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Abstract—Recent advances in software testing allow automatic:Public class Stack {
derivation of tests that reach almost any desired point in the = int[] values =new int[3];
source code. There is, however, a fundamental problem with the; int size = 0;
general idea of targeting one distinct test coverage goal at a .
time: Coverage goals are neither independent of each other, nor« Void push{nt x) {
is test generation for any particular coverage goal guaranteed . if (size >= values.length) <:’ Requires a full stack
to succeed. We presenEVOSUITE, a search-based approach that . .
optimizeswhole test suites towards satisfying a coverage criterion, ° resize();
rather than generating distinct test cases directed towards digtct 7 if (size < values.length) ¢’ Else branch is infeasiblk:‘
coverage goals. Evaluated on five open source libraries and an, values[size++] = x;
industrial case study, we show thatEvoSuUITE achieves up to '
18 times the coverage of a traditional approach targeting single ° }

branches, with up to 44% smaller test suites. o int pop(){
Keywords-Search based software engineering, length, branch, if (size > O)<:’ May imply coverage ipushand resizeﬂ
coverage, genetic algorithm . retum valuesisize T
[. INTRODUCTION s else

. throw new EmptyStackException();
In structural testing, tests are generated from source cod Py ption();

with the aim of satisfying a coverage criterion. Recent ad-

vances allow modern testing tools to efficiently derive testprivate void resize()

cases for realistically sized programs fully automaticalh int[] tmp = new int[values.length« 2];

common approach is to select one coverage goal at a time for(int i = 0; i < values.length; i++)

(e.g., a program branch), and to derive a test case that tmp[i] = valuesli];

exercises this particular goal (e.dl],[2]). Although feasible,0 ~ values = tmp;

there is a major flaw in this strategy, as it assumes that:allt

coverage goals are equally important, equally difficultetaah, 22}

and independent of each other. Unfortunately, none of these

assumptions holds. Fig. 1. A simple stack implementation: Some branches are moreuiffo
This problem manifests itself in several ways: Many cowover than others, can lead to coverage of further braneelssome branches

erage goals are simply infeasible, meaning that there sexitn be infeasible.

no test that would exercise them; this is an instance of the

undecidable infeasible path problef}.[For example, consider ] ) ]

the stack implementation in Figurk The false branch of (collateral coverage). Again the order in which goals are

thei f condition in Line7 is infeasible. Targeting this goal chosen influences the result — even if all coverage goals are

will per definition fail and the effort was wasted. The gemer&onsidered, collateral coverage can influence the reguiéist

strategy seems to be to accept this fact and get over it. ~ Suite. For example, covering the true branch in Liteis
Even if feasible, some coverage goals are simply moRécessarily preceded by the true branch in Lihend may

difficult to satisfy than others. Therefore, given a limite@ May not also be preceded by the true branch in L5ne

amount of resources for testing, a lucky choice of the ordépere is no efficient solution to predict collateral coveray

of coverage goals can result in a good test suite, whereast? difficulty of a particular coverage goal.

unlucky choice can result in all the resources being spent onWe introduce EOSUITE, a novel approach that overcomes

only few test cases. For example, covering the true branchtigse problems byptimizing an entire test suite at once

Line 5 of the stack example is more difficult than coveringowards satisfying a coverage criterion, instead of ccersig

the false branch of the same line, as the true branch requigsfinct test cases directed towards satisfying distineecage

a St ack object which has filled its internal array. goals. The main contributions of this paper are:
Furthermore, a test case targeting a particular coveragle go Whole test suite optimization: EVOSUITE optimizes

will mostly also satisfy further coverage goals by accidenthole test suites with respect to an entire coverage aiteri




Random initial test suites Test suite evolution Minimized test suite

with maximized coverage & number of problems by combining concrete executions

with symbolic execution (e.g., 7], [8]). This idea has been

a0 [50 implemented in tools like DART7] and CUTE B], and is also
|> X0 [0 120 applied in Microsoft's parametrized unit testing tool PEX [
or the object-oriented testing framework Syms#h [
Meta-heuristic search techniques have been used as an alter

native to symbolic execution based approache$. [Search-
Based techniques have also been applied to test objectaatien
software using method sequencés, [11] or strongly typed
genetic programmingl1p], [13]. A promising avenue seems

Fig. 2. The B/OSUITE process: A set of randomly generated test suites
evolved to maximize coverage, and the best result is minimized.

Stack var0 =new Stack(); nt var0 =—20; to be the combination of evolutionary methods with dynamic
int varl = 0; Stack varl =new Stack(); . . Ll

try { varl = var0.pop()} varL.push(varo); symbolic execution (e.g.,1f]), alleviating some of the prob-
catch(EmptyStackException e)} varl.push(var0); lems both approaches have.

int var2 = —434; varl.push(var0); Most approaches described in the literature aim to generate
var0.push(var2); varl.push(var0); test suites that achieve as high as possible branch coverage

int var4 = var0.pop(); In principle, any other coverage criterion is amenable to

Fig. 3. Test suite consisting of two tests, produced moEUITE for the ,aUtomated tQSt generation. For example, mu_tatlon testing [
St ack class shown in Figur@: All feasible branches are covered. is a worthwhile test goal, and has been used in a search-based
test generation environment1].

