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ABSTRACT
State-of-the art techniques for automated test generation focus on
generating executions that cover program behavior. As they do not
generate oracles, it is up to the developer to figure out what a test
does and how to check the correctness of the observed behavior. In
this paper, we present an approach to generate parameterized unit
tests—unit tests containing symbolic pre- and postconditions char-
acterizing test input and test result. Starting from concrete inputs
and results, we use test generation and mutation to systematically
generalize pre- and postconditions while simplifying the compu-
tation steps. Evaluated on five open source libraries, the generat-
ed parameterized unit tests are (a) more expressive, characterizing
general rather than concrete behavior; (b) need fewer computation
steps, making them easier to understand; and (c) achieve a higher
coverage than regular unit tests.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Testing
tools; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—Assertions, Pre- and
Postconditions

General Terms
Algorithms, Experimentation

Keywords
Test case generation, unit testing, test oracles, assertions

1. INTRODUCTION
The past decade has seen tremendous progress in automated test

case generation. It is now possible to efficiently create sequences
of method calls that achieve high code coverage. Code coverage
does not mean much, though, if neither the test nor the unit under
test contain assertions that assess computation results. Unless one
wants to check for run-time exceptions, the tester is thus left with
the job of adding postconditions (test oracles) that verify the ob-
served behavior. This is a difficult task, as to check a test’s output
requires understanding what a test actually does—indeed, machine
generated tests are often not meaningful.
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void concrete_test() {
YearMonthDay var0 = new YearMonthDay();
TimeOfDay var1 = new TimeOfDay(var0);
CopticChronology var2 = (CopticChronology)org.joda.time.Chronology

.getCopticUTC();
FixedDateTimeZone var3 = (FixedDateTimeZone)var2.getZone();
DateTime var4 = var0.toDateTime(var1);
DateTime var5 = var4.withZone(var3);

}

Figure 1: Concrete unit test generated for covering the
DateTime.withZone() method in Joda-Time. Four out of
the six statements are just setup (is it important that we are
using CopticChronology?); also note the absence of oracles.

void parameterized_test(TimeOfDay input1, DateTimeZone input2,
YearMonthDay input3) {

assume(input2 != null);
assume(input2.isFixed());
assume(input3 != null);
assume(input3.size() == 3);

DateTime var0 = input3.toDateTime(input1);
DateTime var1 = var0.withZone(input2);

assertFalse(var0.equals(var1));
assertNotNull(var1);

}

Figure 2: Parameterized test case generated from the test case
in Figure 1 by systematically deriving new inputs and checking
effects on seeded defects. Note the usage of pre- and postcondi-
tions, as well as the drastically reduced computation.

As an illustrating example, consider the code in Figure 1, a gen-
erated test for the DateTime class in Joda-Time, a replacement
for the Java date and time packages. This test can be executed auto-
matically; if any of the invoked methods crash, it will uncover the
problem. As humans, though, we do not know what it does, what it
expects, and which of its details are actually relevant. For instance,
it instantiates a CopticChronology object—but not for testing
the coptic calendar system. It needs some arbitrary Chronology
object to use as a target for getZone(), which is needed to com-
pute a TimeZone object to—finally!—cover the withZone()
method, which was its purpose all along.

To aid the tester, one can use mutation testing to identify pos-
sible oracles [8]. But even so, the generated tests remain hard to
understand because of the amount of information specific for a sin-
gle run. This amount of detail not only hinders comprehension, it
can also lead to test oracles that are overfitted to a particular run,
thus making them brittle to future code changes.



To overcome these problems, we present a novel approach that
takes a machine-generated method sequence like that shown in Fig-
ure 1, and explores both, possible preconditions and the relevant
postconditions they imply. The resulting parameterized unit test
contains only a small set of relevant pre- and postconditions, and
only statements related to the actual test, as shown in Figure 2.

How does this work? Our approach builds on two key ideas.
First, we separate test code from test input. This allows us to drop a
large share of generated code that simply prepares (often random)
input, and replace it by symbolic parameters. This significantly re-
duces the size of test cases and makes them more general at the
same time.

The second key idea of our approach is that important behav-
ior can be distinguished from irrelevant behavior by variation: By
seeding defects (mutations), we can change some of the postcondi-
tions. Our assumption is that only those parts of the postcondition
that are affected by the seeded defects are relevant; those that are
not affected are irrelevant. In other words, the more errors a post-
condition catches, the more relevant it is.

