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Abstract—Search-based testing can automatically generate unit
test suites for object oriented code, but may struggle to generate
specific values necessary to cover difficult parts of the code.
Dynamic symbolic execution (DSE) efficiently generates such
specific values, but may struggle with complex datatypes, in
particular those that require sequences of calls for construction.
The solution to these problems lies in a hybrid approach that
integrates the best of both worlds, but such an integration needs
to adapt to the problem at hand to avoid that higher coverage
in a few corner cases comes at the price of lower coverage in the
general case. We have extended the Genetic Algorithm (GA) in
the EVOSUITE unit test generator to integrate DSE in an adaptive
approach where feedback from the search determines when a
problem is suitable for DSE. In experiments on a set of difficult
classes our adaptive hybrid approach achieved an increase in
code coverage of up to 63% (11% on average); experiments on
the SF100 corpus of roughly 9,000 open source classes confirm
that the improvement is of practical value, and a comparison with
a DSE tool on the Roops set of benchmark classes shows that the
hybrid approach improves over both its constituent techniques,
GA and DSE.

I. INTRODUCTION

Generating unit test suites automatically is an important

contribution towards improving software quality, and tech-

niques like search-based software testing [18] (SBST) and

dynamic symbolic execution [9] (DSE) can efficiently produce

test suites achieving high code coverage. However, there are

limitations: SBST is based on heuristics and may be inefficient

when the heuristics and search operators do not favour the

problem at hand. DSE, on the other hand, is dependent on the

capabilities of the underlying constraint solver. Furthermore,

DSE does not cope well when it comes to creating complex

objects through sequences of method calls [26], and generally

expects a test driver that provides a single entry point. The

problems of SBST and DSE are orthogonal, suggesting that a

combination may produce better results in unit test generation

than the individual parts.

For example, consider the Bar class in Figure 1: SBST

will quickly create a test suite that calls all methods, and it

can easily generate instances of the Foo dependency class.

However, optimizing the input string to the constructor of

Bar may take a long time: If evolutionary search (e.g., a

Genetic Algorithm) is applied to generate test suites, then

each statement in a test case only has a small probability of

being mutated at every step, but to optimize a string from any

class Foo {

int x = 0;

void inc() {

x++;

}

int getX() {

return x;

}

}

class Bar {

String x;

Bar(String x) {

this.x = x;

}

void coverMe(Foo f) {

String y = x+f.getX();

if(y.equals("baz5"))

// target
}

}

Fig. 1. Search-based testing will quickly cover all methods of Bar, but
optimizing the input string of Bar to the value “baz” may take a significant
amount of time. Given a string constraint solver, Dynamic Symbolic Execution
may generate “baz” as an input value, but will not succeed in calling inc

five times, which is required to cover the target branch. A hybrid approach
overcomes these issues.

given value to the value “baz” may require many mutations.

In contrast, standard DSE tools may be unable to create Foo

instances in the first place, and would not be able to create

a sequence of five successive calls to its inc method, which

is required to cover the target branch. Where the individual

techniques fail, only a combined approach may succeed.

Forays into combining SBST and DSE have led to promis-

ing initial results (e.g., [11], [15], [17], [23]), yet the success

of such combinations is highly problem specific: Some classes

may require mostly sequences of calls to achieve high cover-

age, while others may represent numerical problems perfectly

suited for approaches using constraint solvers, i.e., DSE. A

hybridization of SBST and DSE also necessitates a large

number of parameters — how are the techniques integrated,

when is which technique applied, how much resources are

devoted to each technique? Unfortunately, a wrong choice of

parameters for a problem at hand may have a detrimental

effect, leading to even worse coverage than if the constituent

techniques would have been applied on their own.

To overcome these problems, we present an adaptive ap-

proach that combines a Genetic Algorithm (GA) used in

a whole test suite generation approach with DSE: At a

high level, SBST is applied, but during this search-based

exploration we determine whether the problem at hand is

potentially suitable for DSE or not. Mutations on primitive



values performed as part of the GA give hints on whether the

problem at hand is suitable for DSE, and if so we optimize

these primitive values using DSE.

We have implemented our approach as an extension to the

EVOSUITE unit test generation tool, and experiments on a

set of difficult classes, the SF100 corpus of open source

classes [6], and the Roops1 benchmark all confirm a significant

increase in coverage.

In detail, the contributions of this paper are:

DSE in whole test suite generation: We present a novel

and adaptive approach to integrate dynamic symbolic

execution in a search for test suites.

Evaluation: We evaluate our approach on 38 “difficult” open

source classes, the large SF100 corpus of classes, and

the Roops benchmark, and compare it to standard SBST

implemented in EVOSUITE, as well as the DSE tool

DSC [12].

II. BACKGROUND

A simple but effective technique to generate test data for

code coverage is to randomly execute a program. Random

testing tools such as Randoop [20] have become very popular,

are easy to implement, and have very little computational over-

head. However, as such approaches tend to exercise mainly

the “shallow” regions of a program and struggle to reach

more difficult parts, more sophisticated techniques have been

devised. In the area of test data generation for code coverage,

the recently most successful techniques are dynamic symbolic

execution (e.g., DART [9], CUTE [22]) and search-based

software testing [18].

A. Search-based Testing

Search-based testing (SBST) describes the use of efficient

search algorithms for the task of generating test cases. One

of the most commonly applied global search algorithms is a

Genetic Algorithm (GA). A GA tries to imitate the natural

processes of evolution: An initial population of usually ran-

domly produced candidate solutions is evolved using search-

operators that resemble natural processes. Selection of parents

for reproduction is done based on their fitness (survival of

the fittest). Reproduction is performed using crossover and

mutation with certain probabilities, and the operators used

depend on the chosen representation. With each iteration of

the GA, the fitness of the population improves, until either

an optimal solution has been found, or some other stopping

condition has been met (e.g., maximum time or number of

fitness evaluations). In evolutionary testing, the population

would for example consist of test cases, and the fitness

estimates how close a candidate solution is to satisfying a

coverage goal.