When each testing target is sought individually, it is im-
at the same time. This means that the result is neithgortant to keep track of the accidental collateral coverage
adversely influenced by the order nor by the difficulty oof the remaining targets. Otherwise, it has been proven that
infeasibility of individual coverage goals. In additiorhet random testing would fare better under some scalability-mod
concept of collateral coverage disappears as all covemgeels [L5]. Recently, Harman et al.1p] proposed a search
intentional. based multi-objective approach in which, although eacH goa

Search-based testing:EVOSUITE uses a search-based apis still targeted individually, there is the secondary chje
proach that evolves a population of test suites. This agbroaof maximizing the number of collateral targets that are -acci
improves over the state of the art in search-based testing dgntally covered. However, no particular heuristic is used
(1) handling dependencies among predicates, (2) handistg thelp covering these other targets.
case length dynamically without applying exploration impe All approaches mentioned so far target a single test goal
ing constraints, and (3) giving guidance towards reachérsg tat a time — this is the predominant method. There are some
goals in private functions. notable exceptions in search based software testing. Theswo

Figure 2 illustrates the main steps in®SUITE: It starts of Arcuri and Yao [L7] and Baresi et al. J[8] use a single
by randomly generating a set of initial test suites, whickequence of function calls to maximize the number of covered
are evolved using evolutionary search towards satisfyingbsanches while minimizing the length of such a test case. A
chosen coverage criterion (see Sectidr). At the end, the drawback of such an approach is that there can be conflicting
best resulting test suite is minimized, giving us a testesuitesting goals, and it might be impossible to cover all of them
as shown in Figure for the St ack example from Figurel. with a single test sequence regardless of its length.

We demonstrate the effectiveness ofdSUITE by applying Regarding the optimization of an entire test suite in which

it to five open source libraries and an industrial case studjl test cases are considered at the same time, we are aware of
(SectionlV); to the best of our knowledge, this is the largesinly the work of Baudry et al.1[9]. In that work, test suites
evaluation of search-based testing of object-orientetivené are optimized with a search algorithm with respect to matati

to date. analysis. However, in that work there is the strong limdati

of having to manually choose and fix the length of the test
cases, which does not change during the search.

Coverage criteria are commonly used to guide test generain the literature of testing object oriented software, ¢her
tion. A coverage criterion represents a finite set of cowveragre also techniques that are not directly aimed to achieve
goals, and a common approach is to target one such goatatle coverage, as for example Rando@f).[In that work,

a time, generating test inputs either symbolically or with sequences of function calls are generated incrementalhg us
search-based approach. The predominant criterion intigre li an extension of random testing (for details, s2€)| and the
ature is branch coverage, but in principle any other coweragoal is to find test sequences for which the SUT fails. But this
criterion (e.g., mutation testingl]) is amenable to automatedis feasible if and only if automated oracles are availablece
test generation. a sequence of function calls is found for which at least one

Solving path constraints generated with symbolic exeauti@utomated oracle is not passed, that sequence can be reduced
is a popular approach to generate test dafaif unit tests §], to remove all the unnecessary function calls to trigger the
and dynamic symbolic execution as an extension can overcofadure. The software tester would get as output only the tes
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cases for which failures are triggered. Algorithm 1 The genetic algorithm applied inM®SUITE
A similar approach is used for example in DART] [or 1 current_population < generate random population

CUTE [8], in which although path coverage is targeted, an 2 repeat

automated oracle (e.g., does the SUT crash?) is used to check Z < elite of current_population

the generated test cases. This step is essential becaase, ap:  While |Z| # |current_population| do

from trivial cases, the test suite generated following ahpat s Py,P, + select two parents with rank selection
coverage criterion would be far too large to be manually s if crossover probabilitghen
evaluated by software testers in real industrial contexts. 7 01,045 < crossoverPy, P,
The testing problem we address in this paper is verys else
different from the one considered V][ [20]. Our goal is 01,02 <= P1,P»
to target difficult faults for which automated oracles ar¢ no mutateO; and O,
available (which is a common situation in practice). Beeaus fp = min(fitness(Py),fitness(Py))
in these cases the outputs of the test cases have to be nyanual fo = min(fitness(Oy),fitness(03))

verified, then the generated test suites should be of mahkgea 1 lp = length(Py) + length(P,)
size. There are two contrasting objectives: the “qualitithe = 1 lo = length(Oy) + length(O,)

test suite (e.g., measured in its ability to trigger faituomce 1 T'p = best individual ofcurrent_population
manual oracles are provided) and its size. The approach we if fo<fpV(fo=/fpANlo<lp)then
follow in this paper can be summarized as: Satisfy the chosen for O in {O,,02} do
coverage criterion (e.g., branch coverage) with the srstalle if length(O) <2 x length(Tg) then
possible test suite. 19 Z +— ZU{0O}
20 else
IIl. TESTSUITE OPTIMIZATION a Z + ZU{P, or Py}
To evolve test suites that optimize the chosen coverage else
criterion, we use a search algorithm, namely a Genetic Al=s Z < ZU{P,Ps}

gorithm (GA), that is applied on a population of test suites. 2a  current_population < Z
this section, we describe the applied GA, the representatio s until solution found or maximum resources spent
genetic operations, and the fitness function.