The same idea can be applied to the input: If we change the in-
put, this might also change the postcondition. If a change in the
input has no effects, then the particular aspect of the input that has
changed seems to be irrelevant for the test. Furthermore, we can
filter postconditions that are more sensitive to changes in the input,
and determine those that are more robust. Similar techniques are
used to generalize and select preconditions. Eventually, we com-
bine the generalized pre- and postconditions with the test case into
a parameterized unit tests, containing all information in a single
package.

In detail, the contributions of this paper are:

Test parameterization: We convert concrete method sequences in-
to parameterized test cases, reducing the number of state-
ments the developer has to analyze.

Postconditions: By mutating the tested class, we identify the rel-
evant aspects of the postconditions, and suggest oracles that
are effective at finding defects.

Preconditions: By mutating the test inputs, we identify the rele-
vant aspects of the preconditions, and filter out overly spe-
cific postconditions.

Iterative refinement: We use a search-based approach to itera-
tively derive new test inputs that aim at removing further pre-
conditions, thus simplifying the test case.

Figure 3 gives a high-level overview of our approach: Based on-
ly on existing bytecode, we start with an automatically generated
concrete method sequence (Section 2). Such a concrete method se-
quence has a very precise but implicit precondition; this precondi-
tion is encoded in the input objects and the setup performed on the
unit under test (UUT). Similarly, the postcondition can be interpret-
ed as the observable state after the test execution. We make these
conditions explicit by determining all the conditions that hold for
the given states (Section 3). For example, we compare all objects
with each other, query all observer methods, and so on. The result-
ing conditions (d) overspecify the test case, and we therefore try
to get rid of as many conditions as possible. For this, we iterative-
ly generate new tests, and execute them on the original program
and versions with seeded defects, thus effectively filtering irrele-
vant preconditions and postconditions (Section 4). At the end of
the process, we get a parameterized unit test that only contains the
test statements, the relevant preconditions on the inputs, and an ef-
fective test oracle.

2. BACKGROUND

2.1 Automated Test Generation
The importance and the complexity of software testing have re-

sulted in a great number of different approaches, deriving test cases
from models or source code, using different test objectives such as
coverage criteria, and using many different underlying techniques
and algorithms. In this paper, we consider classical white-box test-
ing, where test cases are derived from the program, and there are
no assumptions about the existence of a formal specification.

A simple but effective approach to generate tests from programs
is random testing. A main advantage of this approach is that it
scales without problems, and experience shows that random testing
can achieve relatively good coverage. Random testing tools such as
Randoop [16], JCrasher [5], AutoTest [4], or RUTE-J [1] usually
assume the existence of an automated oracle in terms of a spec-
ification or simply in terms of program crashes, as random tests
are seldom meaningful but often long and complex, and trying to
understand them in order to derive oracles can be a daunting task.

Often, coverage criteria are used to guide test generation and
to reduce the number of tests that are generated. Such criteria can
be defined over structural properties of the control-flow, data-flow
properties, or fault-based properties such as used in mutation test-
ing. A coverage criterion usually represents a set of distinct goals,
and test generation techniques are invoked for all such goals that the
current test suite does not yet cover. There are two main approaches
to automate this task:

Constraint solvers allow efficient generation of test data by solv-
ing path constraints generated with symbolic execution (e.g.,
PathCrawler [25]). Dynamic symbolic execution is an ex-
tension that overcomes a number of problems by combining
concrete executions with symbolic execution. This idea has
been implemented in tools like DART [9] and CUTE [19],
and is also applied in Microsoft’s parameterized unit testing
tool PEX [22] or the Symstra testing framework [27].

Meta-heuristic search techniques have been used as an alterna-
tive to constraint-based approaches [14]. They can also be
applied to stateful programs [14] as well as object-oriented
container classes [2,23,24]. As both constraint-based testing
as well as search-based testing have their specific drawbacks,
a promising avenue seems to be the combination of evo-
lutionary methods with dynamic symbolic execution (e.g.,
[10, 11]).

2.2 Automated Oracle Generation
The test generation approaches listed above traditionally only

generate test data, i.e., they produce inputs that execute a given
coverage goal, but unless there is an automated oracle it is the de-
veloper’s task to come up with efficient oracles. There is a growing
awareness of the significance of this problem, and this has resulted
in several related approaches.