A fitness function guides the search in choosing individuals

for reproduction, gradually improving the fitness values with

each generation until a solution is found. For example, to gen-

erate tests for branch coverage a common fitness function [18]

1http://code.google.com/p/roops/

integrates the approach-level (number of unsatisfied control

dependencies) and the branch distance (estimation of how

close the deviating condition is to evaluating as desired). Such

search techniques have not only been applied in the context

of primitive datatypes, but also to test object-oriented software

using method sequences [8], [25].

The traditional approach to SBST is to optimize a test

case for each coverage objective in isolation. This makes it

problematic to distribute a limited amount of computational

resources on a set of coverage objectives, in particular consid-

ering that some of these objectives may be infeasible. Whole

test suite generation [7] optimizes an entire test suite at once

towards satisfying a coverage criterion, instead of considering

distinct test cases directed towards satisfying distinct coverage

goals. This means that the result is neither adversely influenced

by the order nor by the difficulty or infeasibility of individual

coverage goals.

B. Dynamic Symbolic Execution

DSE uses symbolic execution to gather path conditions from

concrete executions. A path condition is a logical condition

on the input values, such that a model for the condition is a

program input that follows the path described by the condition.

DSE usually starts with a random input, and produces the

path condition P = p1 ∧ p2 ∧ . . . ∧ pn for this input. Each pi
represents a branching condition in the code. For example, if

there is a branch on the input variable x: if x == 5, then

the path condition at this point will be extended with either

x == 5 or x 6= 5, depending on the actual evaluation of the

predicate during the concrete run. By negating an individual

pi for i ≤ n one can produce a new path condition P ′ =
p1∧ . . . pi−1∧¬pi, such that an input that satisfies P ′ leads to

execution of a different path than P . A constraint solver can

be queried with this condition and derives a new test input.

This is done systematically until no further branches can be

negated, i.e., all paths have been explored. This approach has

been popularized in particular by the recent development of

powerful SMT solvers.

An issue with SBST is that every time the fitness is

evaluated, we need to re-execute a test case. In particular

when it comes to search on strings, many fitness evaluations

are necessary, which can be problematic. This is a problem

specific to SBST; in DSE, once the path condition has been

collected, the search for new inputs is performed entirely by

a constraint solver, and a new execution will be launched if

and only if the constraint solver successfully finds a new set

of input values.

C. Hybrid Approaches

As the idea to combine SBST and DSE is appealing, there

have been several attempts to combine these techniques.

The first direction of integrating the two techniques is

by exploiting the information offered by path conditions to

improve the search. Malburg and Fraser [17] use a GA

to derive test data, but apply a special mutation operator

where the path constraints are collected for the individual



that should be mutated, and then like in DSE one path

condition is mutated; the resulting constraint system is solved

with a constraint solver and represents the mutated test case.

Baars et al. [3] introduced the idea of symbolic search-based

testing, where the fitness function of the GA takes different

possible symbolic paths to the target into account. Sakti et

al. [21] integrate constraint solving into the search-based test

generator eToc [25], such that the individuals of the search that

satisfy constraints based on relaxed versions of the program

code. Vice versa, fitness information can be used during DSE

exploration: The Fitnex approach [27] uses a fitness value

based on branch distances [18] to select the next path condition

during DSE exploration.

A second direction of integrating search and DSE is in

terms of using SBST techniques to solve constraints that

traditional constraint solvers may struggle with. Lakhotia et

al. [15] extended the DSE tool PEX to use local search to solve

floating point constraints, which constraint solvers struggle

with. The CORAL tool [4], [23] applies global and local search

to solve complex mathematical constraints in the context of

Symbolic JPF.

The third type of integration aims to tightly integrate the

two approaches, such that the resulting approach can switch

between DSE and search. Inkumsah and Xie [11] proposed a

combination of SBST with DSE by hooking together the evo-

lutionary testing tool eToc [25] and the DSE tool jCUTE [22],

such that either jCUTE optimizes the results of eToc, or vice

versa. Such a sequential combination may not be sufficient to

solve problems like the one illustrated in Figure 1, as several

iterations of both techniques may be necessary. Majumdar and

Sen [16] interleaved DSE with random search; DSE provides

an exhaustive local search, while random search is used to

explore more diverse parts of the state space.

The approach presented in this paper differs from these past

approaches as it is applied in a scenario of where whole test

suites are evolved, and DSE is in turn applied to the individuals

of the GA population (which is related to the third category

of DSE/SBST combinations). The approach is adaptive in

choosing when to apply which technique, and allows for as

many iterations as necessary. A further advantage of this type

of integration over a simple sequential integration (e.g., [11])

is that it allows for optimization with respect to any coverage

criterion or fitness function.

III. INTEGRATING DSE IN WHOLE TEST SUITE

GENERATION

We consider a unit testing scenario, where the objective is

to produce a test suite that is as small as possible, yet achieves

highest possible coverage on the class under test (CUT) for a

given coverage criterion. This is the target scenario of whole

test suite generation, and in this section we consider how

whole test suite generation can be extended with DSE to

achieve higher coverage.

