
DynaMate: Dynamically Inferring Loop Invariants
for Automatic Full Functional Verification

Juan P. Galeotti1, Carlo A. Furia2, Eva May1, Gordon Fraser3, and Andreas Zeller1

1 Software Engineering Chair, Saarland University, Saarbrücken, Germany
lastname@cs.uni-saarland.de

2 Chair of Software Engineering, Department of Computer Science, ETH Zurich, Switzerland
caf@inf.ethz.ch

3 Department of Computer Science, University of Sheffield, UK
gordon.fraser@sheffield.ac.uk

Abstract. DYNAMATE is a tool that automatically infers loop invariants and
uses them to prove Java programs correct with respect to a given JML functional
specification. DYNAMATE improves the flexibility of loop invariant inference
by integrating static (proving) and dynamic (testing) techniques with the goal of
combining their complementary strengths. In an experimental evaluation involv-
ing 26 Java methods of java.util annotated with JML pre- and postconditions,
it automatically discharged over 97% of all proof obligations, resulting in auto-
matic complete correctness proofs of 23 out of the 26 methods.

1 The Challenge of Automating Program Verification

Full automation still eludes generic program verification techniques. The neologism
auto-active—a portmanteau of automatic and interactive—has been introduced [11]
to characterize some state-of-the-art tools for the formal verification of arbitrary func-
tional properties of code. SMT-based verifiers such as ESC/Java2 [2], Dafny [10], and
VCC [3] do not depend on a step-by-step interaction with the user, and hence are not
purely interactive tools; but they still require substantially more input than just a pro-
gram and its functional specification (typically given in the form of pre- and postcon-
dition). For programs with loops, loop invariants are a crucial ingredient of any formal
correctness proof; but the support to automatically infer loop invariants is generally
limited and rarely available as part of the same tools used to perform verification. The
general expectation is that users will provide detailed additional annotations (includ-
ing loop invariants) whenever the tool needs them. DYNAMATE aims at providing more
automation in these situations.

How DYNAMATE works. The DYNAMATE tool presented in this paper com-
bines different techniques with the overall goal of providing fully automatic verifica-
tion of programs with loops. The only required input to DYNAMATE is a Java program
(method) annotated with a JML functional specification (pre- and postcondition). DY-
NAMATE will try to construct a correctness proof of the program with respect to the
specification; to this end it will infer necessary loop invariants. Even in the cases where
it fails to find all required loop invariants, DYNAMATE still may find some useful invari-
ants and use them to discard some proof obligations, thus providing partial verification.

lastname@cs.uni-saarland.de
caf@inf.ethz.ch 
gordon.fraser@sheffield.ac.uk


We presented the details of how DYNAMATE works in a companion paper [8]. Fig-
ure 1 highlights its components and their high-level interactions: the program and its
JML specification (center) are first fed into a test generator (left, EVOSUITE [6] in the
current implementation), which generates executions covering possible behavior. Two
dynamic invariant detector techniques (top) suggest possible loop invariants, based both
on fixed patterns (DAIKON [5]) and on postconditions (GIN-DYN, a component de-
signed as part of DYNAMATE). The candidates not invalidated by the generated runs are
then fed into a static program verifier (right, ESC/Java2 [2] invoked with the -loopsafe
option for sound verification of unbounded loops). When the verifier cannot produce a
program proof (bottom), the test generator initiates another iteration where it tries to
produce new tests that falsify candidates unproven as of yet.

While any test case generator could work with DYNAMATE, our prototype integrates
the search-based test generator EVOSUITE. Besides being a fully automated tool, a
specific advantage of EVOSUITE is that its genetic algorithm evolves test suites towards
covering all program branches at the same time, and hence infeasible branch conditions
(common in the presence of candidates that are in fact loop invariants, and hence won’t
be falsified) do not ultimately limit search effectiveness. A directed search is also useful
to guide the successive iterations searching for new tests that specifically try to exercise
unproven candidates under new conditions.