In the context of regression testing, the objective is to check fu-
ture program versions against the current state of the program, and
it can therefore be used as a source for oracle generation. For exam-
ple, Randoop [16] allows annotation of the source code to identify
observer methods to be used for assertion generation. Return val-
ues and object states are used for assertion generation in tools like
Orstra [26], and have also been adopted in commercial tools such
as Agitar Agitator [3]. Evans and Savoia [7] generate assertions
from runs of two different versions of a software system and Dif-
fGen [20] extends the Orstra approach to generate assertions from



Figure 3: Our approach in a nutshell. From source code (a), we automatically generate concrete test cases (b) for any given test
criterion. We derive test oracles from the concrete test results, checking the results (c). Concrete inputs and outputs can also be
expressed as pre- and postconditions on general, symbolic inputs, coming as parameterized test cases (d). Using test generation and
mutation, we iteratively drop irrelevant pre- and postconditions, ending up with a simpler, yet more expressive representation of the
original concrete sequence as a parameterized unit test (e).

runs on two different program versions. Because these approach-
es are based in a regression testing scenario, understandability is
not a requirement, and they do not serve to identify which of these
assertions are actually useful.

Eclat [15] takes the oracle generation a step further by first learn-
ing a model from assumed correct executions, and then identifying
test inputs that are different to this learned operational model. The
operational model can be turned into a set of assertions that are
effective at finding deviations of the behavior observed in the as-
sumed correct executions. Eclat is based on Daikon [6], which is
related to the approach presented in this paper: Daikon infers pre-
and postconditions by observing executions, while the approach
presented in this paper generates tests to explore and systematically
eliminate irrelevant specifications.

To identify a small set of oracles that is effective at detecting
faults, we used mutation analysis in our µTEST tool [8]. The cen-
tral idea is that an assertion is only useful as a test oracle if it has
the potential to reveal a fault. By mutating the source code, µTEST
selects those assertions for a given test case that are sufficient to
detect all mutations, thus also detecting most real faults. As the
assertions are automatically generated, they reflect the actual be-
havior of the code and not necessarily the desired behavior. The
developer therefore has to confirm the validity of a suggested as-
sertion. In this paper we build on the µTEST tool; µTEST selects
effective postconditions, and the main contributions of this paper
are the parameterization and generalization steps.

2.3 Test Generalization and Test Factoring
A traditional unit test for object oriented software consists of

setup code that prepares the test input, then executes some test code
on the unit under test, and finally assesses the observed behavior.
The recent success of parameterized unit testing is based on the
ability to cover diverse behavior with a single case: The same test
code executed with different inputs can show different behavior;
tools like PEX [22] can produce these inputs automatically.

Retrofitting of unit tests [21] is an approach where existing unit
tests are converted to parameterized unit tests, by identifying inputs
and converting them to parameters, and by generalizing assertions
to oracles that hold independently of the input. This is very similar
to the present approach, but classical retrofitting of unit tests [21]
is a manual process and assumes existing pre- and postconditions.

An additional advantage of parameterized unit tests over con-
crete unit tests is that they are easier to understand: There is less
test code, and this code is also independent of the concrete inputs.
Test factoring describes a related technique where an existing test
case is converted to improve aspects such as readability or execu-
tion speed. For example, unrelated objects can be replaced with

mock objects [17], and minimization [12, 13] reduces the length of
automatically generated test cases.

3. PARAMETERIZING UNIT TESTS
Automated test generation for object oriented software creates

sequences of method calls [10, 23, 27], where calls to the UUT are
mixed with other calls that are required to create complex input
objects. This makes it more difficult to see what is really tested,
and makes the task of writing or checking assertions even more
difficult. In addition, different inputs might yield different results,
checking different parts of the code. This insight has resulted in the
creation of parameterized unit tests, where the actual test code is
separated from its inputs. Concrete values for the inputs can then
be automatically generated by tools such as PEX [22].

As an automatically generated method sequence usually has some
particular objective such as reaching a branch in the code, we can
separate test code from input code. This task is easier than the pro-
cess of retrofitting existing unit tests [21]: Existing test cases are
equipped with assertions, and the generalization step might violate
these assertions, resulting in false positives. In our setting, however,
we just assume a method sequence without any assertions to start
with, and thus generalization is without such problems.

