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Abstract—Recent advances in software testing allow automatic
derivation of tests that reach almost any desired point in the
source code. There is, however, a fundamental problem with the
general idea of targeting one distinct test coverage goal at a
time: Coverage goals are neither independent of each other, nor
is test generation for any particular coverage goal guaranteed
to succeed. We presentEVOSUITE, a search-based approach that
optimizeswhole test suites towards satisfying a coverage criterion,
rather than generating distinct test cases directed towards distinct
coverage goals. Evaluated on five open source libraries and an
industrial case study, we show thatEVOSUITE achieves up to
18 times the coverage of a traditional approach targeting single
branches, with up to 44% smaller test suites.

Keywords-Search based software engineering, length, branch
coverage, genetic algorithm

I. I NTRODUCTION

In structural testing, tests are generated from source code
with the aim of satisfying a coverage criterion. Recent ad-
vances allow modern testing tools to efficiently derive test
cases for realistically sized programs fully automatically. A
common approach is to select one coverage goal at a time
(e.g., a program branch), and to derive a test case that
exercises this particular goal (e.g., [1], [2]). Although feasible,
there is a major flaw in this strategy, as it assumes that all
coverage goals are equally important, equally difficult to reach,
and independent of each other. Unfortunately, none of these
assumptions holds.

This problem manifests itself in several ways: Many cov-
erage goals are simply infeasible, meaning that there exists
no test that would exercise them; this is an instance of the
undecidable infeasible path problem [3]. For example, consider
the stack implementation in Figure1: The false branch of
the if condition in Line7 is infeasible. Targeting this goal
will per definition fail and the effort was wasted. The general
strategy seems to be to accept this fact and get over it.

Even if feasible, some coverage goals are simply more
difficult to satisfy than others. Therefore, given a limited
amount of resources for testing, a lucky choice of the order
of coverage goals can result in a good test suite, whereas an
unlucky choice can result in all the resources being spent on
only few test cases. For example, covering the true branch in
Line 5 of the stack example is more difficult than covering
the false branch of the same line, as the true branch requires
a Stack object which has filled its internal array.

Furthermore, a test case targeting a particular coverage goal
will mostly also satisfy further coverage goals by accident

1public classStack{
2 int [] values =new int[3];
3 int size = 0;

4 void push(int x) {
5 if (size >= values.length) ⇐ Requires a full stack

6 resize() ;
7 if (size < values.length) ⇐ Else branch is infeasible

8 values[size++] = x;
9 }

10 int pop() {
11 if (size > 0)⇐ May imply coverage inpushand resize

12 return values[size−−];
13 else
14 throw new EmptyStackException();
15 }

16 private void resize(){
17 int [] tmp = new int[values.length∗ 2];
18 for (int i = 0; i < values.length; i++)
19 tmp[i] = values[i];
20 values = tmp;
21 }
22}

Fig. 1. A simple stack implementation: Some branches are more difficult to
cover than others, can lead to coverage of further branches,and some branches
can be infeasible.

(collateral coverage). Again the order in which goals are
chosen influences the result – even if all coverage goals are
considered, collateral coverage can influence the resulting test
suite. For example, covering the true branch in Line11 is
necessarily preceded by the true branch in Line7, and may
or may not also be preceded by the true branch in Line5.
There is no efficient solution to predict collateral coverage or
the difficulty of a particular coverage goal.

We introduce EVOSUITE, a novel approach that overcomes
these problems byoptimizing an entire test suite at once
towards satisfying a coverage criterion, instead of considering
distinct test cases directed towards satisfying distinct coverage
goals. The main contributions of this paper are:

Whole test suite optimization: EVOSUITE optimizes
whole test suites with respect to an entire coverage criterion
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Fig. 2. The EVOSUITE process: A set of randomly generated test suites is
evolved to maximize coverage, and the best result is minimized.

Stack var0 =new Stack();
int var1 = 0;
try { var1 = var0.pop();}
catch(EmptyStackException e){}
int var2 =−434;
var0.push(var2);
int var4 = var0.pop();

int var0 =−20;
Stack var1 =new Stack();
var1.push(var0);
var1.push(var0);
var1.push(var0);
var1.push(var0);

Fig. 3. Test suite consisting of two tests, produced by EVOSUITE for the
Stack class shown in Figure1: All feasible branches are covered.

at the same time. This means that the result is neither
adversely influenced by the order nor by the difficulty or
infeasibility of individual coverage goals. In addition, the
concept of collateral coverage disappears as all coverage is
intentional.

Search-based testing:EVOSUITE uses a search-based ap-
proach that evolves a population of test suites. This approach
improves over the state of the art in search-based testing by
(1) handling dependencies among predicates, (2) handling test
case length dynamically without applying exploration imped-
ing constraints, and (3) giving guidance towards reaching test
goals in private functions.