A. Whole Test Suite Generation

Whole test suite generation uses a GA to evolve a population

of candidate solutions towards maximizing a given coverage

criterion. Each individual of this population is a set T of test

cases ti; the size of a test suite is the number n of tests in the

set. Each test case ti consists of a sequence of calls on the CUT

or its dependencies, in terms of their constructors, methods,

fields, or creates primitive values and arrays [7]. Parameters

of a call in the sequence are satisfied with values defined by

earlier statements in the sequence.

Neither the number of tests in a test suite, nor the length

of individual test cases is fixed, but may vary over time based

on the search operators applied. When two individuals of the

population are selected for crossover, then a random value α
is chosen from [0, 1], and the first offspring consists of the first

α|P1| test cases from the first parent P1, followed by the last

(1− α)|P2| test cases from the second parent P2; the second

offspring is created from the other two subsets. When a test

suite is mutated, then each test case is mutated with probability

1/n, and new test cases are added with decreasing probability

(initial probability σ, if a test is inserted then another one

is inserted with probability σ2, and so on). Test cases are

deleted from test suites when they have length 0. Test cases

are mutated using a range of operators that insert, remove,

or change the statements in a sequence (see [7] for details).

The initial population of the GA is created with test suites

of random size, consisting of random test cases created by

repeatedly applying the insertion mutation.

The GA is guided by a fitness function that represents the

chosen coverage criterion. For example, the fitness function for

branch coverage considers all methods and their conditional

statements in the CUT. The branch distance for the evaluation

of a given conditional statement to a particular truth value

is an estimate of the distance towards this evaluation, and

is an established heuristic in SBST [18]. The larger the

branch distance, the “further away” a given execution was

from making the branch evaluate to the chosen truth value;

if the chosen branch evaluates to the target value then the

branch distance is 0. The optimization goal of whole test suite

generation is to create a test suite that covers all branches,

therefore the fitness function considers the minimal branch

distance for every single branch evaluation. If all branches

are covered, then for each branch there has to exist a test case

that achieves branch distance 0. Let dmin(b, T ) be the minimal

branch distance for branch b on test suite T , then we define

the distance d(b, T ) as follows:

d(b, T ) =



















0 if the branch has been covered,

ν(dmin(b, T )) if the predicate has been

executed at least twice,

1 otherwise.

The function ν = x/(x + 1) normalizes the branch distance

in the range [0, 1] in order to prevent that any of the branches

dominates the search [1]. The requirement to execute each

branch twice is used to prevent the search from oscillating



between optimizing a branch between true and false evalua-

tion. Considering that some of the methods M of the CUT

may have no conditional statements, we also include the set

of methods executed by test suite T as MT , which results in

the following fitness function [7]:

fitness(T ) = |M | − |MT |+
∑

bk∈B

d(bk, T )

B. Dynamic Symbolic Execution of Test Suites

Traditional DSE assumes there is one entry point for which

it should generate inputs to cover all execution paths, and the

exploration starts with a single random input and successively

solves variants of the resulting path condition in order to

systematically explore all paths. The unit testing scenario

considered in this paper is slightly different: There is not a

single entry function, but all methods of a given CUT need

to be exercised. Exploring all possible paths with DSE is

not immediately possible in this scenario, because the search

space is defined by the possible sets of method sequences (test

suites), which cannot be explored with a constraint solver.

Consequently, when integrating DSE into whole test suite

generation the starting point for the DSE exploration is not

a single random input, but an existing test suite.

We therefore consider all primitive values defined in the

test cases of a test suite T as inputs on which the path

conditions for DSE should be based. Consequently, every

primitive statement (including definitions of string values) in

T represents a concrete as well as a symbolic value. We can

think of this as translating the concrete test cases from the test

suite into parametrized unit tests [24].

In sequences of method calls individual primitive variables

are often reused at different places, and so it can easily happen

that the resulting constraints are formulated in such a way that

negation leads to infeasible constraints. For example, assume

we have the following function:

boolean same(int a, int b) {

if(a == b) return true;

return false;

}

If this method is called such that the same variable is used

for both inputs, e.g., same(x, x), then the path condition

will claim that x == x, but the negation x 6= x is not

satisfiable. To avoid this problem, we expand test cases before

collecting constraints. This simply means that each occurrence

of a variable is considered an independent input (e.g., the

function would now be called by same(x1, x2), where

x1 and x2 are both initialized with the same concrete value

as x originally.

A primitive statement may also define an array, in which

case each element of the array can be assigned a value through

a dedicated assignment statement. When expanding a test case,

we add an explicit assignment of the default value (e.g., 0) for

every array slot unless it already has an assignment. This way,

each array value will be considered as a symbolic input to the

test case.

After expanding all test cases of a test suite, each of the

tests is executed concolically considering all primitive values

as symbolic input values. The resulting set of path condition

serves as starting point for a regular DSE exploration: We

select one branch condition at a time, negate it, and the

conjunction of the reaching condition and the negated branch

condition represent the input to a solver. A solution produced

by the solver represents a new test case, which is executed

concolically again, and the set of path conditions is updated for

the next DSE step. This process is continued until a designated

timeout for the DSE exploration has been reached or there are

no more conditions to negate.

During this DSE exploration there are a number of param-

eters that need to be considered: First, there is the strategy to

select path conditions for negation. Many different strategies

have been considered in the literature (e.g., depth-first search,

Fitnex [27], etc), and all of them could be applied at this point

in the approach. Given the fixed and usually low time limit,

we rank path conditions by their size, such that the exploration

first considers those conditions that are likely easier to solve.

In most cases this resembles a breadth-first exploration, but

as a test case may contain several instances of the CUT this

strategy is not related to the actual positions in the test cases.

If the number of path conditions is high, then it is possible to

optimise by considering only those that, for a given test suite,

only evaluate to either true or to false, but not to both.