3.1 Test Generalization
To generalize a method sequence to a parameterized method se-

quence, we assume one dedicated class as UUT. All method calls
on this UUT are part of the test code, and objects created by calls
to the UUT are also part of the test; all remaining calls are con-
sidered to be inputs. In principle, the techniques described in this
paper could also be used with different granularity of units, e.g.,
one could focus on individual methods.

A test case t = 〈c1, c2, . . . , cn〉 is a sequence of n calls. The
length of the test case is the number of calls n. A call can be a call
to a constructor, a method, or an assignment of a primitive value or
object member to a test object.

Each call represents a value value(c), which is the return value
for a method, the object constructed in case of constructor calls,
or the value assigned in case of primitive or field assignments. Fur-
thermore, each call may depend on a number of other values. These
are method and constructor parameters as well as the source object
of a method call or a field access. Let params(c) be the set of ref-
erenced values, then the following must hold:

∀ci ∈ t : ∀p ∈ params(ci) : ∃cj : j < i ∧ value(cj) = p

A parameterized unit test (PUT) P = (I, T, Pre, Post) consists
of a set of inputs I , a sequence of test calls T , and sets of pre- and
postconditions Pre and Post. The addition of input values I changes



Algorithm 1 Parameterize Test Case
Require: Call Sequence M = 〈m1, . . . ,mn〉
Require: Class under Test C
Ensure: Parameterized Unit Test P = (I, T,Pre,Post)
1: procedure PARAMETERIZE(M , C)
2: G← (V,E)
3: S ← {}
4: for all m ∈M do
5: v ← value(m)
6: V ← V ∪ {v}
7: for all v′ ∈ params(m) do
8: G← G ∪ {(v′, v)}
9: end for

10: if m is a call of C then
11: S ← S ∪ {v}
12: T ← T.m
13: end if
14: end for
15: for all v ∈ S do
16: for all (v′, v) ∈ V do
17: if v′ 6∈ S then
18: I ← I ∪ { New parameter with type of v}
19: p← Backwards slice of v′

20: Pre← Pre ∪ { Extract conditions for p }
21: end if
22: end for
23: end for
24: Post← { Extract conditions for each value in T }
25: return P
26: end procedure

the possible dependencies between calls:

∀ci ∈ t : ∀p ∈ params(ci) : (∃cj : j < i∧value(cj) = p)∨p ∈ I

Algorithm 1 shows how a call sequence is converted to a pa-
rameterized unit test. First, we generate a graph in which there is a
vertex for every value, and edges between values if the call produc-
ing a value has dependencies on other values. By separating values
that are test code from those values that are setup code, one can
easily determine inputs: For each test vertex there is one input for
every incoming edge that does not come from another test vertex.
The graph easily lets us derive method sequences to construct each
of the parameters; the calls that are part of the test and not part of
an input are added to T . If the same input value is used by different
calls, then each of the uses results in a distinct input.

3.2 Extracting Pre- and Postconditions
Besides a set of statements and inputs, a PUT also consists of

preconditions, i.e., assumptions on the inputs, and postconditions,
i.e., test oracles that check the observed behavior during test ex-
ecution. When converting a concrete unit test to a parameterized
unit test, we initially have very specific but implicit preconditions,
represented by the actual test inputs. Similarly, the test case has an
implicit postcondition given by the state at the end of the test ex-
ecution. To make these conditions explicit, we capture all possible
conditions on the inputs and test objects.

We derive conditions by all accessible means of the public API,
which means that the vocabulary for conditions and thus the preci-
sion of the approach depends on the richness of API. For example,
things we can check on input values and test objects are:
• Null reference checks
• Values of primitive variables
• Values of public primitive fields

• Return values of calls to inspector methods (i.e., methods
with no parameters, primitive return types, and no side-effects)
• Comparisons and equality checks between objects
• Comparisons with predefined values, such as the constant 0

Using the graph generated with Algorithm 1, we can extract a
distinct method sequence for each of the input values of the origi-
nal method sequence. To construct the initial precondition of a test
case, we execute this method sequence for each of the parameters,
and then determine the set of conditions that holds in the state at
the end of the execution (Line 20 in Algorithm 1). For example, for
each i ∈ I , we
• add i = null if i is a null reference, else we add i 6= null to

Pre
• for each i′ ∈ I : i 6= i′ where the type of i equals type of i′

we add i.equals(i′) or its negation depending on the output
• for each inspector method m of i, we add a condition that
i.m() = x, where x is the value of m observed after execut-
ing it on i.
• for each field f of i, we add a condition that i.f = x, where
x is the value of m observed after executing it on i.