Advantages of DYNAMATE. The integration of techniques and tools in DYNA-
MATE compensates for individual shortcomings and achieves a greater whole in terms
of flexibility and degree of automation. Dynamic techniques are capable of conclusively
invalidating large amounts of loop invariant candidates, thus winnowing a smaller set
of candidate invariants that hold in all executions, and can test candidates in isolation
(dependencies are not an issue). This leaves the static verifier with a more manageable
task in terms of number of candidates to check at once. The GIN-DYN component is
an original contribution of DYNAMATE. Based on the observation that loop invariants
can often be seen as weakened forms postconditions [7], GIN-DYN derives loop in-
variant candidates by mutating postconditions. This enables inferring loop invariants
that are not limited to predefined templates but stem from the annotated Java program

Code + Spec

Dynamic Invariant Detector
(DAIKON + GIN-DYN)

Static Program Verifier
(ESC/Java2 using -loopsafe)

Test Generator
(EVOSUITE)

filtered candidatesexecutions

unproved candidates program proof

Fig. 1: How DYNAMATE works.

2



under analysis. DYNAMATE still avails of the advantages of static techniques in terms
of soundness: the static verification module scrutinizes the output of the dynamic parts
until it can verify it (and uses verified invariants to construct a correctness proof).

2 Using DYNAMATE

We briefly present DYNAMATE in action on the implementation of binary search avail-
able in class java.util.Arrays from Java’s JDK. 4

1 /*@ requires a 6= null

2 @ requires TArrays.within(a, fromIndex, toIndex)

3 @ requires TArrays.sorted(a, fromIndex, toIndex);

4 @ ensures \result ≥ 0 =⇒ a[\result] = key;

5 @ ensures \result < 0 =⇒ ¬TArrays.has(a, fromIndex, toIndex, key); @*/

6 private static int binarySearch0(int[] a, int fromIndex, int toIndex, int key)

Fig. 2: JML specification of the binary search method from java.util. The specifica-
tion includes a precondition (requires) and two postconditions (ensures)

The input to DYNAMATE consists of the method binarySearch0 annotated with the
JML specification of Figure 2. Note that predicate has is a shorthand for a quantifica-
tion over [fromIndex..toIndex); dealing with quantified invariants is a challenges for
fully automatic verification. When it starts, DYNAMATE opens an HTML report, which
shows the program and specification with all elements (statements or annotations) that
trigger an ESC/Java2 warning highlighted in yellow. Clicking on a highlighted element
displays its current status, including ESC/Java2’s warning messages.

After each iteration of its main loop (Figure 1), DYNAMATE updates the report:
elements for which all associated ESC/Java2 warnings have been discharged are high-
lighted in green. In addition, users can inspect the generated loop invariants by clicking
on any loop header. By default only verified loop invariants are shown (in green). Candi-
date invariants can be viewed (in yellow) by de-selecting a check-box. These candidates
have not been falsified by a test, nor have they been verified by ESC/Java2.

Figure 3 shows a report after the first iteration on binarySearch0: DYNAMATE has
proven several simple scalar invariants for the selected loop. These simple invariants
come from predefined templates; they are sufficient to prove the first postcondition
(line 4 in Figure 2) and to show that array accesses are within bounds.

As DYNAMATE continues its search, it uses the postconditions as a basis for more
complex invariants. In the example, the postcondition on line 5 in Figure 2 (correspond-
ing to when the search returns unsuccessfully) mentions predicate ¬has(a,fromIndex,
toIndex, key); DYNAMATE mutates its arguments and checks if any of the muta-
tions are loop invariants. Among many mutations, ¬has(a, fromIndex, low, key)

and ¬has(a, high + 1, toIndex, key) are valid loop invariants, essential to estab-
lishing the postcondition. DYNAMATE finds them during iteration # 9, validates them,
and uses them to prove the second postcondition. This concludes DYNAMATE’s run,
which terminates successfully having achieved full verification. Upon terminating, the

4 DYNAMATE’s output report for this example is available at http://goo.gl/7TxE9d.

3

http://goo.gl/7TxE9d


Fig. 3: DYNAMATE’s report after iteration # 1 on binarySearch0. Verified statements
and annotations (first and last highlighted element) are shown in green, unverified ones
in yellow. Loop headers are highlighted in light blue. The right frame shows the proven
loop invariants for the selected loop.

tool reports all inferred loop invariants—including those listed in Figure 4—which in-
clude both scalar invariants and quantified ones (obtained by mutating postconditions).