C. A Hybrid Adaptive Approach

Both, whole test suite generation and DSE, have been shown

to be effective in many papers. However, there remains the

question of how to best integrate the two approaches. When a

CUT has many branches that depend on numerical constraints

on the inputs, then DSE is clearly at an advantage. In the

GA, each primitive input value in a test suite only has a small

probability of being mutated, and there possibly have to be

many mutations before a primitive value has been optimised

towards covering a branch; after each step of mutations the

fitness of the mutated individual needs to be re-evaluated,

which requires re-executing the test suite and can be costly.

On the other hand, if the challenge in covering the CUT lies in

creating complex data types, then time spent on DSE should

rather be invested into performing search, as performing DSE

is also costly: First, there is the effort of executing all tests

in the test suite concolically to collect the path conditions,

and then there is the effort of negating branches and solving

the resulting constraint systems. If the wrong technique is

applied to the problem at hand and computational resources

are bounded (e.g., timeout), then the effects on the achieved

coverage can be detrimental.

Consequently, the integration of DSE and whole test suite

generation requires three decisions: 1) On which individuals

of the population is DSE applied, 2) when is it applied, and

3) how is it applied. If computational resources were not

bounded, one would ideally apply DSE on every individual of

the population at every iteration, essentially creating a form of

memetic algorithm where individuals can improve themselves.



However, the ideal scenario of unlimited resources does not

hold in practice, and thus applying DSE on all individuals

at every iteration of the GA is out of question. A more

conservative approach is therefore to apply DSE only to the

best individual of the search. To reduce the computational

costs, an obvious optimisation is to restrict DSE to only those

cases where the best individual has changed from the previous

generation (i.e., if there was mutation or crossover).

However, on a CUT where DSE is not helpful (e.g., when

primitive input values do not determine many branches) even

applying DSE only on the best individual after a change may

have a negative impact on the search. To determine whether

a CUT is suitable for DSE we therefore consider not only

whether an individual has changed, but also what changes were

applied and what were their consequences: If an individual was

changed but the fitness has not been affected, then it is unlikely

that DSE can improve the individual further. If an individual

has improved fitness after changes that are not related to

primitive values, then again it is unlikely that DSE can lead to

an improvement. Consequently, we adaptively apply DSE: If

we observe a change in fitness after a mutation on a primitive

value, then we know that the variable this value is assigned to

is important, and we can use DSE to derive new values for it.

Theoretically, a mutation step on a test suite can involve

more than one mutation on its test cases, yet fitness is only

evaluated after mutation of the entire test suite is complete.

If there are several mutations, then it is not possible to know

which of the mutations caused the fitness change. However,

this is not a problem in practice, as the number of mutations is

usually low. Given a test case of length l where each function

call is mutated with probability 1/l [7], then on average

l × 1/l = 1 mutations will be applied. The probability P (k)
of having k mutations will be characterized by the following

formula:

P (k) =

(

1

l

)k

×

(

1−
1

l

)l−k

×

(

l

k

)

,

which means P (0) = 0.34, P (1) = 0.38, P (2) = 0.19,

P (3) = 0.05, etc. Consequently, in practice it is acceptable

to assume that a fitness change and a primitive mutation are

linked.

Limiting the application of DSE to those cases where

mutation of a primitive value has been shown to influence

fitness will prevent unnecessary applications of DSE in most

cases. However, even if a primitive value influences the fitness,

it may be the case that the CUT results in path conditions that

are too difficult for the solver to handle. For example, this

can be the case if there are calls to external code that is not

susceptible to DSE (e.g., native code in Java or web services),

or if there are many infeasible branches, many loop iterations,

or simply difficult path conditions). If DSE cannot be applied

successfully, then one would want to minimize the amount of

time spent on DSE, whereas in cases where DSE is successful

one would want to make sure that DSE is applied. To achieve

this, we can resort to parameter control: Whenever we observe

that a primitive mutation has affected fitness, we apply DSE

with a certain probability P . If this application of DSE was

unsuccessful, we change P with a factor R, e.g., setting it

to P/R. On the other hand, if it was successful then we can

increase the probability to P ×R (while keeping P in (0, 1]).
Finally, to restrict the DSE steps applied and the number

of tests added to a test suite, we can evaluate the fitness of

the test suite each time a new test case was added, and only

keep the test in the test suite and for DSE exploration if it

improves fitness. This would likely leads to smaller test suites

and shorter DSE cycles, but may lead to removal of important

tests in cases where the fitness function is not sufficiently fine

grained enough (e.g., inter-procedural calls to other classes

may not be rewarded by the fitness function).

IV. EVALUATION

In this paper, we carried out a series of experiments to

answer the following research questions:

RQ1: What is the best way to integrate DSE into a GA?

RQ2: What improvements does the integration of DSE

achieve over a standard GA?

RQ3: How do the improvements vary over time?

RQ4: What are the actual benefits of integrating DSE on real-

world software?

RQ5: How does the hybrid algorithm compare to regular

DSE?

A. Empirical Setup

We have implemented DSE in EVOSUITE based on the

bytecode instrumentation implemented in the DSC tool [12]2

as both tools are based on the same bytecode instrumentation

framework. We implemented our own constraint representation

in order to capture numeric as well as string constraints.