Similarly, the set of postconditions Post is determined by exe-
cuting the concrete method sequence, and then extracting all con-
ditions on values of test calls at the state at the end of the execution
(Line 24 in Algorithm 1).

4. FINDING RELEVANT CONDITIONS
The PUT we generate from a method sequence with the pro-

cedure described above is semantically equivalent to the original
method sequence only under the assumption that the public API al-
lows a precise determination of the relevant states. In addition, the
PUT has assertions (the postcondition) that detect all defects that
the test can possibly detect, but it has two main problems:

• There are too many preconditions and postconditions, mak-
ing it difficult to understand the test case. This, however, is
necessary, as the postconditions need to be confirmed by a
developer. We therefore need a way to determine the effec-
tive and relevant conditions.

• There are too many postconditions, checking every single ob-
servable aspect, such that future changes of the tested code
are very likely to violate at least one of the assertions – even
if the code change is correct. In other words, the assertions
are not robust against code changes.

The problem is that this is in fact an overspecification of the test
case; many conditions that can be derived this way are irrelevant
and unnecessary for the task of detecting defects, and there are far
too many such conditions to make it feasible for a developer to
check every single of them.

4.1 Finding Effective Postconditions
To overcome this problem, we recently presented an approach [8]

that identifies the important postconditions: The most useful post-
conditions are those that can identify defects in the code, and they
can be determined by seeding artificial defects into the code. This
idea is based on mutation analysis, which describes the observa-
tion that a test suite that can distinguish between a program and its
simple mutants is generally good at detecting faults.

Algorithm 2 illustrates how a set of postconditions is reduced to
the relevant subset: The test case t is executed against every sin-
gle mutant, and a postcondition only qualifies as relevant oracle, if
there exists at least one mutant for which the assertion fails.



Algorithm 2 Determine effective postconditions
Require: Call Sequence M = 〈m1, . . . ,mn〉
Require: Class under Test C
Require: Mutants of Class under TestM
Require: Set of Postconditions Post
Ensure: Reduced Set of Postconditions Post′

1: procedure FINDEFFECTIVE(M , C,M, Post)
2: Post′ ← {}
3: for all m ∈M do
4: S ← state after executing M on m
5: for all p ∈ Post do
6: if p evaluates to false in S then
7: Post′ ← Post′ ∪ {p}
8: end if
9: end for

10: end for
11: return Post′

12: end procedure

The set of conditions created with this reduction is not minimal:
In fact, it can still be quite large, meaning that the original prob-
lem of having too many conditions is only reduced. In our pre-
vious work [8], we reduced the set of postconditions further to a
minimal set in the sense that removing any of the postconditions
will cause defects to be missed. There is, however, the possibility
that the selected assertions are too specific to the current test in-
put. As an extreme example, the hash-code of an object integrates
all the information contained in the object, and an assertion on the
hash-code is therefore likely to detect many mutants. Assertions on
the hash-code, however, are clearly neither robust nor particularly
meaningful.

4.2 Finding General Postconditions
We want our postconditions to be as general as possible – they

should include as little concrete information as necessary to detect
all defects that can be detected. For example, an assertion that com-
pares equality of two instances of a class is more likely to hold true
even after future code changes, than asserting that the return value
of an inspector function has a specific value. At the same time, we
do not want to sacrifice any of the fault detection capability of a
given concrete method sequence.

To identify postconditions that are more general, a simple ap-
proach is to execute the PUT with different inputs: If the same as-
sertion detects a mutation for different inputs, then it is more gen-
eral than an assertion that only holds for a single concrete input.
This insight be exploited in order to remove the overspecific post-
conditions: Algorithm 3 illustrates how a set of postconditions can
be gradually reduced to retain only general postconditions that hold
for more than one input. The PUT is repeatedly executed with new
inputs, and an overspecific postcondition tied to a particular input is
likely not in the intersection of the postconditions of two different
inputs. However, if there is an alternative way to detect the mutation
with a more general postcondition, then this general postcondition
will remain in the intersection. This means that rather than select-
ing the most effective and potentially overfit postcondition, we can
vary the inputs on the PUT to find a subset of assertions that is suf-
ficient to detect all mutants, but stays as independent as possible
from the concrete input values. Consequently, if the intersection of
the postconditions of the new input and the current postcondition
are sufficient to kill all mutants in Algorithm 3, then the new post-
condition is this intersection.

