
Software Configuration Management:
State of the Art, State of the Practice

Karol Frühauf1 and Andreas Zeller2

1 INFOGEM AG
Informatiker Gemeinschaft für Unternehmensberatung

Rütistrasse 9, CH-5401 Baden, Switzerland
Karol Fruehauf@compuserve.com

2 Universiẗat Passau
Lehrstuhl f̈ur Softwaresysteme

Innstraße 33, D-94032 Passau, Germany
zeller@acm.org

Abstract. Which are the open problems in Software Configuration Management
(SCM)? The purpose of this paper is to ignite a discussion on current and future
SCM directions. Based on the findings of a Dagstuhl Seminar on the current state
of Software Engineering, weassess the state of SCMwith the goal to identify
effective SCM tasks and solutions, to establish a core body of SCM knowledge,
and to denote remaining real-world SCM problems.

1 Introduction: An Assessment of SCM

Which are the open problems inSCM? Software Configuration Management (SCM)
is one of the few success stories in Software Engineering. All software organizations
admit the importance ofSCM as a prerequisite for a coordinated software development.
Consequently,SCM is widely used—and with success. Already, theSCM tools market
is expected to be worth over a billion dollars [4].

The 1999 Dagstuhl Seminar on “Software Engineering Research and Education:
Seeking a new Agenda” [7] has joined experts in several Software Engineering fields to
take stock of the current state of Software Engineering research and education. Within
this Seminar, we have addressed this task for theSCMarea—assessing the state of Soft-
ware Configuration Management. In particular, we have attempted to cover the ques-
tions:

What do we know? Which are theSCMtasks and solutionsthat every practicing soft-
ware engineer should be able to perform?

What should we teach?Which is thecore body ofSCMknowledgethat has been vali-
dated as useful in practice?

What should we know? What are the most importantopenSCMproblems?

In contrast to earlier approaches, we have not searched for novel ideas “that should
keep researchers busy for the next several years” [31] or examined possible similarities
between some areaX andSCM[10, 34], but attempted to identify remainingreal-world
SCMproblems—problems faced by today’s practitioners, yet not sufficiently addressed
by SCMresearch. This paper summarizes our results; its purpose is to ignite a discussion
on current and futureSCM directions.



Documentation
Communication

Task Management
Lifecycle Support

History
Traceability

Logging

Workspaces
Conflict Resolution

Families

Building
Snapshots

Optimization
Change Impact Analysis

Regeneration

System Model
Interfaces

Relationships
Selection

Consistency

Access Control
Change Requests

Bug Tracking
Change Propagation

Partitioning

Statistics
Status

Reports

Kinds of Components
Repository

Project Contexts
Baselines

Versions of Configurations
Configurations

Versions

Connectivity

ACCOUNTING CONTROLLING

AUDITING

CONSTRUCTION STRUCTURE

TEAM

COMPONENTSPROCESS

DEPLOYMENT

Installation
Parameterization

Instantiation
Re-Configuration

Fig. 1. SCM Functionality Areas (after Dart [6])

2 Assessing SCM Solutions

In this paper, we have focused on thoseSCM solutions that are provided or supported
by some automatedSCM tool or system, be it a research prototype or a full-fledged
commercial system. (This is just a matter of economy; if some solution has only been
proposed, but never realized, we will not regard it here.) Note that we do not consider
SCMorganisational matters. The reason is not their irrelevance; in fact we are convinced
thatSCM work procedures need to be defined in an organisation before anySCM tool
can be selected (which will of course backfire on the work procedures). The difficulty
is that as every organisation has its own flavour of work procedures, there is no such
thing as a solution.

Relying on Dart’s survey [6], the functionality ofSCM systems can be grouped into
two majorfunctionality areas,as shown in Figure 1.1 The team-centeredfunctionality
areas deal with thetechnical aspectsof SCM:

Components. Identify, classify, store and access the components that form the product.
Structure. Represent the architecture of the product.
Construction. Support the construction of the product and its artifacts.
Team. Enable a project team to develop and maintain a family of products.

1 Areas initalic are areas not covered in [6] that are now considered part ofSCM.



Deployment. Support the remote installation and maintenance of the product.

In contrast to the team-centered areas, theprocess-centeredfunctionality areas cover
management issues:

Auditing. Keep an audit trail of the product and its process.
Accounting. Gather statistics about the product and its process.
Controlling. Control how and when changes are made.
Process.Support the management of how the product evolves.