Figure 2 illustrates the main steps in EVOSUITE: It starts
by randomly generating a set of initial test suites, which
are evolved using evolutionary search towards satisfying a
chosen coverage criterion (see SectionIII ). At the end, the
best resulting test suite is minimized, giving us a test suite
as shown in Figure3 for theStack example from Figure1.
We demonstrate the effectiveness of EVOSUITE by applying
it to five open source libraries and an industrial case study
(SectionIV); to the best of our knowledge, this is the largest
evaluation of search-based testing of object-oriented software
to date.

II. BACKGROUND

Coverage criteria are commonly used to guide test genera-
tion. A coverage criterion represents a finite set of coverage
goals, and a common approach is to target one such goal at
a time, generating test inputs either symbolically or with a
search-based approach. The predominant criterion in the liter-
ature is branch coverage, but in principle any other coverage
criterion (e.g., mutation testing [4]) is amenable to automated
test generation.

Solving path constraints generated with symbolic execution
is a popular approach to generate test data [5] or unit tests [6],
and dynamic symbolic execution as an extension can overcome

a number of problems by combining concrete executions
with symbolic execution (e.g., [7], [8]). This idea has been
implemented in tools like DART [7] and CUTE [8], and is also
applied in Microsoft’s parametrized unit testing tool PEX [9]
or the object-oriented testing framework Symstra [6].

Meta-heuristic search techniques have been used as an alter-
native to symbolic execution based approaches [10]. Search-
based techniques have also been applied to test object oriented
software using method sequences [1], [11] or strongly typed
genetic programming [12], [13]. A promising avenue seems
to be the combination of evolutionary methods with dynamic
symbolic execution (e.g., [14]), alleviating some of the prob-
lems both approaches have.

Most approaches described in the literature aim to generate
test suites that achieve as high as possible branch coverage.
In principle, any other coverage criterion is amenable to
automated test generation. For example, mutation testing [4]
is a worthwhile test goal, and has been used in a search-based
test generation environment [11].

When each testing target is sought individually, it is im-
portant to keep track of the accidental collateral coverage
of the remaining targets. Otherwise, it has been proven that
random testing would fare better under some scalability mod-
els [15]. Recently, Harman et al. [16] proposed a search
based multi-objective approach in which, although each goal
is still targeted individually, there is the secondary objective
of maximizing the number of collateral targets that are acci-
dentally covered. However, no particular heuristic is usedto
help covering these other targets.

All approaches mentioned so far target a single test goal
at a time – this is the predominant method. There are some
notable exceptions in search based software testing. The works
of Arcuri and Yao [17] and Baresi et al. [18] use a single
sequence of function calls to maximize the number of covered
branches while minimizing the length of such a test case. A
drawback of such an approach is that there can be conflicting
testing goals, and it might be impossible to cover all of them
with a single test sequence regardless of its length.

Regarding the optimization of an entire test suite in which
all test cases are considered at the same time, we are aware of
only the work of Baudry et al. [19]. In that work, test suites
are optimized with a search algorithm with respect to mutation
analysis. However, in that work there is the strong limitation
of having to manually choose and fix the length of the test
cases, which does not change during the search.

In the literature of testing object oriented software, there
are also techniques that are not directly aimed to achieve
code coverage, as for example Randoop [20]. In that work,
sequences of function calls are generated incrementally using
an extension of random testing (for details, see [20]), and the
goal is to find test sequences for which the SUT fails. But this
is feasible if and only if automated oracles are available. Once
a sequence of function calls is found for which at least one
automated oracle is not passed, that sequence can be reduced
to remove all the unnecessary function calls to trigger the
failure. The software tester would get as output only the test



cases for which failures are triggered.
A similar approach is used for example in DART [7] or

CUTE [8], in which although path coverage is targeted, an
automated oracle (e.g., does the SUT crash?) is used to check
the generated test cases. This step is essential because, apart
from trivial cases, the test suite generated following a path
coverage criterion would be far too large to be manually
evaluated by software testers in real industrial contexts.

The testing problem we address in this paper is very
different from the one considered in [7], [20]. Our goal is
to target difficult faults for which automated oracles are not
available (which is a common situation in practice). Because
in these cases the outputs of the test cases have to be manually
verified, then the generated test suites should be of manageable
size. There are two contrasting objectives: the “quality” of the
test suite (e.g., measured in its ability to trigger failures once
manual oracles are provided) and its size. The approach we
follow in this paper can be summarized as: Satisfy the chosen
coverage criterion (e.g., branch coverage) with the smallest
possible test suite.

III. T EST SUITE OPTIMIZATION

To evolve test suites that optimize the chosen coverage
criterion, we use a search algorithm, namely a Genetic Al-
gorithm (GA), that is applied on a population of test suites.In
this section, we describe the applied GA, the representation,
genetic operations, and the fitness function.

A. Genetic Algorithms

Genetic Algorithms (GAs) qualify as meta-heuristic search
technique and attempt to imitate the mechanisms of natural
adaptation in computer systems. A population of chromosomes
is evolved using genetics-inspired operations, where each
chromosome represents a possible problem solution.