A. Genetic Algorithms optimal solutions for the addressed problem. In this paper,

Genetic Algorithms (GAs) qualify as meta-heuristic searalise a test case representation similar to what has been used
technique and attempt to imitate the mechanisms of natuprbviously [l], [11]: A test case is a sequence of statements
adaptation in computer systems. A population of chromosome = (sy,ss,...,s;) of length I. The length of a test suite
is evolved using genetics-inspired operations, where edghdefined as the sum of the lengths of its test cases, i.e.,
chromosome represents a possible problem solution. length(T) = > ,cp lt-

The GA employed in this paper is depicted in Algoritlim Each statement in a test case represents one vdlye,
Starting with a random population, evolution is performed u which has a type-(v(s;)) € T, whereT is the finite set of
til a solution is found that fulfills the coverage criteriar,the types. There are four different types of statements:
allocated resources (e.g., time, number of fitness evahgti  Primitive statements represent numeric variables, e.g.,
have been used up. In each iteration of the evolution, a néwt var0 = 54. Value and type of the statement are de-
generation is created and initialized with the best indigid fined by the primitive variable.
of the last generatione(itism). Then, the new generation is Constructor statements generate new instances of any
filled up with individuals produced by rank selection (Lifg given class; e.g.Stack varl = new Stack(). Value
crossover (Lin&), and mutation (Lineé.0). Either the offspring and type of the statement are defined by the object constructe
or the parents are added to the new generation, dependingrothe call. Any parameters of the constructor call are assig
fitness and length constraints (see Sectiti ). values out of the sefv(sy) | 0 < k < i}.

Field statementsaccess public member variables of ob-
jects, e.g.,int var2 = varl.size. Value and type of

To apply search algorithms to solve an engineering probleenfield statement are defined by the member variable. If the
the first step is to define a representation of the valid smisti field is non-static, then the source object of the field haseto b
for that problem. In our case, a solution igest suite which in the set{v(s;) | 0 < k < i}.
is represented as a sEtof test cases;. Given |T| = n, we Method statementsinvoke methods on objects or call
haveT = {t1,ta, ... tyn}. static methods, e.gint var3 = var 1. pop(). Again,

In a unit testing scenario, a test caseessentially is a the source object or any of the parameters have to be values
program that executes the software under test (SUT). Conse{v(sy) | 0 < k < i}. Value and type of a method statement
guently, a test case requires a reasonable subset of tlet taage defined by its return value.
language (e.g., Java in our case) that allows one to encdd a given software under test, ttest clusterdefines the set
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of available classes, their public constructors, metheahsl For a given test suitd’, the fitness value is measured by
fields. executing all tests € T and keeping track of the set of
Note that the chosen representation kagable size Not executed methoda/ as well as the minimabranch distance
only the numbern of test cases in a test suite can varymin(b,T") for each brancth ¢ B. The branch distance is a
during the GA search, but also the number of stateméntsommon heuristic to guide the search for input data to solve
in the test cases. The motivation for having a variable lengthe constraints in the logical predicates of the branchék [
representation is that, for a new software to test, we do nbite branch distance for any given execution of a predicate ca
know its optimal number of test cases and their optimal lengbe calculated by applying a recursively defined set of rules
a priori — this needs to be searched for. (see [LQ] for details). For example, for predicate> 10 and
The entire search space of test suites is composed of @i 5, the branch distance to the true branchlis— 5 + £,
possible sets of size frofi to N (i.e., n € [0,N]). Each with k& > 1. In practice, to determine the branch distance each
test case can have a size fromto L (i.e., [ € [1,L)). predicate of the SUT is instrumented to evaluate and keep
We need to have these constraints, because in the cont&€k of the distances for each execution.
addressed in this paper we are not assuming the presence dihe fitness function estimates how close a test suite is to
an automated oracle. Therefore, we cannot expect softwayeringall branches of a program, therefore it is important to
testers to manually check the outputs (i.e., writing assé&@nsider that each predicate has to be executed at leagt twic
statements) of thousands of long test cases. For eachgposifio that each branch can be taken. Consequently, we define the
in the sequence of statements of a test case, there can be fesamch distance(b,T") for branchb on test suitel” as follows:
Lnin t0 I,4. pOSSible statements, depending on the SUT and

L . X ) if the branch h n cover
the position (later statements can reuse objects instadtia 0 _ the bra C as been covered,
in previous statements). The search space is hence exyremd% T) = V(dmin(b,T))  if the predicate has been
large, although finite becausé, L andI,,,, are finite. ’ executed at least twice,

1 otherwise.