To cope with such mixed constraints, we implemented our

own constraint solver, which we can only briefly describe

for reasons of space. The solver applies the Alternating

Variable Method (AVM) [14]. Integer numbers are solved

using standard exploratory and pattern moves, whereas for

floating point variables we iterate over precision values as

proposed by Harman and McMinn [10] and also implemented

in the Flopsy [15] tool. Finally, to solve string constraints we

interpret a string variable as an array of characters and apply

AVM on each character in turn. It is likely that dedicated

solvers such as Z3 [5] or Hampi [13] could further improve

performance, at least for numeric datatypes. However, to

measure improvement over a pure search-based whole test

suite generation approach this is not necessary. Internally in

EVOSUITE, a test case can be executed for DSE or for regular

SBST simply by choosing the corresponding classloader. We

carried out a series of experiments using three different cases

studies, which are described in detail below.

Both GA and DSE are based on randomized algorithms.

To properly compare these algorithms, all data resulting from

the empirical analysis were analyzed using statistical methods

following the guidelines in [2]. In particular, we used the

2Available at http://ranger.uta.edu/˜csallner/dsc



Vargha-Delaney Â12 effect size and Wilcox-Mann-Whitney U-

test. This test is used when algorithms (e.g., result data sets

X and Y ) are compared on single classes (in R this is done

with wilcox.test(X,Y )). We also used this test to check on

the entire case study if effect sizes are symmetric around 0.5.

On some classes, an algorithm can be better than another one

(i.e., Â12 > 0.5), but on other classes it can be worse (i.e.,

Â12 < 0.5). A test for symmetry determines if there are as

many classes in which we get better results as there are classes

in which we get worse results. Statistical tests are carried out

at α = 0.05 significance level.

B. Best Configuration for the Integration

The first question we need to consider before performing

in-depth analysis is how to combine DSE and SBST. In the

past, we have experimented with using DSE as a mutation

operator for SBST [17], but in a unit testing approach with

sequences of method calls we wanted to have a more focused

approach that reduces the amount of costly DSE executions.

A loose coupling as implemented in the EVACON tool [11]

would not be able to handle cases like Figure 1, as this requires

iterations of both tools, rather than just successive application3

Our initial attempts of applying DSE at a fixed rate (e.g., every

X generations) showed a detrimental effect on the achieved

coverage, except in extreme cases that are trivial for DSE

and difficult for SBST. We therefore turned to our adaptive

approach as described in the previous section, but there still

remain several parameters to decide on:

1) How much time should be spent on DSE?

2) Should only test cases that improve coverage be retained,

or all tests produced by DSE?

3) Should the set of branch conditions be filtered according

to which branches are only covered one way?

4) Should DSE be applied whenever an individual changed

its fitness after a primitive mutation, or only with a certain

probability?

5) Should this probability be adaptively updated depending

on the success of DSE?

To answer these questions, our first case study is composed

of 38 classes, which represent classes where SBST and EVO-

SUITE struggle. Of the 38 classes, 22 are taken from a recent

case study on complex string problems in SBST [19]. The

remaining 16 classes are chosen based on our past experiments

and all represent cases where EVOSUITE has problems in

achieving high coverage, even though achieving coverage on

these classes is not inhibited by environmental dependencies.

Table I summarizes statistics of these classes (the first 22

classes are from [19]).

To answer RQ1, we considered the following values for the

above listed parameters:

1) Time: 5s, 10s, 30s

2) Keep all tests: true, false

3) Filter branch conditions: true, false

4) Probability: 0.1, 0.5, 1.0

3Note also that EVACON is not available online for comparison.
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Fig. 2. Average branch coverage achieved by EVOSUITE using only the
GA, and using the hybrid approach with DSE and the best configuration, as
determined for RQ1.

5) Adaptation rate: 1, 2, 4

In addition, we included four configurations of applying DSE

on all individuals if they showed improvement after a prim-

itive mutation, instead of only the best individual. In total,

this led to 112 different configurations of DSE. All these

configurations (and the basic GA) were run on each of the

38 classes in the first case study, each with a timeout of

10 minutes. To take the randomness of these algorithms into

account, each experiment was repeated 16 times with different

random seeds. In total, this first set of experiments took

(113× 38× 16× 10)/(60× 24) = 477 days of computational

time. To identify which of the 112 configurations can be

considered as best, for each configuration we calculated the

effect size on each class compared to the standard GA. The

best configuration was identified as the one with highest

average effect size.

RQ1: The best configuration in our experiments is:

1) Time: 30s

2) Keep all tests: false

3) Filter branch conditions: true

4) Probability: 1.0

5) Adaptation rate: 1

Consequently, the best results on the case study examples

were achieved with applying DSE always for a long time

when the best individual improved, and without adapting the

probability. Only tests that improved the fitness were retained,

and only branches that are only partially covered were negated.

1) Comparison to GA: Based on the best configuration

for the combination of the GA and DSE, we investigated

the achieved improvement in detail (RQ2). To obtain more

statistical power, we ran more experiments with these two

configurations, i.e., 100 times (instead of just 16) on each

of the 38 classes. Figure 2 shows boxplots of the achieved

coverage values for EVOSUITE using only the GA, and for

EVOSUITE using the GA and DSE. On average, the GA

achieved 71.2% branch coverage, whereas the combination

with DSE increased the average coverage to 82.2%. On 15

out of the 38 classes the increase in coverage is statistically

significant, whereas on 2 classes there was a statistically

significant decrease; in the other classes there is no significant

difference. The average effect size Â12 for the comparison of



TABLE I
DETAILS OF THE CLASSES USED IN THE FIRST CASE STUDY.

LOC are lines of non-commenting source code measured by JavaNCSS (http://www.kclee.de/clemens/java/javancss/); Branches are measure by EVOSUITE

and are measured at bytecode level.