The GA employed in this paper is depicted in Algorithm1:
Starting with a random population, evolution is performed un-
til a solution is found that fulfills the coverage criterion,or the
allocated resources (e.g., time, number of fitness evaluations)
have been used up. In each iteration of the evolution, a new
generation is created and initialized with the best individuals
of the last generation (elitism). Then, the new generation is
filled up with individuals produced by rank selection (Line5),
crossover (Line7), and mutation (Line10). Either the offspring
or the parents are added to the new generation, depending on
fitness and length constraints (see SectionIII-D ).

B. Problem Representation

To apply search algorithms to solve an engineering problem,
the first step is to define a representation of the valid solutions
for that problem. In our case, a solution is atest suite, which
is represented as a setT of test casesti. Given |T | = n, we
haveT = {t1,t2, . . . ,tn}.

In a unit testing scenario, a test caset essentially is a
program that executes the software under test (SUT). Conse-
quently, a test case requires a reasonable subset of the target
language (e.g., Java in our case) that allows one to encode

Algorithm 1 The genetic algorithm applied in EVOSUITE

1 current population← generate random population
2 repeat
3 Z ← elite of current population
4 while |Z| 6= |current population| do
5 P1,P2 ← select two parents with rank selection
6 if crossover probabilitythen
7 O1,O2 ← crossoverP1,P2

8 else
9 O1,O2 ← P1,P2

10 mutateO1 andO2

11 fP = min(fitness(P1),fitness(P2))
12 fO = min(fitness(O1),fitness(O2))
13 lP = length(P1) + length(P2)
14 lO = length(O1) + length(O2)
15 TB = best individual ofcurrent population
16 if fO < fP ∨ (fO = fP ∧ lO ≤ lP ) then
17 for O in {O1,O2} do
18 if length(O) ≤ 2× length(TB) then
19 Z ← Z ∪ {O}
20 else
21 Z ← Z ∪ {P1 or P2}
22 else
23 Z ← Z ∪ {P1,P2}
24 current population← Z
25 until solution found or maximum resources spent

optimal solutions for the addressed problem. In this paper,we
use a test case representation similar to what has been used
previously [1], [11]: A test case is a sequence of statements
t = 〈s1,s2, . . . ,sl〉 of length l. The length of a test suite
is defined as the sum of the lengths of its test cases, i.e.,
length(T ) =

∑

t∈T lt.
Each statement in a test case represents one valuev(si),

which has a typeτ(v(si)) ∈ T , whereT is the finite set of
types. There are four different types of statements:

Primitive statements represent numeric variables, e.g.,
int var0 = 54. Value and type of the statement are de-
fined by the primitive variable.

Constructor statements generate new instances of any
given class; e.g.,Stack var1 = new Stack(). Value
and type of the statement are defined by the object constructed
in the call. Any parameters of the constructor call are assigned
values out of the set{v(sk) | 0 ≤ k < i}.

Field statements access public member variables of ob-
jects, e.g.,int var2 = var1.size. Value and type of
a field statement are defined by the member variable. If the
field is non-static, then the source object of the field has to be
in the set{v(sk) | 0 ≤ k < i}.

Method statements invoke methods on objects or call
static methods, e.g.,int var3 = var1.pop(). Again,
the source object or any of the parameters have to be values
in {v(sk) | 0 ≤ k < i}. Value and type of a method statement
are defined by its return value.
For a given software under test, thetest clusterdefines the set



of available classes, their public constructors, methods,and
fields.

Note that the chosen representation hasvariable size. Not
only the numbern of test cases in a test suite can vary
during the GA search, but also the number of statementsl
in the test cases. The motivation for having a variable length
representation is that, for a new software to test, we do not
know its optimal number of test cases and their optimal length
a priori – this needs to be searched for.

The entire search space of test suites is composed of all
possible sets of size from0 to N (i.e., n ∈ [0,N ]). Each
test case can have a size from1 to L (i.e., l ∈ [1,L]).
We need to have these constraints, because in the context
addressed in this paper we are not assuming the presence of
an automated oracle. Therefore, we cannot expect software
testers to manually check the outputs (i.e., writing assert
statements) of thousands of long test cases. For each position
in the sequence of statements of a test case, there can be from
Imin to Imax possible statements, depending on the SUT and
the position (later statements can reuse objects instantiated
in previous statements). The search space is hence extremely
large, although finite becauseN , L andImax are finite.

C. Fitness Function

In this paper, we focus onbranch coverageas test criterion,
although the EVOSUITE approach can be generalized to any
test criterion. A program contains control structures suchas
if or while statements guarded by logical predicates; branch
coverage requires that each of these predicates evaluates to true
and to false. A branch isinfeasibleif there exists no program
input that evaluates the predicate such that this particular
branch is executed. Note that we consider branch coverage
at byte-code level. Because all high level branch statements in
Java (e.g., predicates in loop conditions and switch statements)
are transformed into simplerif statements in the byte-code,
EVOSUITE is able to handle all of them.