For each of these areas, we shall discuss the state of the art, assessing available and
proposedSCM solutions—means that solve specificSCM tasks. Following theassess-
ment categoriesas elaborated at the Dagstuhl seminar [7], eachSCM solution is ranked
according to five categories:

Effectiveness.How well does the solution work? This considers factors such as how
much of the task it covers and how good a solution it is to the problem posed by
accomplishing the task. Ratings are

– high (the solution is very effective),
– medium(the solution is somewhat effective), and
– low (the solution is hardly effective at all).

Affordability. The extent to which a typical software development organization can
afford to perform the solution. (Note that it may be that a solution is high cost, but
that an organization cannot afford not to use it.) Ratings are

– high (the solution is very affordable),
– medium(the solution is somewhat affordable), and
– low (the solution requires relatively high investment).

Teachability. The extent to which the solution can be taught in a university, includ-
ing the body of knowledge that must be conveyed to students and how well we
understand how to convey that body of knowledge. Ratings are

– high (we know how to teach the solution very well),
– medium(we know how to teach the solution to some extent), and
– low (we do not really know how to teach the solution).

Use in Practice. The class of users who have adopted the solution:
– laboratory users(LU) – researchers developing prototypes and models,
– innovators(IN) – willing to use early prototypes of the solution,
– early adopters(EA) – willing to use advanced prototypes
– early majority(EM) – willing to be the first users of industrial-quality versions

of the solution
– late majority(LM) – not willing to use the solution until there is considerable

industrial experience with it.
Research Potential.The extent to which further research is supposed to increase ef-

fectiveness, affordability, teachability, or use in practice. Ratings are
– high (major breakthroughs can be expected),
– medium(substantial improvements are likely), and
– low (details may be improved).



3 SCM Team Tasks and Solutions

We begin with a discussion of the solutions available in the team functionality area;
Table 1 on the next page summarizes our findings.

3.1 Team

The notion of aworkspacethat isolates a developer from other’s work is crucial to
SCM. Generally, workspaces should provide their own structure, states for the con-
figuration items and configurations, and access rights for the different functions in
the project [14]. The extent to which these requirements are met systems varies from
file-based checkin/checkout mechanisms as inRCS[28] over virtual file systems as in
CLEARCASE[18] or in n-DFS[13] to database-supported workspaces inADELE [9].

However, since everySCMsystem provides means to generate, propagate, and apply
changes, everySCM system allows tosimulateworkspaces—even if the “workspace”
is but a developer’s private directory or a branch in the version graph. This problem is
thus considered solved.

With an uncontrolled propagation of changes, the chances for two or more people’s
changes interfering with each other are high; this leads toconflictsthat must be resolved.
Thismergingof changes is still manual work. Textual merging is considered too unsafe
for many environments; the effectiveness of syntactic merging [33, 3] and semantic
merging [16, 2] has not yet been validated. Any solutions that ease the pain of manual
conflict resolution are likely to save valuable developer time; here is still work to do.

A group working together needsconnectivityto propagate changes. Given a small
group with good interconnection, a central repository suffices for all project sizes.
Things get more difficult for multi-site, multi-organization software developments (so-
calledvirtual software corporations). Here, local copies of shared resources must be
replicated and cached; remote access must be designed such that cooperation is pos-
sible while avoiding total project disclosure. Although several commercialSCM tools
such asCLEARCASE [18] offer support for wide-area connectivity, the area remains
subject to further research.

3.2 Components

Managing the history of individual components is a well-understoodSCM task. Tools
like SCCS[25] andRCS[28] are being used for more than two decades now. Efficient
means to store and retrieve huge amounts of versions in arepositoryare available and
have been thoroughly validated [17].Identifyingand reconstructing a configuration by
means of its components or changes applied to a baseline is a task easily solved with all
availableSCM tools.SCM at the component level may well be theSCM area that is best
understood of all.