Project Class LOC Branches

Chemeval (chemeval.sf.net) org.openscience.cdk.index.CASNumber 34 15
Conzilla (www.conzilla.org) se.kth.cid.identity.ResourceURL 22 12

se.kth.cid.identity.URI 83 54
se.kth.cid.identity.URIClassifier 52 14
se.kth.cid.identity.URIUtil 39 13
se.kth.cid.identity.PathURN 17 10
se.kth.cid.identity.URN 17 12
se.kth.cid.identity.MIMEType 32 12

Efisto (efisto.sf.net) com.efisto.util.Util 74 20
GSV05 (gsv05.sf.net) stempeluhr.validation.TimeChecker 33 11
JXPFW (jxpfw.sf.net) org.jxpfw.util.InternationalBankAccountNumber 110 54

org.jxpfw.util.CLocale 18 10
LGOL (lgol.sf.net) uk.gov.tameside.apps.validation.NumericValidator 16 8

uk.gov.tameside.apps.validation.EmailValidator 17 8
uk.gov.tameside.apps.validation.PostCodeValidator 44 12
uk.gov.tameside.apps.validation.TelephoneValidator 17 8
uk.gov.tameside.apps.validation.DateFormatValidator 20 10

OpenSymphony (www.opensymphony.com) webwork.examples.userreg.Validator 46 42
PuzzleBazar (code.google.com/p/puzzlebaazar) com.puzzlebazar.client.util.Validation 48 97
WIFE (wife.sf.net) com.prowidesoftware.swift.model.IBAN 62 27

com.prowidesoftware.swift.model.BIC 24 13
Java Naming and Directory Interface (JNDI) com.sun.jndi.toolkit.url.ConcreteURLContext 227 65
Roops (http://code.google.com/p/roops/) roops.core.bv32.linear.noex.gods.LinearWithoutOverflow 223 93

roops.extended.bv32.floats.FloatArithmetic 68 49
String case study [7] Cookie 17 13

DateParse 31 39
Numerical case study [7] Remainder 32 25

Bessj 79 29
Commons CLI (commons.apache.org/cli) org.apache.commons.cli.CommandLine 87 45
JDom (www.jdom.org) org.jdom.Attribute 138 65
Commons Codec (commons.apache.org/codec) org.apache.commons.codec.language.DoubleMetaphone 579 504
Java java.util.ArrayList 151 70
JodaTime (joda-time.sourceforge.net) org.joda.time.DateTime 339 148

org.joda.time.format.DateTimeFormat 356 434
JGraphT (jgrapht.org) org.jgrapht.alg.BellmanFordIterator 105 42
Commons Math (commons.apache.org/math) org.apache.commons.math.transform.FastFourierTransformer 290 135
Java java.util.regex.Pattern 2,701 1,743
NanoXML (nanoxml.sourceforge.net/orig) net.n3.nanoxml.XMLElement 661 310

the DSE version with the standard GA is 0.62, such that we

can conclude that the integration of DSE into the GA leads to

an improvement with strong statistical significance.

Table II lists the results in detail per class. The two classes

where the hybrid approach is worse are DoubleMetaphone

and DateTime. For DoubleMetaphone the average coverage

achieved by the hybrid approach is actually higher, but there

is high variance on this class for the chosen configuration.

Considering the results on this class over all configurations,

we see that a better configuration for this particular class

would use only a 50% probability of applying DSE and adapts

this rate with a factor of 2. This configuration leads to an

average coverage of 71.3%, and the improvement over GA

is statistically significant with Â12 = 0.61. For DateTime the

best configuration also uses an adaptation rate of 2, but with a

starting probability of 10% and a significantly lower timeout

for DSE of 5 seconds. With this configuration the hybrid

approach achieves an average coverage of 84% (maximum of

98.2%) with a small effect size of Â12 = 0.51. Indeed, every

single class in the benchmark has a configuration where the

hybrid approach is better than the GA, which suggests that

even though we have identified a configuration that achieves

significantly better overall results, there is still potential to

refine the adaptiveness of the configuration in future work.

RQ2: The hybrid approach increased the average branch

coverage from 71% to 82%.

2) Improvements over Time: Ten minutes can be a long

time for test generation, and it may be the case that the

improvement of DSE only appears after spending a certain

amount of time, whereas smaller time budgets might show a

negative effect; in particular, the best configuration was chosen

out of runs of 10 minutes. To investigate the effects over time,

for RQ3 we kept track of achieved coverage at each minute

interval for the configuration chosen in RQ1. Figure 3 clearly

shows that the beneficial effect of DSE does not only appear

over time, but applies from the beginning.

RQ3: The integration of DSE is beneficial independently of

the applied search budget.



TABLE II
AVERAGE COVERAGE PER CLASSES IN THE FIRST CASE STUDY AND

EFFECT SIZE OF THE HYBRID APPROACH OVER THE GA.

Â12 < 0.5 means the hybrid approach resulted in lower, Â12 = 0.5 equal,

and Â12 > 0.5 higher coverage than the standard GA. Significance at 0.05
level is shown with bold font.