The result of Algorithm 3 is a set of postconditions. Each of these
assertions is general enough with respect to the inputs which were

Algorithm 3 Determine robust postconditions
Require: PUT P = (I, T,Pre,Post)
Require: Class under Test C
Require: Mutants of Class under TestM
Ensure: Reduced Set of Postconditions Post
1: procedure FINDROBUST(P ,M, C)
2: while limit not reached do
3: I ← generate concrete inputs for I
4: M ← concrete method sequence of I and T
5: Post′ ← FINDEFFECTIVE(M , C,M, Post)
6: if Post′ ∩ Post detects the same mutants as Post then
7: Post← Post′ ∩ Post
8: end if
9: end while

10: return Post
11: end procedure

used to filter this list. A subset of this set of postconditions can de-
tect the same defects, and we could therefore further apply a normal
reduction procedure, as for example used in our previous work [8],
where we traced for each assertion which mutation it kills, and then
found a subset for each test case that is sufficient to detect all mu-
tations that can be detected with this test case.

An important insight is that generalizing postconditions by them-
selves is not enough: Although the postconditions have the poten-
tial to detect a number of defects, there is no guarantee that a given
input will actually reveal a defect (false negative). Even worse, it
might be possible to find inputs for which one of the assertions
fails even in absence of a defect (false positive). The reason for
this is that only a truly universal postcondition would hold for all
inputs, whereas less general properties only hold under certain con-
ditions – the test’s precondition. It is therefore essential that when
generalizing a postcondition we also need to derive an appropriate
precondition. The original precondition Pre we extracted from the
concrete unit test is likely to be very specific, which means that the
number of possible inputs that satisfy this condition is very small,
or possibly there exists exactly one input. We therefore need to en-
force a PUT’s precondition, but need to generalize it as well.

4.3 Finding Relevant Preconditions
A concrete input represents a number of specific preconditions

and implies a number of specific postconditions, which have the
potential to detect a number of defects. A key insight is that a pre-
condition is only relevant if it is directly linked to the effective post-
conditions or mutants they detect, whereas we are not interested in
preconditions that do not affect the postcondition, or affect only
such assertions that are not effective at detecting defects.

To identify the relevant preconditions we therefore vary the in-
puts such that they satisfy different preconditions, and whenever
the relevant behavior is identical for two different inputs we have
found an irrelevant precondition. We define the behavior of two dif-
ferent inputs to a PUT to be equivalent only if the intersection of
relevant assertions of the two sets of inputs kills all mutants that are
also killed by the original test, as was done in Algorithm 3.

To systematically find out which preconditions are relevant, we
need to consider each precondition on its own: If we can find two
different inputs, where the considered precondition holds on one
but not on the other while all other preconditions hold on both in-
puts, then we know that this precondition is irrelevant if the two
inputs detect the same mutants with the same postconditions. If
the two inputs would differ on more than one precondition, then
it would not be clear which of the preconditions causes a possible
change of the observed behavior.



Algorithm 4 Generate a Parameterized Unit Test
Require: Call Sequence M = 〈m1, . . . ,mn〉
Require: Class under Test C
Require: Mutants of Class under TestM
Ensure: Parameterized Test Case P = (I, T,Pre,Post)
1: procedure GENERALIZE(M , C,M)
2: P ← PARAMETERIZE(M,C)
3: Pre′ ← minimized observations on inputs
4: Post← observations on C after test execution
5: Post← FINDEFFECTIVE(M,C,M,Post)
6: while Pre′ is not empty do
7: p← remove one element from Pre′

8: I ← generate input that satisfies ¬p∧
∧

Pre′ ∧
∧

Pre.
9: if test generation succeeds then

10: Post′ ← Execute test with new input I
11: M ← concrete method sequence of I and T
12: Post′ ← FINDEFFECTIVE(M,C,M,Post′)
13: if Post′ ∩ Post detects all mutants then
14: Post← Post′ ∩ Post
15: Pre′ ← Pre’∪ conditions subsumed by p
16: else
17: Pre← Pre ∪ {p}
18: end if
19: end if
20: end while
21: return P
22: end procedure