In spite of its brevity in lines of code, automatically verifying binarySearch0 with-
out extra input in the form of loop invariants or other annotations is a task that chal-
lenges most fully-automatic verifiers. In fact, we tried to verify the same method against
the specification in Figure 2 using the state-of-the-art automatic tools INVGEN [9],
BLAST [1], and cccheck [4]. None of them could complete a correctness proof of
binarySearch0 against its full functional specification.

7 fromIndex ≤ low ∧ low ≤ high + 1 ∧ high < toIndex

8 ¬TArrays.has(a,fromIndex,low,key)
9 ¬TArrays.has(a,high+1,toIndex,key)

Fig. 4: Loop invariants inferred by DYNAMATE.

3 Empirical Evaluation

We evaluated DYNAMATE on 26 methods with loops from the java.util standard
package of Java, including algorithms operating on data structures such as arrays, lists,
deques, and vectors. To account for the randomized algorithm used by EVOSUITE’s
test-case generator, we ran each example 30 times; column success rate in Table 5 re-
ports the percentage of those runs that found a full correctness proof. The other columns
report means over the 30 runs: the percentage of proven proof obligations5; the number

5 These include pre- and postcondition checks, class invariant checks, and implicit checks for
out-of-bound array accesses and null dereferencing.

4



of iterations of the DYNAMATE algorithm; the number of proven invariants; and the
total running time.

DYNAMATE was never successful only with methods merge0, quicksortPartition,
and sort, for a total of 4 missing necessary invariants, one for each of merge0 and
quicksortPartition and two for sort. These invariants have a form that is neither
among DAIKON’s templates nor among GIN-DYN’s mutants. We repeated the experi-
ments by manually adding the four missing invariants; as expected, DYNAMATE suc-
cessfully verified the methods.

Since mutating postconditions is a heuristic approach, it is bound to fail on some
examples. However, previous analysis [7] and the results of DYNAMATE’s experiments
suggest that the heuristics if often applicable—and even when it cannot suggest all
necessary invariants it often can provide partial, useful instances. In all, we gain in
flexibility, but we cannot expect to overcome intrinsic limitations due to dealing with
logic fragments including quantifiers that are undecidable in general.

SUCCESS OBLIGATIONS DYNAMATE INVARIANTS TOTAL
CLASS METHOD RATE PROVEN ITERATIONS PROVEN TIME

ArrayDeque contains 57 % 98 % 7 14 2158 s
ArrayDeque removeFirstOccurrence 53 % 98 % 7 14 2180 s
ArrayDeque removeLastOccurrence 87 % 99 % 9 43 3281 s
ArrayList clear 70 % 95 % 6 9 1524 s
ArrayList indexOf 23 % 91 % 7 16 1914 s
ArrayList lastIndexOf 20 % 93 % 6 14 1574 s
ArrayList remove0 23 % 93 % 7 16 2065 s

Arrays binarySearch0 100 % 100 % 11 30 4200 s
Arrays equals0 100 % 100 % 7 7 2240 s
Arrays fill0 100 % 100 % 6 5 1391 s
Arrays fill1 100 % 100 % 7 15 1880 s
Arrays fillInteger0 100 % 100 % 6 7 1375 s
Arrays fillInteger1 100 % 100 % 7 18 1857 s
Arrays hashCode0 100 % 100 % 2 4 389 s
Arrays hashCodeInteger 100 % 100 % 2 4 343 s
Arrays insertionSort1 100 % 100 % 11 73 4512 s
Arrays merge0 0 % 90 % 11 78 8034 s
Arrays quicksortPartition 0 % 94 % 9 57 5657 s
Arrays vecswap 100 % 100 % 8 18 2698 s

Collections replaceAll 77 % 97 % 6 16 1801 s
Collections sort 0 % 73 % 9 17 3933 s

Vector indexOf1 100 % 100 % 6 24 1698 s
Vector lastIndexOf1 90 % 99 % 7 19 1859 s
Vector removeAllElements 100 % 100 % 5 12 1218 s
Vector removeRange0 63 % 96 % 7 17 2574 s
Vector setSize 100 % 100 % 7 31 2003 s

AVERAGE 72 % 97 % 7 22 2475 s

Table 5: Experimental results for DYNAMATE on methods from java.util.