C. Fitness Function ) o o
Here, v(x) is a normalizing function in0,1]; we use the

In this paper, we focus obranch coverages test criterion, normalization function 11 v(z) = z/(z + 1). This results
although the EoSuITE approach can be generalized to any, the following fitness function to minimize:

test criterion. A program contains control structures sash
i f orwhi | e statements guarded by logical predicates; branch s _ _
coverage requires that each of these predicates evalodtes t fitnes§T) = |M] - [Mr| + Z d(bx.T) @)
and to false. A branch imfeasibleif there exists no program
input that evaluates the predicate such that this particuld: Bloat Control
branch is executed. Note that we consider branch coverage\ variable size representation could lead timat, which
at byte-code level. Because all high level branch statesrient js a problem that is very typical for example in Genetic
Java (e.g., predicates in loop conditions and switch s&tés) Programming 22]: For instance, after each generation, test
are transformed into simplerf statements in the byte-code,cases can become longer and longer, until all the memory
EvOSUITE is able to handle all of them. is consumed, even if shorter sequences are better rewarded.
Let B denote the set of branches of the SUT, two for evemyotice that bloat is an extremely complex phenomenon in
control structure. A method without any control structuregvolutionary computation, and after many decades of rekear
consists of only one branch, and therefore we extend thés still an open problem whose dynamics and nature are not
branch coverage definition to require that each method in tbempletely understood?p].
set of methodsV/ is executed at least once. Bloat occurs when small negligible improvements in the
An optimal solutionT,, is defined as a solution that coverditness value are obtained with larger solutions. This is/ ver
all the feasible branches/methods and it is minimal in thgpical in classification/regression problems. When ingafe
total number of statements, i.e., no other test suite with tkesting the fitness function is just the obtained coverdyen t
same coverage should exist that has a lower total numlvgs would not expect bloat, because the fitness function would
of statements in its test cases. Depending on the chosen &&stume only few possible values. However, when other rsetric
case representation, some branches might never be covenedintroduced with large domains of possible values (e.g.,
although potentially feasible if the entire grammar of &rg branch distance and also for example mutation impdct]),[
language is used. For sake of simplicity, we tag those besiclthen bloat might occur.
as infeasible for the given representation. In previous work R3], we have studied several bloat control
In order to guide the selection of parents for offspringnethods from the literature of Genetic Programmirif] [
generation, we use a fitness function that rewards better capplied in the context of testing object oriented software.
erage. If two test suites have the same coverage, the seleckiowever, our previous study?2f| covered only the case of
mechanism rewards the test suite with less statementghiee. targeting one branch at a time. Irv&SuUITE we use the same
shorter one. methods analyzed in that stud¥q, although further analyses
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S p— | 20 | b0 | <0 | 1) Crossover: Thg crossover operator (see Flgu46a_))
T o] L= generates two offsprin@; andO- from two parent test suites
ool | | P; and P,. A random valuex is chosen froml0,1]. On one
A0 [P0 ] <0 hand, the first offspring); will contain the firsta|P;| test
cases from the first parent, followed by the lést o) | P;| test
b0 cases from the second parent. On the other hand, the second
_- offspring Oz will contain the firsta|P;| test cases from the
N e N N N b0 | x0 second parent, followed by the lgdt— )| P; | test cases from
) the first parent.
(a) Crossover (b) Mutation Because the test cases are independent among them, this

Fig. 4. Crossover and mutation are the basic operators fosehech using crossover opgrz_itor always ylelds V_a“d offsprlng tESt_GlJ't
a GA. Crossover is applied at test suite level, while mutatoapplied to  Furthermore, it is easy to see that it decreases the differen

test cases and test suites. in the number of test cases between the test suites, i.e.,
abs(|O1] — |O2|) < abs(|P1| — | P2]). No offspring will have
more test cases than the largest of its parents. Howevey, it i

are required to study whether there are differences in thgisegiple that the total sum of the length of test cases in an
application to handle bloat in evolving test suites rathemt offspring could increase.

single test cases. The employed bloat control methods are: 2) Mutation: The mutation operator for test suites is more

« We put a limit NV on the maximum number of test casesomplicated than that used for crossover, because it wartks b
and limit L for their maximum length. Even if we expectat test suite and test case levels. When a test $uigemutated,

the length and number of test cases of an optimal test suit@ch of its test cases is mutated with probabiliy7’|. So,

to have low values, we still need to choose comparativen average, only one test case is mutated. Then, a number of
larger N and L. In fact, allowing the search process taew random test cases is addedito With probability o, a

dive in longer test sequences and then reduce their lentgist case is added. If it is added, then a second test case is
during/after the search can provide staggering improvésneadded with probabilityr, and so on until theth test case is

in term of achieved coverage/]. not added (which happens with probability- o). Test cases
« In our GA we use rank selectio] based on the fitness are added only if the limitV has not been reached, i.e., if
function (i.e., the obtained coverage and branch distance< N.