Class GA GA+DSE Â12

CASNumber 0.38 0.37 0.48
ResourceURL 0.94 1.00 0.66
URI 0.81 0.91 0.94
URIClassifier 0.81 0.93 0.75
URIUtil 1.00 1.00 0.50
PathURN 0.23 0.52 0.66
URN 0.89 0.97 0.62
MIMEType 0.78 0.85 0.55
Util 1.00 1.00 0.49
TimeChecker 0.62 0.61 0.47
InternationalBankAccountNumber 0.70 0.80 0.89
CLocale 1.00 1.00 0.50
NumericValidator 1.00 1.00 0.50
EmailValidator 1.00 1.00 0.50
PostCodeValidator 1.00 1.00 0.50
TelephoneValidator 1.00 1.00 0.50
DateFormatValidator 0.81 0.78 0.48
Validator 0.38 0.40 0.53
Validation 0.76 0.92 0.84
IBAN 0.63 0.68 0.54
BIC 0.78 0.87 0.55
ConcreteURLContext 0.54 0.83 0.88
LinearWithoutOverflow 0.38 0.98 0.99
FloatArithmetic 0.41 0.85 0.99

Cookie 0.45 1.00 1.00
DateParse 0.67 1.00 1.00
Remainder 0.88 0.85 0.48
Bessj 0.87 0.90 0.52
CommandLine 0.88 0.90 0.52
Attribute 0.74 0.83 0.94
DoubleMetaphone 0.45 0.69 0.41

ArrayList 0.81 0.88 0.61
DateTime 0.87 0.56 0.10
DateTimeFormat 0.44 0.76 0.48
BellmanFordIterator 0.66 0.70 0.51
FastFourierTransformer 0.58 0.59 0.47
XMLElement 0.75 0.95 0.46
Pattern 0.14 0.37 0.70
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Fig. 3. Branch coverage results over time.

3) Evaluation on SF100: All experiments so far were

performed on the set of 38 classes representing instances

of difficult problems from an SBST point of view, such

that DSE leads to clear improvements. Consequently, we are

confident that DSE can improve SBST when the problem at

hand is suitable. However, not all classes actually exhibit the

necessary properties; potentially, complex numerical and string

constraints may even be rare in practice. To see whether our

results generalize and whether the integration has a negative

effect on the general use of EVOSUITE, we applied the

combined approach on all 8,784 classes of the SF100 corpus

of classes [6]. SF100 consists of 100 randomly chosen open

source projects from Sourceforge, and therefore represents a

statistically valid sample of open source software. Because of

the large number of classes, we reduced the timeout of EVO-

SUITE to two minutes when testing SF100, and experiments

were repeated with only five different random seeds. In total,

these experiments required (2×8784×5×2)/(60×24) = 122
days of computational time.

The standard GA obtained 55.2% branch coverage, whereas

DSE obtained 56.4%, and the effect size is 0.515. A test for

symmetry around 0.5 shows a very strong statistical difference,

i.e., p-value very close to zero. If we look at each class in

isolation, there are 2,397 cases in which Â12 > 0.5 (i.e., better

results), and 1,782 in which Â12 < 0.5 (i.e., worse results). On

each class in isolation, there are 124 cases in which Â12 > 0.5
and the U-test gives a p-value lower than α = 0.05, whereas

there are only nine cases in which we obtain such small p-

values for Â12 < 0.5.

All these data can be interpreted as follows: there is

strong statistical evidence to claim that, on SF100, the hybrid

GA+DSE is better than GA. But, on the other hand, five runs

per class are not enough to obtain a strong enough statistical

power to precisely identify on which classes DSE is indeed

better.

Compared to the results on the previous case study, the

improvements of our hybrid approach are lower, i.e. 56.4 −
55.2 = 1.2% compared to 82.2 − 71.2 = 11%. This is

expected, as the SF100 corpus features several real-world

problems that are out of the reach of current test data gener-

ation tools, like for example environment dependencies (e.g.,

test data coming from writing/reading files and opening TCP

connections).

RQ4: Our experiments show with statistical significance

that the integration of SBST and DSE is beneficial in

practice, and has no significant negative effect.

4) Comparison to DSE: To compare our approach to a

standard DSE tool neither of our two sets of classes is suitable,

as all DSE tools for Java we are aware of require a dedicated

entry method for test generation, and have only limited support

to generate complex data types. We therefore chose the Roops

set of benchmark classes for this experiment (see Table III

for details), for which the main developer of DSC [12] is

one of the main contributors. We chose DSC as the DSE

tool to compare to, as the DSE implementation in EVOSUITE

is based on DSC. Consequently, we assume that the set of

classes in Roops is suitable for DSC and the tool is not put

at a disadvantage in comparison. Because DSC still requires

a dedicated entry method, we split all of the Roops classes

into individual classes of one method each (all methods in

Roops classes are static), and compare DSC and EVOSUITE



TABLE III
ROOPS BENCHMARK DETAILS.

M = Methods; Branches (B) are measure by EVOSUITE at bytecode level; LOC are

lines of non-commenting source code measured by JavaNCSS

(http://www.kclee.de/clemens/java/javancss/)

Class M LOC B

collections.IntRedBlackTreeMap 13 259 103

core.bv32.arr.noex.IntArrayWithoutExceptions 7 62 43

core.bv32.linear.noex.gods.LinearWithoutOverflow 44 221 93

core.objects.AvlTree 15 119 74

core.objects.BinTree 17 189 99

core.objects.BinomialHeap 19 351 210

core.objects.FibHeap 10 194 94

core.objects.LinkedList 17 126 59

core.objects.NodeCachingLinkedList 24 225 106

core.objects.Objects 3 16 9

core.objects.SinglyLinkedList 8 98 47

core.objects.TreeSet 28 455 218

extended.bv32.DeepASTrandom 196 981 1,108

extended.bv32.arr.BinSearchError 2 22 11

extended.bv32.arr.noex.IntArrayWithoutExceptions 3 25 27

—.IntArrayWithoutExceptionsWithArrayParameters 3 28 29

TABLE IV
AVERAGE BRANCH COVERAGE PER METHOD PER CLASSES, AND EFFECT

SIZE OF THE HYBRID APPROACH OVER DSC.