3.3 Structure

Versioningof structures, i.e. systems of related components, is still not completely
solved. Let us start with the inventory of components—thesystem model. Most SCM



Ranking of SCM Solutions

SCM Tasks E
ffe

ct
iv

en
es

s

A
ffo

rd
a

b
ili

ty

Te
ac

ha
bi

lit
y

P
ra

ct
ic

al
U

sa
ge

R
es

ea
rc

h
P

ot
en

tia
l

Team
− Workspaces(individuals, groups) high high high LM low
− Conflict resolution(parallel work as the rule,

automated merging)
low low med? IN high

− Local area connectivity high med high LM low
− Wide area connectivity(remote access, replication,

caching)
med med med EA med

Components
− Version management for components(revisions,

branches, checkout/checkin, identification)
high high high LM low

− Repository(storage issues, deltas) high high high LM low
− Configurations(baselines, parts lists, identification) high high high LM low
Structure
− System model(interfaces, relationships) med? low low LU med
− Version management for structures(renaming,

reorganization, retiring of subsystems with whole
history)

med high high EA med

− Selection(baselines plus change sets, generic
configurations)

high high high EM low

− Consistency(compatible versions) med? low low LU med
Construction
− Building (snapshots, optimization, dependencies) high high high LM low
− Regeneration(integrated with SCM) high med med IN med
Deployment
− Replication(on a medium) high high high LM low
− Installation(in a consistent manner) med med low EM high
− Parameterization(customizing) med med low IN med
− Instantiation(running) med med low IN med
− Reconfiguration(dynamically) low low low IN high

Table 1.SCM Team Tasks



systems do not go beyond simple part lists; relationships and interfaces are barely sup-
ported, let alone versioned. (Exception to this rule arebuild dependencies,as discussed
in Section 3.4.) The extent to which system modeling is part ofSCM is still being dis-
cussed [32].

Although several commercialSCM systems and even free tools likeCVS [1] allow
decent versioning of file hierarchies, issues like renaming or reorganizing structures are
still not handled in a fully satisfying manner.

All SCM systems offer methods toselectspecific configurations; the range goes
from tags as inRCSor CVS to elaborated rules as inCLEARCASE[18] or ADELE [9].
The organization of versions (or changes) within anSCMsystem, theversion model, has
considerable impact on the way users interact with anSCM system [5]. Although it has
been shown that all existing versioning models can be unified to applying constrained
changes [37], the quest for user-friendly and intuitiveSCM interaction continues.

A still open problem is how to identify and denote consistent configurations in pres-
ence of multiple variants. So far, systems likeICE [36] or CMA [24] are confined to lab
use only. On the other hand, one must ask whether variability at construction time—that
is, permanent variants—is still anSCMissue. In general, product variability is best han-
dledby the product and within the product. The more we design for change, the more
we abstract from system issues, the less variability we have at construction time, and the
more variability we have at run time. Although consistency issues may rise again within
the scope ofdynamic reconfiguration(see Section 3.5), efforts spent in variability may
thus better be directed towards software design.

3.4 Construction

TheSCM task of building products can be summarized as “MAKE rules”. Virtually ev-
ery software product is built usingMAKE [12] or one of its numerous descendants.
Significant improvements on the originalMAKE include smart recompilation [29], par-
allel and distributed building [27], automatic dependency tracking [18], or caching of
derived versions [18]. All of these are widely used today, and it is difficult to see room
for further improvements.

A more important problem is the traditional distinction between construction tools
(i.e.MAKE) andSCMtools (i.e.RCS), as this separation hampers theregenerationof de-
rived files. A notable exception and an example of good integration is the build facility
integrated inCLEARCASE[18].

3.5 Deployment

Deployment is a new field ofSCM, traditionally subsumed under “maintenance”. Ac-
cording to Heimbigner and Wolf [15], deployment encompassesinstallation, parame-
terization, instantiation,andreconfiguration;ISO 9000-3 also listsreplication.

Replicationmeans to make sure that the intended configuration is correctly and
completely copied on the medium chosen for delivery. Copying from master to an
EPROM, preparing a package with CD and paper documents, and putting the files
to an area from where they are electronically transferred to the customer site are all



techniques for replication. This is evidently a topic for process engineering in an orga-
nization. The main challenge is to define (and apply) it as a process with self-check so
that the mistakes can be detected before delivery. We cannot see research opportunities
in this area.

Installation is the task of transferring the product to the user. Basic installation is
easy—a set of files is copied to places reachable by users. But this task becomes the
more difficult the more the product depends on other products, maybe in specific ver-
sions. Managing these dependencies and denoting consistency is only partially solved
today; the more applications depend on each other, the more the need for installation
support will increase.

