the authors
distinguish between semantics criteria (like MCDC) and syntactic criteria (like
MUMCUT). They also discuss the test suite size and the fault detection capa-
bility of the testing criteria assessing their subsumption relationships.

A comparison among MCDC, MUMCUT, and other testing criteria is pre-
sented by Yu and Lau [43]: MUMCUT outperformed MCDC in detecting faults
in DNF and GF Boolean expressions (including those from the TCAS case
study). However, again, the test suite size is not considered and MUMCUT is
not minimized.

Also in hardware testing, recent advances in Boolean-satis�ability (SAT)
solvers are increasingly rendering SAT-based automatic test generation for com-
binatorial circuits, called test pattern generation (ATPG), an attractive alter-
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native to traditional structural approaches (like the D-algorithm). Larrabee
introduced the use of the Boolean di�erence for ATPG [31], and his approach
is identical to ours regarding the use of the exclusive or to model the detection
conditions. However, hardware circuits di�er from Boolean expressions in soft-
ware because they have a simpler fault model (mainly only stuck at true and
stuck at false) while they have hundreds ports and inputs (and generally also
multiple outputs). For this reason, the research in hardware testing has tried
to improve SAT algorithms and combine them with the e�ciency of structural
algorithm (like the D-algorithm in [37]) by exploiting information about the
faults in order to improve the generation e�ciency in terms of the time taken
to generate the �nal test suite. These techniques do not use test predicates as
we do in this paper.

Recently, the problem of test minimization, in hardware testing called com-
paction, has been intensively studied, although not in combination with SAT-
based ATPG. Traditionally, there is a distinction between static and dynamic
compaction: Static compaction [19] starts with a generated test set and pro-
duces a smaller test set which detects (at least) the same faults as the original
test set. This technique is similar to our post reduction algorithm, but it re-
lies on di�erent heuristics. For example, it generally tries to detect or to �nd
in the tests the don't care values which in hardware testing methods like the
D-method are frequent. Dynamic compaction considers test set minimization
during the test generation process by generating test patterns which detect mul-
tiple faults, and it is somehow analogous to our collection technique. There exist
some attempts [10] to apply dynamic test compaction combined with the use of
SAT solving and extracting testing conditions with D-chains. This technique,
in which fault groups correspond to our collected test predicates, heavily relies
on the simple fault model for circuits and again it does not use test predicates
for test generation and it is optimized for test generation time.

7. Conclusions

Boolean expressions are an essential part of programs and speci�cations.
Boolean expressions are also an important source of faults. Therefore, thorough
testing of Boolean expressions is necessary. In this paper, we described a fault-
based approach that improves over the state of the art as it does not require
a particular format for the Boolean expressions, but guarantees that all faults
of the considered fault classes are detected. Although the possible number of
faults can be large, several optimization techniques lead to overall test suites
that are smaller than those produced by other criteria.

In addition to often resulting in smaller test suites, this approach has the
advantage that new fault classes can be added or removed (for example if there
is the knowledge of a particular error pattern) and targeted without the need
to introduce new test criteria, for which the fault detection capability has to be
investigated. All that is necessary in order to support an additional fault class is
to de�ne a mutation operator that represents the fault class and creates faults
usable for the test predicates. In contrast, introducing a new test criterion
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targeting a speci�c fault class is much more di�cult than just de�ning the
mutation operator for that class.

The �ndings presented in this paper have implications for several �elds of
software testing where Boolean expressions occur. A main application is test
case generation from speci�cations; this is the context where most previous work
on testing Boolean expressions focused on. However, Boolean expressions also
exist in normal source code, and these expressions need to be tested as well.
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