Class GA DSC GA+DSE Â12

IntRedBlackTreeMap 0.57 0.03 0.57 1.00
IntArrayWithoutExceptions 0.88 0.88 0.88 0.50
LinearWithoutOverflow 0.93 1.00 1.00 0.50

AvlTree 0.73 0.057 0.72 1.00
BinomialHeap 0.54 0.033 0.47 1.00
BinTree 0.53 0.11 0.53 1.00
FibHeap 0.55 0.12 0.54 1.00

LinkedList 0.80 0.29 0.80 1.00
NodeCachingLinkedList 0.66 0.43 0.65 0.88
Objects 1.00 1.00 1.00 0.50
SinglyLinkedList 0.98 0.17 0.99 1.00
TreeSet 0.66 0.096 0.72 1.00
BinSearchError 0.80 0.20 0.80 1.00
IntArrayWithoutExceptions 0.92 0.00 0.94 1.00

IAWEWithArrayParameters 0.88 0.29 0.88 1.00
DeepASTrandom 0.90 0.92 0.92 0.49
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Fig. 4. Branch coverage results on Roops for EVOSUITE in standard search
mode, DSC, and EVOSUITE with DSE.

on a per-method base. This setup allowed us to automatically

run experiments with 10 repetitions to accommodate for the

randomness of the tools, and to measure the coverage of the

resulting JUnit test suites using EVOSUITE. EVOSUITE was

used in the configuration chosen above. Both EVOSUITE and

DSC were run with a time limit of one minute per class.

Figure 4 illustrates the results of applying EVOSUITE with

and without DSE and DSC on the Roops benchmark. The

figure shows that all three techniques are very close in cov-

erage, and suggests that EVOSUITE with DSE achieves the

best results. Interestingly, DSC achieved the overall lowest

average coverage (84.1%), whereas EVOSUITE (87.9%) and

EVOSUITE with DSE (91.3%) are both slightly better. Statisti-

cal analysis shows that the improvement of EVOSUITE +DSE

over DSC is statistically significant, with Â12 = 0.56 (test

for symmetry around 0.5 has p-value close to zero). In detail,

there are 48 methods on which the combination is significantly

better than DSC, whereas there are 14 on which it is worse;

for the rest the approaches achieve the same coverage (which,

as can be seen in Figure 4, is 100% in many of these cases).

Table 4 summarizes the results, averaged per class. The table

reveals that the high coverage values for DSC witnessed in

Figure 4 are mainly due to a few classes with many methods

(e.g., DeepASTrandom) where DSC works well, whereas there

are many other classes where DSC has problems.

RQ5: In our experiments, EVOSUITE with DSE achieved

higher coverage than the DSE tool DSC.

However, note that this result compares two tools, and

comparisons between other tools implementing the same tech-

niques may lead to different results. Consequently, we encour-

age reproduction of our experiments, and we are planning to

compare to Pex [24] and other tools as future work.

C. Threats to Validity

The focus of this paper is on comparing the whole test suite

generation approach based on a GA to a hybrid version that

integrates a variant of DSE.

Threats to construct validity are on how we measured the

performance of a testing technique. We used branch coverage,

but in practice a small increase in code coverage might not

be desirable if it implies a large increase of the test suite size.

Furthermore, using only coverage does not take the human

oracle costs into account, i.e., how difficult it will be to

manually evaluate the test cases and to add assert statements.

Threats to internal validity might come from how the

empirical study was carried out. We have carefully tested

our framework to reduce the probability of having faults,

but it is well known that testing alone cannot prove the

absence of defects. To prevent that findings on a randomized

algorithm are affected by chance we repeated each experiment

a number of times and followed rigorous statistical procedures

to evaluate their results. Our implementation of DSE and

our search-based solver are very basic, and not optimized

for performance. This means that more mature DSE tools

might be able to extract more constraints where our tool fails,

and might spend less time on doing so; this could influence

the optimal configuration, and it could increase the overall

achieved coverage.

There is also the threat to external validity regarding the

generalization to other types of software, which is common

for any empirical analysis. Because of the large number of

experiments required, we only used 38 classes for our main

evaluation, and then applied only a restricted experiment to

SF100. It may be that other configurations would achieve



better results on SF100. Recall that SF100 is a statistically

valid sample of 100 open-source Java projects. Therefore,

results on SF100 have high probability to generalize to other

open-source software as well.

V. CONCLUSIONS

Generating test sets that cover all branches of a program is

of practical importance for software testing as well as other

dynamic software analysis techniques. In the context of unit

testing for object-oriented software, tests are sequences of

method calls which can be efficiently generated with Genetic

Algorithms (GAs). Although this approach performs well at

finding good sequences of method calls, it can struggle on

problems for which dynamic symbolic execution (DSE) can

be very efficient. To overcome this problem, we presented a

hybrid approach that integrates a GA with DSE.

Finding good values for the many parameters that a hybrid

approach, like the one in this paper, comes with is essential

to determine the true value of the combination. We therefore

applied a rigorous approach in our evaluation; this evaluation

on different sets of case study classes demonstrated that this

hybrid approach succeeds at improving the coverage.

Our initial set of experiments demonstrated that the hybrid

approach can lead to an increased branch coverage. Yet, there

remain several open questions that need to be addressed.

First, our own DSE implementation cannot match the level of

efficiency provided by state-of-the-art tools like Pex; likely,

improvements on our DSE implementation would lead to

further improvements of the overall performance. In particular,

we used a custom-made solver for mixed constraints, which

can likely be further optimized for some domains using

existing solvers such as Z3 [5]. We focused on branch coverage

in our evaluation, but one of the advantages of using search-

based techniques is that any coverage criterion for which one

can define a fitness function can be used. This as well as larger

empirical studies will be part of our future work.

To learn more about EVOSUITE, visit our Web site:

http://www.evosuite.org
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