Let B denote the set of branches of the SUT, two for every
control structure. A method without any control structures
consists of only one branch, and therefore we extend the
branch coverage definition to require that each method in the
set of methodsM is executed at least once.

An optimal solutionTo is defined as a solution that covers
all the feasible branches/methods and it is minimal in the
total number of statements, i.e., no other test suite with the
same coverage should exist that has a lower total number
of statements in its test cases. Depending on the chosen test
case representation, some branches might never be covered
although potentially feasible if the entire grammar of target
language is used. For sake of simplicity, we tag those branches
as infeasible for the given representation.

In order to guide the selection of parents for offspring
generation, we use a fitness function that rewards better cov-
erage. If two test suites have the same coverage, the selection
mechanism rewards the test suite with less statements, i.e., the
shorter one.

For a given test suiteT , the fitness value is measured by
executing all testst ∈ T and keeping track of the set of
executed methodsMT as well as the minimalbranch distance
dmin(b,T ) for each branchb ∈ B. The branch distance is a
common heuristic to guide the search for input data to solve
the constraints in the logical predicates of the branches [10].
The branch distance for any given execution of a predicate can
be calculated by applying a recursively defined set of rules
(see [10] for details). For example, for predicatex ≥ 10 and
x = 5, the branch distance to the true branch is10 − 5 + k,
with k ≥ 1. In practice, to determine the branch distance each
predicate of the SUT is instrumented to evaluate and keep
track of the distances for each execution.

The fitness function estimates how close a test suite is to
coveringall branches of a program, therefore it is important to
consider that each predicate has to be executed at least twice
so that each branch can be taken. Consequently, we define the
branch distanced(b,T ) for branchb on test suiteT as follows:

d(b,T ) =



















0 if the branch has been covered,

ν(dmin(b,T )) if the predicate has been
executed at least twice,

1 otherwise.

Here, ν(x) is a normalizing function in[0,1]; we use the
normalization function [21]: ν(x) = x/(x + 1). This results
in the following fitness function to minimize:

fitness(T ) = |M | − |MT |+
∑

bk∈B

d(bk,T ) (1)

D. Bloat Control

A variable size representation could lead tobloat, which
is a problem that is very typical for example in Genetic
Programming [22]: For instance, after each generation, test
cases can become longer and longer, until all the memory
is consumed, even if shorter sequences are better rewarded.
Notice that bloat is an extremely complex phenomenon in
evolutionary computation, and after many decades of research
it is still an open problem whose dynamics and nature are not
completely understood [22].

Bloat occurs when small negligible improvements in the
fitness value are obtained with larger solutions. This is very
typical in classification/regression problems. When in software
testing the fitness function is just the obtained coverage, then
we would not expect bloat, because the fitness function would
assume only few possible values. However, when other metrics
are introduced with large domains of possible values (e.g.,
branch distance and also for example mutation impact [11]),
then bloat might occur.

In previous work [23], we have studied several bloat control
methods from the literature of Genetic Programming [22]
applied in the context of testing object oriented software.
However, our previous study [23] covered only the case of
targeting one branch at a time. In EVOSUITE we use the same
methods analyzed in that study [23], although further analyses
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Fig. 4. Crossover and mutation are the basic operators for thesearch using
a GA. Crossover is applied at test suite level, while mutationis applied to
test cases and test suites.

are required to study whether there are differences in their
application to handle bloat in evolving test suites rather than
single test cases. The employed bloat control methods are:

• We put a limitN on the maximum number of test cases
and limit L for their maximum length. Even if we expect
the length and number of test cases of an optimal test suite
to have low values, we still need to choose comparatively
larger N and L. In fact, allowing the search process to
dive in longer test sequences and then reduce their length
during/after the search can provide staggering improvements
in term of achieved coverage [24].

• In our GA we use rank selection [25] based on the fitness
function (i.e., the obtained coverage and branch distance
values). In case of ties, we assign better ranks to smaller
test suites. Notice that including the length directly in
the fitness function (as for example done in [17], [18]),
might have side-effects, because we would need to put
together and linearly combine two values of different units
of measure. Furthermore, although we have two distinct
objectives, coverage is more important than size.

• Offspring with non-better coverage are never accepted in
the new generations if their size is bigger than that of the
parents (for the details, see Algorithm1).

• We use a dynamic limit control conceptually similar to the
one presented by Silva and Costa [22]. If an offspring’s
coverage is not better than that of the best solutionTB in
the current entire GA population, then it is not accepted
in the new generations if it is longer than twiceTB (see
Line 18 in Algorithm 1).

E. Search Operators

The GA code depicted in Algorithm1 is at high level,
and can be used for many engineering problems in which
variable size representations are used. To adapt it to a specific
engineering problem, we need to define search operators
that manipulate the chosen solution representation (see Sec-
tion III-B ). In particular we need to define the crossover and
mutation operators for test suites. Furthermore, we need to
define how random test cases are sampled when we initialize
the first population of the GA.