Parameterizationis the task of adapting the product to the user’s context—a task
either done on site (by the user) or in the factory (especially when hardware is part of
the delivery). Parameterization is traditionally carried out by customization files and
environment variables; more recently. tools likeGNU AUTOCONF[19] are used to de-
termine system properties automatically. In future, such checks will be increasingly
carried out at run time and will thus need system support; the Windows registry is a yet
rudimentary form of such capabilities.

Instantiationis the task of starting the product into execution. This is trivial (and
solved) for simple, monolithic applications, but becomes a challenge as soon as mul-
tiple components interact with each other; trading services like the ones specified for
CORBA [22] can serve as base for determining a consistent configuration.

Reconfigurationmeans adapting the product to new requirements while it is execut-
ing. This includes all decisions made during installation, parameterization, and instan-
tiation, and may also mean that the product entirely re-creates and replaces itself. This
problem is well-understood when speaking of isolated applications: uploading software
releases dynamically to space probes or telecommunication switches is common usage.
However, dynamic reconfiguration will gain even more importance as more and more
software products interact with each other for an undetermined time. The challenge for
SCM is to see how far classicalSCM concepts can be applied dynamically.

Our observation is that the aspects of deployment are considered late in the life cycle
of a software product, usually after the software is finished and somebody discovers
that it has to be shipped to the customer site. Very few requirements specifications
contain paragraphs for requirements on deployment issues. Most software producers
can improve in this area; complex software systems offer new research issues.

4 SCM Process Tasks and Solutions

Let us now turn to the process functionality area. Our findings are summarized in Ta-
ble 2 on the following page.

4.1 Process

How far should theSCM system support the user’s lifecycle model and their organiza-
tion’s policies? Although everySCM system comes with a built-in process in the small



Ranking of SCM Solutions

SCM Tasks E
ffe

ct
iv

en
es

s

A
ffo

rd
a

b
ili

ty

Te
ac

ha
bi

lit
y

P
ra

ct
ic

al
U

sa
ge

R
es

ea
rc

h
P

ot
en

tia
l

Process
− Lifecycle Support(process enforcement) low? low med LU med
− Task management(identify current and pending

activities)
med high high EM low

− Communication(relevant events) high high high IN low
Auditing (history, traceability, logging)
− of individual items high high high LM low
− of structures(related documents) high? med? low LU med?
Accounting (status, statistics, reports) high high high LM low
Controlling
− Access control(no unwarranted changes) high high high EM low
− Change requests(automatically) med high high EM low
− Bug tracking(automatically) high high med IN med

Table 2.SCM Process Tasks

(i.e. checkin/checkout-cycle, long transactions, etc.), the degree to which large-scale
processes are supported varies.

Our experience tells us that the big leap forward is the cleardefinitionof software
processes. Use of tools is beneficial only if they are really supportive; often they take
the role of bureaucrats increasing the number of required interactions for the developers.
Consequently,SCM systems that are too rigid in enforcing a process will be cursed by
developers and reduce effectiveness. The distinction between support and discipline and
thus the effectiveness of lifecycle support remains to be validated.

Rather thanenforcingactivities, more advancedSCM systems offer means totrack
current and pending activities.Task managementis an area overlapping with (project)
management. If tools are used it must be carefully decided which type of information
is kept in theSCM tool and which in a project management tool. The interface is thin if
theSCM system handles the states of the configuration items (and configurations) and
this information is used by the (project) management for the progress control. Tight
coupling of work activities with the state control of the work results leads to sluggish
SCM systems.

Ultimate process support is achieved with automatedwork flow systems. These are
not widely used (yet); their validation is a pending research topic. In practice, work
flow is typically organized by informal communication. MostSCM systems support
triggers that are associated with specific events—such as automatic notification by e-
mail whenever a change occurred. Thesecommunicationfeatures are well-understood,
cheap and effective means for a simple work flow support [9].



4.2 Auditing

Every SCM system provides features to inquire the change history of specific config-
uration items; these features are mature and widely used. A yet unsolved problem is
the traceability ofrelated documents:How does one trace a change in implementation
back to the design and back to the requirements? How is a change in the implementa-
tion related to a change in the documentation? Althoughchange-based versioningor
activity-basedSCM [21] allows these changes to be associated with each other, there is
still room for improvement here.

4.3 Accounting

Accountingfacilities let users (and managers) inquire about the status of a product.
SCM systems at least allow classifying components and versions according to specific
properties (i.e. experimental, proposed, or stable); it may well be this simple tagging
method is already sufficient. Again, we know of no research that has addressed pending
problems in this area.