values). In case of ties, we assign better ranks to smalledf a test case is mutated (see Figdi)), then three types
test suites. Notice that including the length directly if operations are applied in ordeemove changeandinsert

the fitness function (as for example done iri7][ [18]), Each of them is applied with probability/3. Therefore, on
might have side-effects, because we would need to pwerage, only one of them is applied, although with prolitgbil
together and linearly combine two values of different unitsl/3)? all of them are applied. These three operations work
of measure. Furthermore, although we have two distinas follows:

objectives, coverage is more important than size. Remove: For a test case= (sy,s9,...,s,) With lengthn,
« Offspring with non-better coverage are never accepted éach statemern; is deleted with probability /n. As the value

the new generations if their size is bigger than that of thds;) might be used as a parameter in any of the statements
parents (for the details, see Algorithiy. Si+1,---,Sn, the test case needs to be repaired to remain valid:
« We use a dynamic limit control conceptually similar to théor each statement;, i < j < n, if s; refers touv(s;), then

one presented by Silva and CostZ][ If an offspring’s this reference is replaced with another value out of the set
coverage is not better than that of the best solufignin  {v(sx) | 0 < k < jAk # i} which has the same type aés;).

the current entire GA population, then it is not acceptdd this is not possible, then; is deleted as well recursively.

in the new generations if it is longer than twi@; (see  Change: For a test caseé = (s1,s9,...,5,) With length
Line 18 in Algorithm 1). n, each statement; is changed with probability /n. If s;
is a primitive statement, then the numeric value represente
by s; is changed by a random value i[0,A], where A is
a constant. Ifs; is not a primitive statement, then a method,

The GA code depicted in Algorithni is at high level, field, or constructor with the same return type«s;) and

and can be used for many engineering problems in whiglarameters satisfiable with the values in the {3€t;) | 0 <
variable size representations are used. To adapt it to dfisped: < i} is randomly chosen out of the test cluster.

engineering problem, we need to define search operator$nsert: With probability o/, a new statement is inserted at
that manipulate the chosen solution representation (see Serandom position in the test case. If it is added, then a secon
tion I11-B). In particular we need to define the crossover argtatement is added with probability?, and so on until the
mutation operators for test suites. Furthermore, we needitb statement is not inserted. A new statement is added only
define how random test cases are sampled when we initializ¢he limit L has not been reached, i.e.,likk L. For each

the first population of the GA. insertion, with probabilityl /3 a random call of the unit under

E. Search Operators



test is inserted, with probability/3 a method call on a value than at source code level, as complex predicates are caimpile
in the set{v(sx) | 0 < k < 4} for insertion at position; is into simpler bytecode instructions.
added, and with probability /3 a value{v(si) | 0 < k < i} To produce test cases as compilable JUnit source code,
is used as a parameter in a call of the unit under test. ABvOSUITE accesses only the public interfaces for test genera-
parameters of the selected call are either reused out ofethet®n; any subclasses are also considered part of the unérund
{v(sk) | 0 <k < i}, set tonul |, or randomly generated. test to allow testing of abstract classes. To execute ths tes
If after applying these mutation operators a test ¢dses no during the search, ¥OSUITE uses Java Reflection. Before
statement left (i.e., all have been removed), thémremoved presenting the result to the user, test suites are minimized
from T using a simple minimization algorithn24l; this minimization
To evaluate the fitness of a test suite, it is necessary rexduces both the number of test cases as well as their length,
execute all its test cases and collect the branch informatisuch that removing any statement in the resulting test suite
During the search, on average only one test case is changedilh reduce its coverage.
a test suite for each generation. This means that re-ergcuti The search operators for test cases make use of only the
all test cases is not necessary, as the coverage infornaion type information in the test cluster, and so difficulties can
be carried over from the previous execution. arise when method signatures are imprecise: For example,
3) Random Test CasefRandom test cases are needed twontainer classes often decldlej ect as parameter or return
initialize the first generation of the GA, and when mutatintype. Because the search operators have no access to dynamic
test suites. Sampling a test case at random means that dgpk information, casting to the appropriate class is diffic
possible test case in the search space has a non-zero pitgbabin particular, this problem also exists for all classes gsiava
of being sampled, and these probabilities are indepentfentGenerics, as type erasure removes much of the useful infor-
other words, the probability of sampling a specific test agasemation during compilation and all generic parameters look
constant and it does not depend on the test cases sampletikeoCbj ect for Java Reflection. To overcome this problem
far. for container classes, we always puit eger objects into
When a test case representation is complex and it is @fntainer classes, such that we can also cast ret@njedct
variable length (as it happens in our case, see Sedtiidh), instances back tbnt eger.
it is often not possible to sample test cases with uniform Test case execution can be slow, and in particular when
distribution (i.e., each test case having the same prahabilgenerating test cases randomly, infinite recursion canroccu
of being sampled). Even when it would be possible to use(a.g., by adding a container to itself and then calling the
uniform distribution, it would be unwise (for more detaila 0 hashCode method). Therefore, we chose a timeout of five
this problem, seelf]). For example, given a maximum lengthseconds for test case execution. If a test case times out, the
L, if each test case was sampled with uniform probabilitynthéhe test suite with that test case is assigned the maximum
sampling a short sequence would be extremely unlikely. THigness value, which i$M| + |B|, the sum of methods and
is because there are many more test cases with long lengtAnches to be covered.
compared to the ones of short length. )
In this paper, when we sample a test case at random, e Singlé Branch Strategy
choose a value: in 1 < r < L with uniform probability. To allow a fair comparison with the traditional single branc
Then, on an empty sequence we repeatedly apply the insertéigproach (e.g.,1]), we implemented this strategy on top of
operator described in Sectidi-E2 until the test case has aEVOSUITE. In the single branch strategy, an individual of
length > r. the search space is a single test case. The identical nutatio
operators for test cases can be used as WoSITE, but
IV. EXPERIMENTS crossover needs to be done at the test case level. For this,
The independence of the order in which test cases awe used the approach also applied by Tonelfaand Fraser
selected and the collateral coverage are inherent to ttee E and Zeller [L1]: Offspring is generated using the single point
SuITE approach, therefore the evaluation focuses on tleeossover function described in SectibREL1, where the first