1) Crossover: The crossover operator (see Figure4(a))
generates two offspringO1 andO2 from two parent test suites
P1 andP2. A random valueα is chosen from[0,1]. On one
hand, the first offspringO1 will contain the firstα|P1| test
cases from the first parent, followed by the last(1−α)|P2| test
cases from the second parent. On the other hand, the second
offspring O2 will contain the firstα|P2| test cases from the
second parent, followed by the last(1−α)|P1| test cases from
the first parent.

Because the test cases are independent among them, this
crossover operator always yields valid offspring test suites.
Furthermore, it is easy to see that it decreases the difference
in the number of test cases between the test suites, i.e.,
abs(|O1| − |O2|) ≤ abs(|P1| − |P2|). No offspring will have
more test cases than the largest of its parents. However, it is
possible that the total sum of the length of test cases in an
offspring could increase.

2) Mutation: The mutation operator for test suites is more
complicated than that used for crossover, because it works both
at test suite and test case levels. When a test suiteT is mutated,
each of its test cases is mutated with probability1/|T |. So,
on average, only one test case is mutated. Then, a number of
new random test cases is added toT : With probability σ, a
test case is added. If it is added, then a second test case is
added with probabilityσ2, and so on until theith test case is
not added (which happens with probability1−σi). Test cases
are added only if the limitN has not been reached, i.e., if
n < N .

If a test case is mutated (see Figure4(b)), then three types
of operations are applied in order:remove, changeand insert.
Each of them is applied with probability1/3. Therefore, on
average, only one of them is applied, although with probability
(1/3)3 all of them are applied. These three operations work
as follows:

Remove: For a test caset = 〈s1,s2, . . . ,sn〉 with lengthn,
each statementsi is deleted with probability1/n. As the value
v(si) might be used as a parameter in any of the statements
si+1, . . . ,sn, the test case needs to be repaired to remain valid:
For each statementsj , i < j ≤ n, if sj refers tov(si), then
this reference is replaced with another value out of the set
{v(sk) | 0 ≤ k < j∧k 6= i} which has the same type asv(si).
If this is not possible, thensj is deleted as well recursively.

Change: For a test caset = 〈s1,s2, . . . ,sn〉 with length
n, each statementsi is changed with probability1/n. If si
is a primitive statement, then the numeric value represented
by si is changed by a random value in±[0,∆], where∆ is
a constant. Ifsi is not a primitive statement, then a method,
field, or constructor with the same return type asv(si) and
parameters satisfiable with the values in the set{v(sk) | 0 ≤
k < i} is randomly chosen out of the test cluster.

Insert: With probabilityσ′, a new statement is inserted at
a random position in the test case. If it is added, then a second
statement is added with probabilityσ′2, and so on until the
ith statement is not inserted. A new statement is added only
if the limit L has not been reached, i.e., ifl < L. For each
insertion, with probability1/3 a random call of the unit under



test is inserted, with probability1/3 a method call on a value
in the set{v(sk) | 0 ≤ k < i} for insertion at positioni is
added, and with probability1/3 a value{v(sk) | 0 ≤ k < i}
is used as a parameter in a call of the unit under test. Any
parameters of the selected call are either reused out of the set
{v(sk) | 0 ≤ k < i}, set tonull, or randomly generated.

If after applying these mutation operators a test caset has no
statement left (i.e., all have been removed), thent is removed
from T .

To evaluate the fitness of a test suite, it is necessary to
execute all its test cases and collect the branch information.
During the search, on average only one test case is changed in
a test suite for each generation. This means that re-executing
all test cases is not necessary, as the coverage informationcan
be carried over from the previous execution.

3) Random Test Cases:Random test cases are needed to
initialize the first generation of the GA, and when mutating
test suites. Sampling a test case at random means that each
possible test case in the search space has a non-zero probability
of being sampled, and these probabilities are independent.In
other words, the probability of sampling a specific test caseis
constant and it does not depend on the test cases sampled so
far.

When a test case representation is complex and it is of
variable length (as it happens in our case, see SectionIII-B ),
it is often not possible to sample test cases with uniform
distribution (i.e., each test case having the same probability
of being sampled). Even when it would be possible to use a
uniform distribution, it would be unwise (for more details on
this problem, see [15]). For example, given a maximum length
L, if each test case was sampled with uniform probability, then
sampling a short sequence would be extremely unlikely. This
is because there are many more test cases with long length
compared to the ones of short length.

In this paper, when we sample a test case at random, we
choose a valuer in 1 ≤ r ≤ L with uniform probability.
Then, on an empty sequence we repeatedly apply the insertion
operator described in SectionIII-E2 until the test case has a
length≥ r.

IV. EXPERIMENTS

The independence of the order in which test cases are
selected and the collateral coverage are inherent to the EVO-
SUITE approach, therefore the evaluation focuses on the
improvement over the single branch strategy.

A. Implementation Details

Our EVOSUITE prototype is implemented in Java, and
generates JUnit test suites. It does not require the source code
of the SUT, as it collects all necessary information for the test
cluster from the bytecode via Java Reflection.