4.4 Controlling

Access controlis one of the fundamental principles of automatedSCM. Every SCM
system features some kind of access control, typically vialocks(only one user at a time
can edit a file). SeveralSCM systems also supportaccess control lists(only specific
users are allowed to do changes); others rely on the security features of the underlying
repository. Access control is widely used; it has never been aSCM research topic.

Tracking of change requests and defect reports is at the heart of the maintenance
process, starting as soon as independent testing begins. The process of handling these,
especially responsibility for decisions and definition of records to be kept, determines
the responsiveness of an organization on user needs. In small organizations, a simple
Excel sheet will provide enough support; bigger organizations require an elaborated
data base with dedicated queries.

AdvancedSCM systems likeLIFESPAN [35] offer an elaborated management of
change requests;in fact, the whole development process is organized along the pro-
cessing of change requests. Although the effectiveness of the process remains to be
validated, improvements are more likely to come fromSCM vendors than fromSCM
researchers.

An importantSCM topic is the tracking ofproduct defects,as it provides immediate
insight on the current product quality. Bug-tracking tools frequently come as stand-
alone tools, from the freely availableGNATS [23] to elaborated commercial systems.
However, the integration withSCM repositories as well as automated testing facilities
still leaves to be desired—a challenge forSCM vendors and researchers.

5 Conclusion

SCM is a mature discipline. It is mature in practice, as it is successfully used. And
it is mature in research, since there is much to be taught—and not so much left to



be researched. The only two research areas that are considered to have high potential
are automated change integration and deployment issues; major improvements are also
feasible in wide area connectivity, version management of structures, system modeling,
consistency issues, lifecycle support, and integration issues.

Although several well-understood solutions are available, no singleSCMsystem of-
fers all solutions at once. Integration and flexibility are thus still issues forSCM users
andSCM vendors—maybe also forSCM researchers, provided they find a way to vali-
date the practical benefits of newSCM models.

Validation is also an issue for this paper, and the state ofSCM in general. Upon
compiling the tables, it was amazing to see how few hard facts were available to back
specific judgements. The most important result of our assessment is that many more
SCM experience reports and experiments are needed—we need to know what we know
before we can move on.We thus encourage theSCM community to prove us right or
wrong and look forward to fruitful discussions.

Acknowledgments.We thank the participants and organizers of the Dagstuhl Work-
shop on Software Engineering Research and Education [7] for their suggestions and
contributions. Gregor Snelting provided useful comments on an earlier revision of this
paper. Walter F. Tichy initiated the discussion on the state ofSCM and helped a lot in
ranking the individualSCM solutions.

References

1. BERLINER, B. CVS II: Parallelizing software development. InProc. of the 1990 Winter
USENIX Conference(Washington, D.C., 1990).

2. BINKLEY, D., HORWITZ, S.,AND REPS, T. Program integration for languages with proce-
dure calls.ACM Transactions on Software Engineering and Methodology 4, 1 (Jan. 1995),
3–35.

3. BUFFENBARGER, J. Syntactic software merging. In Estublier [8], pp. 153–172.
4. BURROWS, C., AND WESLEY, I. Ovum Evaluates: Configuration Management. Ovum,

Inc., Burlington, MA, 1999.
5. CONRADI, R., AND WESTFECHTEL, B. Version models for software configuration man-

agement.ACM Computing Surveys 30, 2 (June 1998), 232–282.
6. DART, S. Concepts in configuration management. In Feiler [11], pp. 1–18.
7. DENERT, E., HOFFMAN, D. M., LUDEWIG, J.,AND PARNAS, D. L. Software engineering

research and education: Seeking a new agenda. Workshop Report 230, Dagstuhl, Feb. 1999.
8. ESTUBLIER, J., Ed. Software Configuration Management: selected papers / ICSE SCM-

4 and SCM-5 workshops(Seattle, Washington, Oct. 1995), vol. 1005 ofLecture Notes in
Computer Science, Springer-Verlag.

9. ESTUBLIER, J.,AND CASALLAS, R. The Adele configuration manager. In Tichy [30], ch. 4,
pp. 99–133.

10. ESTUBLIER, J., FAVRE, J.-M., AND MORAT, P. Towards scm/pdm integration? In Mag-
nusson [20], pp. 95–106.

11. FEILER, P. H., Ed.Proc. 3rd International Workshop on Software Configuration Manage-
ment(Trondheim, Norway, June 1991), ACM Press.