improvement over the single branch strategy. part of the sequence of statements of the first parent is merge
) _ with the second part of the second parent, and vice versa.
A. Implementation Details Because there are dependencies between statements agsl valu

Our EvoSUITE prototype is implemented in Java, andyenerated in the test case, this might invalidate the fagult
generates JUnit test suites. It does not require the soo® ctest case, and we need to repair it: The statements of thadeco
of the SUT, as it collects all necessary information for tagtt part are appended one at a time, trying to satisfy depengienci
cluster from the bytecode via Java Reflection. with existing values, but generating new values as donexduri

During test generation, \EOSUITE considers one top-level statement insertion, if necessary.
class at a time. The class and all its anonymous and membefhe fitness function in the single branch strategy also
classes are instrumented at bytecode level to keep tracknekds to be adapted: We use the traditicaygpproach level
called methods and branch distances during execution. Nptas normalized branch distance fitness function, which is
that the number of branches at bytecode level is usuallgtargommonly used in the literatur]} [10].



TABLE | - . .
NUMBER OF CLASSES BRANCHES, AND LINES OF CODE IN THE case  Probability for statement insertion was set46 = 0.5. Al-

STUDY SUBJECTS though longer test cases are better in gen&xd| e limited
the length of test cases tb = 80 because we experienced

Case Study #Classes #Branches IlOC this to be a suitable length at which the test case execution

Public Al does not take too long. The maximum test suite size was set
Jc  Java Collections 30 118 3,531 6,337 to N = 100, although the initial test suites are generated with
JT JodaTime 131 199 7,834 18,007 only two test cases each. The population size for the GA was
CP  Commons Primitives 210 213 2,874 7,008 h to be 80
cCc Commons Collections244 418 8491 19,041  CNOSeN 10 be &U. _
GC Google Collections 91 331 3,549 8,586 Search algorithms are often compared in terms of the
Ind Industrial 2129 373 809 number of fitness evaluations; in our case, comparing to a
N 727 1,308 26,652 59,788 single branch strategy would not be fair, as each individual

in EVOSUITE represents several test cases, such that the

comparison would favor YOSUITE. As the length of test
The approach level is used to guide the search towsf@ses can vary greatly and longer test cases generally have

the target branch. It is determined as the minimal numbeigher coverage, we decided to take the numbeexafcuted

of control dependent edges in the control dependency gragBtementsas execution limit. This means that the search is

between the target branch and the control flow represenf@formed until either a solution with 100% branch coverage

by the test case. The branch distance is calculated asf@dnd, ork statements have been executed as part of the fitness

EVOSUITE, but taken for the closest branch where the contrgvaluations. In our experiments, we chdse- 1,000,000.

flow diverges from the target branch. For the single branch strategy, the maximum test case
Test cases are only generated for branches that have not Jeggth, population size, and any probabilities are chosen

covered previously by other test cases. As the order in whilentical to the settings of ¥SUITE. At the end of the test

branches are targeted can influence the results, we seteetedyeneration, the resulting test suite is minimized in the esam

branches in random order. Notice that, in the literatureerof Way as in EZOSUITE.

no order is specified (e.g.1]} [14], [16]). The stopping condition for the single branch strategy is
chosen the same as fov&SUITE, i.e., maximum 1,000,000
C. Case Study Subjects statements executed. To avoid that this budget is spemebnti

For the evaluation, we chose five open source libraries. 9§ the first branch if it is difficult or infeasible, we applyeth
avoid a bias caused by considering only open source coflowing strategy: ForiB| branches and an initial budget of
we also selected a subset of an industrial case study projéctStatements, the execution limit for each branchXig|B|
previously used by Arcuret al. [26]. This results in a total Statements. If a branch is covered, some budget may be left
of 1,308 classes, which were tested by only calling the AP| §¥€r, and so after the first iteration on all branches thewe is
the 727 public classes (the remaining classes are private &4maining budgefX”. For the remaining uncovered branches
anonymous member classes). B'" a new budgetX’/|B’| is calculated and a new iteration is