During test generation, EVOSUITE considers one top-level
class at a time. The class and all its anonymous and member
classes are instrumented at bytecode level to keep track of
called methods and branch distances during execution. Note
that the number of branches at bytecode level is usually larger

than at source code level, as complex predicates are compiled
into simpler bytecode instructions.

To produce test cases as compilable JUnit source code,
EVOSUITE accesses only the public interfaces for test genera-
tion; any subclasses are also considered part of the unit under
test to allow testing of abstract classes. To execute the tests
during the search, EVOSUITE uses Java Reflection. Before
presenting the result to the user, test suites are minimized
using a simple minimization algorithm [24]; this minimization
reduces both the number of test cases as well as their length,
such that removing any statement in the resulting test suite
will reduce its coverage.

The search operators for test cases make use of only the
type information in the test cluster, and so difficulties can
arise when method signatures are imprecise: For example,
container classes often declareObject as parameter or return
type. Because the search operators have no access to dynamic
type information, casting to the appropriate class is difficult.
In particular, this problem also exists for all classes using Java
Generics, as type erasure removes much of the useful infor-
mation during compilation and all generic parameters look
like Object for Java Reflection. To overcome this problem
for container classes, we always putInteger objects into
container classes, such that we can also cast returnedObject
instances back toInteger.

Test case execution can be slow, and in particular when
generating test cases randomly, infinite recursion can occur
(e.g., by adding a container to itself and then calling the
hashCode method). Therefore, we chose a timeout of five
seconds for test case execution. If a test case times out, then
the test suite with that test case is assigned the maximum
fitness value, which is|M | + |B|, the sum of methods and
branches to be covered.

B. Single Branch Strategy

To allow a fair comparison with the traditional single branch
approach (e.g., [1]), we implemented this strategy on top of
EVOSUITE. In the single branch strategy, an individual of
the search space is a single test case. The identical mutation
operators for test cases can be used as in EVOSUITE, but
crossover needs to be done at the test case level. For this,
we used the approach also applied by Tonella [1] and Fraser
and Zeller [11]: Offspring is generated using the single point
crossover function described in SectionIII-E1, where the first
part of the sequence of statements of the first parent is merged
with the second part of the second parent, and vice versa.
Because there are dependencies between statements and values
generated in the test case, this might invalidate the resulting
test case, and we need to repair it: The statements of the second
part are appended one at a time, trying to satisfy dependencies
with existing values, but generating new values as done during
statement insertion, if necessary.

The fitness function in the single branch strategy also
needs to be adapted: We use the traditionalapproach level
plus normalized branch distance fitness function, which is
commonly used in the literature [2], [10].



TABLE I
NUMBER OF CLASSES, BRANCHES, AND LINES OF CODE IN THE CASE

STUDY SUBJECTS

Case Study #Classes #Branches LOC1

Public All

JC Java Collections 30 118 3,531 6,337
JT Joda Time 131 199 7,834 18,007
CP Commons Primitives 210 213 2,874 7,008
CC Commons Collections 244 418 8,491 19,041
GC Google Collections 91 331 3,549 8,586
Ind Industrial 21 29 373 809

Σ 727 1,308 26,652 59,788

The approach level is used to guide the search toward
the target branch. It is determined as the minimal number
of control dependent edges in the control dependency graph
between the target branch and the control flow represented
by the test case. The branch distance is calculated as in
EVOSUITE, but taken for the closest branch where the control
flow diverges from the target branch.

Test cases are only generated for branches that have not been
covered previously by other test cases. As the order in which
branches are targeted can influence the results, we selectedthe
branches in random order. Notice that, in the literature, often
no order is specified (e.g., [1], [14], [16]).

C. Case Study Subjects

For the evaluation, we chose five open source libraries. To
avoid a bias caused by considering only open source code,
we also selected a subset of an industrial case study project
previously used by Arcuriet al. [26]. This results in a total
of 1,308 classes, which were tested by only calling the API of
the 727 public classes (the remaining classes are private and
anonymous member classes).

The projects were chosen with respect to their testability:
For experiments of this size, it is necessary that the units are
testable without complex interactions with external resources
(e.g., databases, networks and filesystem) and are not multi-
threaded. In fact, each experiment should be run in an indepen-
dent way, and there might be issues if automatically generated
test cases do not properly de-allocate resources. Notice that
this is a problem common to practically all automated testing
techniques in the literature. TableI summarizes the properties
of these case study subjects.

D. Experimental Setup

As witnessed in SectionIII , search algorithms are influenced
by a great number of parameters. For many of these parameters
there are “best practices”: For example, we chose a crossover
probability of 3/4 based on past experience. In EVOSUITE,
the probabilities for mutation are largely determined by the
individual test suite size or test case length; the initial proba-
bility for test case insertion was set toσ = 0.1, and the initial

1LOC stands for non-commenting lines of source code, calculated with
JavaNCSS (http://javancss.codehaus.org/)

probability for statement insertion was set toσ′ = 0.5. Al-
though longer test cases are better in general [24], we limited
the length of test cases toL = 80 because we experienced
this to be a suitable length at which the test case execution
does not take too long. The maximum test suite size was set
to N = 100, although the initial test suites are generated with
only two test cases each. The population size for the GA was
chosen to be 80.