Many more details on the experiments, as well as a detailed comparison of DYNA-
MATE against state-of-the-art tools are presented in a companion paper [8].

4 Conclusions

DYNAMATE’s prototype is currently quite limited in terms of scalability, as it takes a
considerable amount of time even on structurally simple methods. However, over 65%
of the total time is taken up by testing. Even if dynamic techniques are generally slower
than purely static ones, there are significant margins to improve the implementation for
speed by customizing the test generator (which is currently used as black box) to cater
to DYNAMATE’s special requirements.

5



These details should not, however, distract us from assessing DYNAMATE’s specific
contributions with the right poise: fully automated program verification features an in-
trinsic formidable complexity; and even the shortest algorithms (in terms of lines of
code) may require complex invariants [12]. DYNAMATE worked successfully on real
code annotated with non-trivial (often complete) functional correctness specifications.
It automatically built correctness proofs for 23 out of 26 subjects6; and discharged over
97% of all proof obligations on average. These results demonstrate the benefits of in-
tegrating static and dynamic verification techniques with complementary strengths and
shortcomings, and improve over the state of the art in terms of complete automation
and flexibility.

Availability: The current prototype of DYNAMATE is available for download at
http://www.st.cs.uni-saarland.de/dynamate-tool/. The download page includes
a virtual-machine image with all dependencies as well as scripts to run the examples
mentioned in Section 3.

Acknowledgments: This work was funded by the European Research Council
(ERC) Advanced Grant “SPECMATE – Specification Mining and Testing”. The second
author was partially funded by the Swiss SNF Grant ASII 200021-134976.

References

1. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker Blast.
STTT 9(5-6), 505–525 (2007)

2. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced specification
and verification with JML and ESC/Java2. In: FMCO. pp. 342–363. LNCS, Springer (2006)

3. Cohen, E., Dahlweid, M., Hillebrand, M.A., Leinenbach, D., Moskal, M., Santen, T., Schulte,
W., Tobies, S.: VCC: a practical system for verifying concurrent C. In: TPHOLs. LNCS, vol.
5674, pp. 23–42. Springer (2009)

4. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully automatic
and scalable array content analysis. In: POPL. pp. 105–118. ACM (2011)

5. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering likely pro-
gram invariants to support program evolution. IEEE TSE 27(2), 99–123 (2001)

6. Fraser, G., Arcuri, A.: Evolutionary generation of whole test suites. In: QSIC. pp. 31–40.
IEEE Computer Society (2011)

7. Furia, C.A., Meyer, B., Velder, S.: Loop invariants: Analysis, classification, and examples.
ACM Comp. Sur. 46(3) (2014)

8. Galeotti, J.P., Furia, C.A., May, E., Fraser, G., Zeller, A.: Automating full functional verifi-
cation of programs with loops. Submitted (July 2014), http://arxiv.org/abs/1407.5286

9. Gupta, A., Rybalchenko, A.: InvGen: An efficient invariant generator. In: CAV. LNCS, vol.
5643, pp. 634–640. Springer (2009)

10. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: LPAR-
16 (Dakar). LNCS, vol. 6355, pp. 348–370. Springer (2010)

11. Leino, K.R.M., Moskal, M.: Usable auto-active verification. In: Usable Verification Work-
shop. http://fm.csl.sri.com/UV10/ (2010)

12. Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data structures. In:
PLDI. pp. 349–361. ACM (2008)

6 The average success rate is below 23/26 = 88% because not all repeated runs succeeded.

6

http://www.st.cs.uni-saarland.de/dynamate-tool/
http://arxiv.org/abs/1407.5286
http://fm.csl.sri.com/UV10/

	DynaMate: Dynamically Inferring Loop Invariants for Automatic Full Functional Verification