The projects were chosen with respect to their testabilit??art_ed on these branches. This process is C(_)ntlnued hetil t
For experiments of this size, it is necessary that the umés an@imum number of statements (1,000,000) is reached.
testable without complex interactions with external reses ~ EVOSUITE and search based testing are based on ran-
(e.g., databases, networks and filesystem) and are not-milgmized algorithms, which are affected by chance. Running
threaded. In fact, each experiment should be run in an ingep@ randomized algorithm twice will likely produce different
dent way, and there might be issues if automatically geedra{esuns- It is essential to use rigorous stat|st|.cal meshto_lj
test cases do not properly de-allocate resources. Notate tproperly analyze the performance of randomized algorlthms
this is a problem common to practically all automated tegtif¥nen we need to compare two or more of them. In this paper,
techniques in the literature. Tablesummarizes the propertiese follow the guidelines described ia{].

of these case study subjects. For each of the 727 public classes, we ramoBUITE
against the single branch strategy to compare their adhieve
D. Experimental Setup coverage. Each experiment comparison was repeated 106 time

As witnessed in Sectiokil , search algorithms are influenced” ith different seeds for the random number generator.

by a great number of parameters. For many of these parameterfResyits

there are “best practices”: For example, we chose a crossoveD ¢ traint i ide full inf i
probability of 3/4 based on past experience. I'wW&SUITE, ue to space constraints we cannot provide full Information

the probabilities for mutation are largely determined bg thOf the analyzed data2y], but just show the data that are

individual test suite size or test case length; the initialba- sgfficient in glaiming the superiority of the\'@SUIT.E tech-
bility for test case insertion was set &= 0.1, and the initial nique. Statistical difference has been measured with thenMa
' Whitney U test. To quantify the improvement in a standardized
1LOC stands for non-commenting lines of source code, calalaigh Way, W€ useg the Varghg-DQIanﬁﬂg effect S'Z? _28]' In 0}”
JavaNCSS (http://javancss.codehaus.org/) context, thed, is an estimation of the probability that, if we



TABLE I - .
A15 MEASURE VALUES IN THE COVERAGE COMPARISONSA12 < 0.5 branches, then ¥0SUITE has a low probability of generating
MEANS EVOSUITE RESULTED IN LESS A12 = 0.5 EQUAL, AND A12 > 0.5  larger test suites.
BETTER COVERAGE THAN A SINGLE BRANCH APPROACH

Whole test suite generation producasaller test suites

Case Study #A12 <05 #A12 =05 #A12>05 than single branch test case generation.

j$ 1? i 111% The results obtained with \EOSUITE compared to the

cP 11 146 53 traditional approach (of targeting each branch sepanasely

cc 30 105 109 simply staggering. How is it possible to achieve such large

ﬁg 23 i% 52 improvements? There can be several explanations. First, in
case of infeasible branches, all the effort spent by a single

X 81 289 357

branch at a time strategy would be wasted, apart from passibl
collateral coverage. But collateral coverage of difficudt t
reach branches would be quite unlikely. Second, the trawiti
run EvOSUITE, we will obtain better coverage than runningitness function would have problems in guiding the search
the single branch strategy. When two randomized algorithmgyard private methods that are difficult to execute. For
are equivalent, therl,, = 0.5. A high valueA;; = 1 means example, consider the case of a private method that is called
that, inall of the 100 runs of EOSUITE, we obtained coverage only once in a public method, but that method call is nested
values higher than the ones obtainedaihof the 100 runs of iy a pranch whose predicate is very complicated to satisfy.
the single branch strategy. Unless the fitness function is extended to consider all pissi
The box-plot in Figure5 compares the actual obtainednethods that can lead to execute the private methods, then
coverage values (averaged out of the 100 runs)\@$UITE  there would be no guidance to execute those private methods.
and the single branch strateg§iligle). In total, the coverage Thjrd, assume that there is a difficult branch to cover, and
improvement of BOSUITE ranged up to 18 times that of hested to that branch there are several others. ONCSEITE
the single branch strategy (averaged over 100 runs). Figurgs aple to generate a test sequence that cover that difficult
shows a box-plot of the results of thé, # 0.5 measure for pranch, then that sequence could be extended (e.g., bycaddin
the coverage grouped by case study subject; this figure illygnction calls at its end) or copied in another test case én th
trates the strong statistical evidence thatolSUITE achieves tgst suite (e.g., through the crossover operator) to maierea
higher coverage. In many casesvdSUITE is practically o cover the other nested branches. On the other hand, in the
certain to achieve better coverage results, even when vee tgkditional approach of targeting one branch at a time, asnle
the randomness of the results into account. smart seeding strategies are used based on previouslyedover
Whole test suite generation achievdgher coverage branches, the search to cover those nested branches would be
than single branch test case generation. harmed by the fact that covering their difficult parent skioul
) be done from scratch again.
. Table li ShO\.NS for the coverage comparisons how many Because our empirical analysis employes a very large case
times we obFamedAu values equal, Iower and higher tharEtudy (1,308 classes for a total of 26,652 byte-code level
0-5. We_obtalned p?vaIAues lower th@m n 32.9 out of 438 branches), we cannot analyze all of these branches to give an
comparisons in whichd;; 7 0.5. Notice that in many Cases gyact explanation for the better performance ofolSUITE.