Search algorithms are often compared in terms of the
number of fitness evaluations; in our case, comparing to a
single branch strategy would not be fair, as each individual
in EVOSUITE represents several test cases, such that the
comparison would favor EVOSUITE. As the length of test
cases can vary greatly and longer test cases generally have
higher coverage, we decided to take the number ofexecuted
statementsas execution limit. This means that the search is
performed until either a solution with 100% branch coverageis
found, ork statements have been executed as part of the fitness
evaluations. In our experiments, we chosek = 1,000,000.

For the single branch strategy, the maximum test case
length, population size, and any probabilities are chosen
identical to the settings of EVOSUITE. At the end of the test
generation, the resulting test suite is minimized in the same
way as in EVOSUITE.

The stopping condition for the single branch strategy is
chosen the same as for EVOSUITE, i.e., maximum 1,000,000
statements executed. To avoid that this budget is spent entirely
on the first branch if it is difficult or infeasible, we apply the
following strategy: For|B| branches and an initial budget of
X statements, the execution limit for each branch isX/|B|
statements. If a branch is covered, some budget may be left
over, and so after the first iteration on all branches there isa
remaining budgetX ′. For the remaining uncovered branches
B′ a new budgetX ′/|B′| is calculated and a new iteration is
started on these branches. This process is continued until the
maximum number of statements (1,000,000) is reached.

EVOSUITE and search based testing are based on ran-
domized algorithms, which are affected by chance. Running
a randomized algorithm twice will likely produce different
results. It is essential to use rigorous statistical methods to
properly analyze the performance of randomized algorithms
when we need to compare two or more of them. In this paper,
we follow the guidelines described in [27].

For each of the 727 public classes, we ran EVOSUITE

against the single branch strategy to compare their achieved
coverage. Each experiment comparison was repeated 100 times
with different seeds for the random number generator.

E. Results

Due to space constraints we cannot provide full information
of the analyzed data [27], but just show the data that are
sufficient in claiming the superiority of the EVOSUITE tech-
nique. Statistical difference has been measured with the Mann-
Whitney U test. To quantify the improvement in a standardized
way, we used the Vargha-DelaneŷA12 effect size [28]. In our
context, theÂ12 is an estimation of the probability that, if we



TABLE II
Â12 MEASURE VALUES IN THE COVERAGE COMPARISONS: Â12 < 0.5

MEANS EVOSUITE RESULTED IN LESS, Â12 = 0.5 EQUAL, AND Â12 > 0.5

BETTER COVERAGE THAN A SINGLE BRANCH APPROACH.

Case Study #Â12 < 0.5 #Â12 = 0.5 #Â12 > 0.5

JC 2 9 19
JT 11 1 119
CP 11 146 53
CC 30 105 109
GC 27 11 53
Ind 0 17 4

Σ 81 289 357

run EVOSUITE, we will obtain better coverage than running
the single branch strategy. When two randomized algorithms
are equivalent, then̂A12 = 0.5. A high valueÂ12 = 1 means
that, inall of the 100 runs of EVOSUITE, we obtained coverage
values higher than the ones obtained inall of the 100 runs of
the single branch strategy.

The box-plot in Figure5 compares the actual obtained
coverage values (averaged out of the 100 runs) of EVOSUITE

and the single branch strategy (Single). In total, the coverage
improvement of EVOSUITE ranged up to 18 times that of
the single branch strategy (averaged over 100 runs). Figure6
shows a box-plot of the results of thêA12 6= 0.5 measure for
the coverage grouped by case study subject; this figure illus-
trates the strong statistical evidence that EVOSUITE achieves
higher coverage. In many cases, EVOSUITE is practically
certain to achieve better coverage results, even when we take
the randomness of the results into account.

Whole test suite generation achieveshigher coverage
than single branch test case generation.

Table II shows for the coverage comparisons how many
times we obtainedÂ12 values equal, lower and higher than
0.5. We obtained p-values lower than0.05 in 329 out of 438
comparisons in whichÂ12 6= 0.5. Notice that in many cases
we haveÂ12 = 0.5. This did not come as a surprise: For some
“easy” classes, a budget of 1,000,000 statements executions
would be more than enough to cover all the feasible branches
with very high probability. In these cases, it is important to
analyze what is the resulting size of the generated test suites.
When the coverage is different, analyzing the resulting test
suite sizes is not reasonable.

For those cases wherêA12 = 0.5 for the coverage, Figure7
compares the obtained test suite size values (averaged out of
the 100 runs) of EVOSUITE and the single branch strategy
(Single). In the best case, we obtained a test suite size
(averaged out of the 100 runs) that for EVOSUITE was 44%
smaller.