12. FELDMAN , S. I. Make—A program for maintaining computer programs.Software—
Practice and Experience 9(Apr. 1979), 255–265.

13. FOWLER, G., KORN, D., AND RAO, H. n-DFS: The multiple dimensional file system. In
Tichy [30], ch. 5, pp. 135–154.



14. FRÜHAUF, K. Hygiene in software works—Software configuration management. InPro-
ceedings of the Second European Conference on Software Quality(Oslo, 1990), pp. 1–17.

15. HEIMBIGNER, D., AND WOLF, A. Post-deployment configuration management. In Som-
merville [26], pp. 272–276.

16. HORWITZ, S., PRINS, J., AND REPS, T. Integrating noninterfering versions of programs.
ACM Transactions on Programming Languages and Systems 11, 3 (July 1989), 345–387.

17. HUNT, J. J., VO, K.-P., AND TICHY, W. F. Delta algorithms: An empirical analysis.ACM
Transactions on Software Engineering and Methodology 7, 2 (Apr. 1998), 192–214.

18. LEBLANG, D. B. The CM challenge: Configuration management that works. In Tichy [30],
ch. 1, pp. 1–37.

19. MACKENZIE, D., AND ELLISTON, B. Autoconf—Creating Automatic Configuration
Scripts. Free Software Foundation, Inc., Dec. 1998. Distributed with GNU autoconf.

20. MAGNUSSON, B., Ed. Proc. 8th Symposium on System Configuration Management(Brus-
sels, Belgium, July 1998), vol. 1349 ofLecture Notes in Computer Science, Springer-Verlag.

21. MICALLEF, J., AND CLEMM , G. M. The Asgard system: Activity-based configuration
management. In Sommerville [26], pp. 175–186.

22. OBJECT MANAGEMENT GROUP. The Common Object Request Broker: Architecture and
Specification, Aug. 1991.

23. OSIER, J. M.,AND KEHOE, B. Keeping Track: Managing Messages With GNATS. Cygnus
Support, 1996.

24. PLOEDEREDER, E., AND FERGANY, A. The data model of the configuration management
assistant. InProc. 2nd International Workshop on Software Configuration Management
(Princeton, New Jersey, Oct. 1989), W. F. Tichy, Ed., ACM Press, pp. 5–13.

25. ROCHKIND, M. J. The source code control system.IEEE Transactions on Software Engi-
neering SE-1, 4 (Dec. 1975), 364–370.

26. SOMMERVILLE , I., Ed. Proc. 6th International Workshop on Software Configuration Man-
agement(Berlin, Germany, Mar. 1996), vol. 1167 ofLecture Notes in Computer Science,
Springer-Verlag.

27. STALLMAN , R.,AND MCGRATH, R. GNU Make—A Program for Directing Recompilation,
0.48 ed. Free Software Foundation, Inc., 1995. Distributed with GNU Make.

28. TICHY, W. F. RCS—A system for version control.Software—Practice and Experience 15,
7 (July 1985), 637–654.

29. TICHY, W. F. Smart recompilation.ACM Transactions on Software Engineering and
Methodology 8, 3 (July 1986), 273–291.

30. TICHY, W. F., Ed.Configuration Management, vol. 2 of Trends in Software. John Wiley &
Sons, Chichester, UK, 1994.

31. VAN DER HOEK, A., HEIMBIGNER, D., AND WOLF, A. L. Does configuration management
research have a future? In Estublier [8], pp. 305–310.

32. VAN DER HOEK, A., HEIMBIGNER, D., AND WOLF, A. L. System modeling resurrected.
In Magnusson [20], pp. 140–145.

33. WESTFECHTEL, B. Structure-oriented merging of revisions of software documents. In
Feiler [11], pp. 86–79.

34. WESTFECHTEL, B., AND CONRADI, R. Software configuration management and engineer-
ing data management: Differences and similarities. In Magnusson [20], pp. 95–106.

35. WHITGIFT, D. Methods and Tools for Software Configuration Management. John Wiley &
Sons, Chichester, UK, 1991.

36. ZELLER, A. Smooth operations with square operators—The version set model in ICE. In
Sommerville [26], pp. 8–30.

37. ZELLER, A., AND SNELTING, G. Unified versioning through feature logic.ACM Transac-
tions on Software Engineering and Methodology 6, 4 (Oct. 1997), 398–441.


