Inferring Loop Invariants Dynamically

Juan Pablo Galeotti and Andreas Zeller
{galeotti, zeller}@cs.uni-saarland.de

Saarland University — Computer Science, Saarbriicken, Germany

There is extensive literature on inferring loop invariants statically (i.e. without ex-
plicitly executing the program under analysis). We report on a new dynamic technique
for inferring loop invariants based on the invariant detector Daikon [2]. Unlike Inv-
Gen [4], this new technique follows a counter example guided approach for refining
candidate loop invariants. Let us consider the following annotated program for multi-
plying 16 bit integers in the left column:

_(requires 0<=x<65535) // Candidate Loop Invariants
_(requires 0<=y<65535) #1 x one of { 1, 1316 }
_(ensures \result==xxy) { #2 'y one of { 1, 131 }

mult = i = 0; #3 1 >=0

while (i<y) {

mult+=x; 1i++; #9 1 <=y
} #10 i == (mult / x)
return mult; #11 mult == (x * 1)

}

Our approach starts by finding new test cases using the search-based test suite generator
EvoSuite [3]. Then, the dynamic invariant detector collects 11 different loop invariant
candidates (excerpt shown on the right), which we feed to the static verifier VCC [1].

Since the conjunction of all candidates under-approximates the loop invariant, the
static verifier fails. Then, EvoSuite guides the generation of new test inputs using the
static verifier’s error model. The invariant detector synthesizes new candidates (ruling
some of them out), which are fed to VCC. This refinement continues until VCC suc-
cessfully verifies the program (using only candidates #9 and #11).

The combination of test case generation and Daikon opens the potential for infer-
ring loop invariants even for nontrivial programs. Current challenges include the static
verification itself, as well as refining the candidate loop invariants.

The main challenge, however, will be to find appropriate patterns for the most re-
current loop invariants: Daikon itself is limited to at most three related variables, and
we will have to expand the search space considerably. Finally, we are also looking for
benchmarks such that we can compare against other existing automatic loop invariant
detectors, such as InvGen [4].

References

1. Cohen E., Dahlweid M., Hillebrand M., Leinenbach D., Moskal M., Santen T., Schulte W., and Tobies S., VCC: A
Practical System for Verifying Concurrent C. TPHOLS, 2009.

2. Emst M., Cockrell J., Griswold W., and Notkin D. Dynamically discovering likely program invariants to support
program evolution. IEEE TSE, 27(2), 2002.

3. Fraser G., and Arcuri A., EvoSuite: Automatic Test Suite Generation for Object-Oriented Software. ESEC/FSE, 2011.

4. Gupta A., Majumdar R., and Rybalchenko A., From Tests To Proofs. TACAS, 2009.