Xve he},ve‘ﬁm = 0.5. ;—h('js d;d rfloi g%rg%gg atstjrprlset: For SOTﬁowever, the three possible explanations we gave are plausi
easy" classes, a budget ot 2,U00, statements exesu 'Bna, although further analyses (e.g., on artificial sofewtrat
would be more than enough to cover all the feasible branc can generate with known number of infeasible branches)

with very h'gh. probablhty._ In these cases, It Is important _twould be required to shed light on this important research
analyze what is the resulting size of the generated testssui uestion

When the coverage is different, analyzing the resulting test
suite sizes is not reasonable.

For those cases wherk, = 0.5 for the coverage, Figure
compares the obtained test suite size values (averaged out d he focus of this paper is on comparing the approach “entire
the 100 runs) of EOSuUITE and the single branch strategytest suite” to “one target at the time”.

(Single). In the best case, we obtained a test suite sizeThreats toconstruct validityare on how the performance of
(averaged out of the 100 runs) that fov&SuITE was44% a testing technique is defined. We gave priority to the aguev
smaller. coverage, with the secondary goal of minimizing the length.

Figure 8 shows A;, for the length of the resulting testThis yields two problems: (1) in practical contexts, we ntigh
suites. For length comparisons, we obtained p-values lowest want a much larger test suite if the achieved coverage is
than0.05 in 158 out of 289 comparisons. Recall that for bothonly slightly higher, and (2) this performance measure s
EvoSuITE and the single branch strategy we use #fane take into account how difficult it will be to manually evaleat
post-processing technique to reduce the length of the butple test cases for writing assert statements (i.e., chgdkia
test suites. When we obtain full coverage of all the feasibtmrrectness of the outputs).

V. THREATS TOVALIDITY
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Fig. 5. Average branch coverage: Even with an evolution liphit,000,000 Fig. 8. A;5 for length: E/0SUITE has a low probability of generating longer

statements, ¥OSUITE achieves higher coverage. test suites than a single branch approach.
= - - - - experiment100 times, and we followed rigorous statistical
- ‘ 3 procedures to evaluate their results. Another possibleathr
S E : to internal validity is that we did not study the effect of the
© ; E = different configurations for the employed GA.
° ; : E Although we used both open source projects and industrial
= } i } : } software as case studies, there is the threakternal validity
° 3 . } } } regarding the generalization to other types of softwardckvh
g 3 § 3 3 is common for any empirical analysis.
: : - Our EvOSUITE prototype might not be superior to all
g - T ‘ ‘ f ‘ ‘ existing testing tools; this, however, is not our claim: We
JC T cp ce ac nd have shown that whole test suite generation is superior to a

traditional strategy targeting one test goal at a time. &lgj
Fig. 6. Aj, for coverage: EOSUITE has a high probability of achieving this insight can be used to improve any existing testing
higher coverage than a single branch approach. tool, independent of the underlying test criterion (e.ganch
coverage, mutation testing, ...) or test generation teghai
(e.g., search algorithm), although such a generalizatiattter
Threats tointernal validity might come from how the techniques will of course need further evidence.
empirical study was carried out. To reduce the probability o

having faults in our testing framework, it has been cargfull VI. CONCLUSIONS
tested. But it is well known that testing along cannot p_rdnfe t Coverage criteria are a standard technique to automate test
absence of defects. Furthermore, randomised algorithes gﬁ

. . neration. In this paper, we have shown that optimizing
affected by chance. To cope with this problem, we ran ea ole test suites towards a coverage criterion is supeaor t

the traditional approach of targeting one coverage goal at a
time. In our experiments, this results in significantly bett

: ° overall coverage with smaller test suites, and can alsoceedu
8 | g Snae g the resources needed to generate these test suites.
c 8 S While we have focused on branch coverage in this paper, the
g <- 3 A B ver
g 8 findings also carry over to other test criteria. Consequygtité
Q 8 - g - o - . . . . .
4 g4 T ° TS T ability to avoid being misled by infeasible test goals cafphe
oy } 8 i o y overcoming similar problems in other criteria, for example
g {1 ' - T I - the equivalent mutant problem in mutation testidg [
z o | ‘ i : 1 Even though the results achieved witv@&SuUITE already
; Q . E H b demonstrate that whole test suite generation is superior to
od = —_— T == == single target test generation, there is ample opportumty t
rol ol P P P P further improve our EOSUITE prototype. For example, -
JC JC JT JT CP CP CC CC GC GC Ind Ind

SUITE currently has only basic support for arrays and textual
Fig. 7. Average length values: Even after minimizationpSUITE test suites inputs, and does not implement all available techniques in

tend to be smaller than those created with a single branctegyrgshown Search-based testing (e.g., Testability Transformatief).|
for cases with identical coverage). Implementing these improvements will further improve the



results and make EOSUITE applicable to a wider range of [16] M. Harman, S. G. Kim, K. Lakhotia, P. McMinn, and S. Yoo., §O
applications.

In our empirical study, we targeted object-oriented sofewa
However, the EOSUITE approach could be easily applied

to procedural software as well, although further reseasch [#7]

needed to assess the potential benefits in such a context.
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