Figure 8 shows Â12 for the length of the resulting test
suites. For length comparisons, we obtained p-values lower
than0.05 in 158 out of 289 comparisons. Recall that for both
EVOSUITE and the single branch strategy we use thesame
post-processing technique to reduce the length of the output
test suites. When we obtain full coverage of all the feasible

branches, then EVOSUITE has a low probability of generating
larger test suites.

Whole test suite generation producessmaller test suites
than single branch test case generation.

The results obtained with EVOSUITE compared to the
traditional approach (of targeting each branch separately) are
simply staggering. How is it possible to achieve such large
improvements? There can be several explanations. First, in
case of infeasible branches, all the effort spent by a single
branch at a time strategy would be wasted, apart from possible
collateral coverage. But collateral coverage of difficult to
reach branches would be quite unlikely. Second, the traditional
fitness function would have problems in guiding the search
toward private methods that are difficult to execute. For
example, consider the case of a private method that is called
only once in a public method, but that method call is nested
in a branch whose predicate is very complicated to satisfy.
Unless the fitness function is extended to consider all possible
methods that can lead to execute the private methods, then
there would be no guidance to execute those private methods.
Third, assume that there is a difficult branch to cover, and
nested to that branch there are several others. Once EVOSUITE

is able to generate a test sequence that cover that difficult
branch, then that sequence could be extended (e.g., by adding
function calls at its end) or copied in another test case in the
test suite (e.g., through the crossover operator) to make easier
to cover the other nested branches. On the other hand, in the
traditional approach of targeting one branch at a time, unless
smart seeding strategies are used based on previously covered
branches, the search to cover those nested branches would be
harmed by the fact that covering their difficult parent should
be done from scratch again.

Because our empirical analysis employes a very large case
study (1,308 classes for a total of 26,652 byte-code level
branches), we cannot analyze all of these branches to give an
exact explanation for the better performance of EVOSUITE.
However, the three possible explanations we gave are plausi-
ble, although further analyses (e.g., on artificial software that
we can generate with known number of infeasible branches)
would be required to shed light on this important research
question.

V. THREATS TOVALIDITY

The focus of this paper is on comparing the approach “entire
test suite” to “one target at the time”.

Threats toconstruct validityare on how the performance of
a testing technique is defined. We gave priority to the achieved
coverage, with the secondary goal of minimizing the length.
This yields two problems: (1) in practical contexts, we might
not want a much larger test suite if the achieved coverage is
only slightly higher, and (2) this performance measure doesnot
take into account how difficult it will be to manually evaluate
the test cases for writing assert statements (i.e., checking the
correctness of the outputs).
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Fig. 5. Average branch coverage: Even with an evolution limitof 1,000,000
statements, EVOSUITE achieves higher coverage.
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Threats to internal validity might come from how the
empirical study was carried out. To reduce the probability of
having faults in our testing framework, it has been carefully
tested. But it is well known that testing alone cannot prove the
absence of defects. Furthermore, randomised algorithms are
affected by chance. To cope with this problem, we ran each
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Fig. 7. Average length values: Even after minimization, EVOSUITE test suites
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Fig. 8. Â12 for length: EVOSUITE has a low probability of generating longer
test suites than a single branch approach.

experiment100 times, and we followed rigorous statistical
procedures to evaluate their results. Another possible threat
to internal validity is that we did not study the effect of the
different configurations for the employed GA.

Although we used both open source projects and industrial
software as case studies, there is the threat toexternal validity
regarding the generalization to other types of software, which
is common for any empirical analysis.

Our EVOSUITE prototype might not be superior to all
existing testing tools; this, however, is not our claim: We
have shown that whole test suite generation is superior to a
traditional strategy targeting one test goal at a time. Basically,
this insight can be used to improve any existing testing
tool, independent of the underlying test criterion (e.g., branch
coverage, mutation testing, ...) or test generation technique
(e.g., search algorithm), although such a generalization to other
techniques will of course need further evidence.

VI. CONCLUSIONS

Coverage criteria are a standard technique to automate test
generation. In this paper, we have shown that optimizing
whole test suites towards a coverage criterion is superior to
the traditional approach of targeting one coverage goal at a
time. In our experiments, this results in significantly better
overall coverage with smaller test suites, and can also reduce
the resources needed to generate these test suites.

While we have focused on branch coverage in this paper, the
findings also carry over to other test criteria. Consequently, the
ability to avoid being misled by infeasible test goals can help
overcoming similar problems in other criteria, for example,
the equivalent mutant problem in mutation testing [4].

Even though the results achieved with EVOSUITE already
demonstrate that whole test suite generation is superior to
single target test generation, there is ample opportunity to
further improve our EVOSUITE prototype. For example, EVO-
SUITE currently has only basic support for arrays and textual
inputs, and does not implement all available techniques in
search-based testing (e.g., Testability Transformation [29]).
Implementing these improvements will further improve the



results and make EVOSUITE applicable to a wider range of
applications.

In our empirical study, we targeted object-oriented software.
However, the EVOSUITE approach could be easily applied
to procedural software as well, although further research is
needed to assess the potential benefits in such a context.
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