In order to apply this technique, a prerequisite is that the precon-
dition is minimal. For example, if there are two inputsA andB, and
we have the conditions A = 1, B = 1, and A = B, then negat-
ing any one of them while holding the other two true results in an
unsolvable constraint system. We therefore minimize the set of pre-
conditions before attempting to find inputs for negated conditions.
In particular, we omit symmetric and transitive properties, as well
as subsumed properties (e.g., a < b subsumes a 6= b). However,
if we can show that a precondition is irrelevant, then this does not
automatically mean that subsumed or transitive conditions are also
irrelevant. Therefore, we need to add all its subsumed conditions
after a precondition has been shown to be irrelevant.

Algorithm 4 illustrates the algorithm to reduce the preconditions
of a given PUT. Our algorithm starts with the precise precondition
of the original method sequence, i.e., the entire set of conditions we
can formulate. Now we iteratively try to negate one of the precon-
ditions, and generate a new set of inputs that satisfies this negated
precondition. For the new test input we calculate the output (i.e.,
the relevant part of the postcondition), and check the equivalence.
If we can generate a test input for which a precondition of the pre-
vious inputs does not hold but the interesting behavior is still the
same (i.e., the intersection of the relevant assertions kills the same
mutants), then this precondition is irrelevant for the test case. If we
cannot generate a test input that negates a precondition, then this
precondition is likely an invariant, meaning that it applies to all
possible inputs and is not relevant either.

4.4 Parameter Generation
To generate inputs for the PUTs may often mean generating com-

plex objects. To make sure that the states of these objects are fea-
sible, we generate them using a search-based approach in line with
previous work on evolutionary testing of classes [23].

We use a genetic algorithm to derive inputs for a PUT. A chro-
mosome of the genetic algorithm is a set of method sequences of

Table 1: Statistics on evaluation subjects.

Subject Classes LOC5 Mutants Tests

Commons Codec CC 18 2,640 2,998 285
Commons Math CM 26 8,752 6,476 239
Java Collections JC 23 7,250 4,990 346
JDOM JD 16 2,286 820 199
Joda Time JT 25 6,923 3,004 588

Σ 108 27,851 18,288 1,657

the size of the number of parameters, i.e., one method sequence per
parameter. The initial population is generated randomly by choos-
ing from the set of constructors and methods that return an object
of the desired type, and by recursively trying to create all necessary
parameters. During evolution in the genetic algorithm, crossover
exchanges parameter sequences between sets of parameter assign-
ments. For mutation, each method sequence for a parameter is mu-
tated with probability 1/n, where n is the number of parameters
of the PUT. Mutation of method sequences follows standard oper-
ators used in evolutionary testing of classes [8, 23]; for example,
mutation adds, deletes, or changes method calls in the individual
sequences. The last object of the parameter type is always returned
as value for the input; if a method sequence has no such object, then
the input is a null reference.

The fitness function aims to satisfy all in a set of preconditions,
and is similar to the branch distance metric [14] commonly applied
to predicates in source code. For example, to satisfy a condition
foo.bar() = 100, the fitness function would use the absolute value
of the difference of the actual return value of foo.bar and 100. The
overall fitness is calculated as the sum of branch distances to have
all preconditions evaluate to true, and if the search objective is to
negate a single precondition, then the fitness additionally adds the
branch distance to have this condition evaluate to false.

5. EVALUATION
To evaluate the presented approach, we have implemented a pro-

totype that performs generation of parameterized unit tests for Java
classes, and applied this prototype to a set of evaluation subjects.

5.1 Evaluation Subjects
As subjects for our evaluation we selected five open source li-

braries with very diverse functionality: Commons Codec1 (CC) pro-
vides implementations of common encoders and decoders such as
Base64, Hex, Phonetic and URLs. Commons Math2 (CM) is a li-
brary of mathematics and statistics components. Java Collections
(JC) is the set of collections in the Java standard library. Joda Time3

(JT) provides replacement for the Java date and time classes. JDOM4

(JD) provides a way to represent XML documents for easy and effi-
cient reading, manipulation, and writing. For each of these libraries,
we selected all concrete classes of the top level of the package
structure for test generation; for Commons Math we selected the
sub-packages complex, fraction, geometry, and linear because of
the duration of the experiments. Table 1 summarizes statistics of
the selected subjects in terms of classes, lines of code, mutants, and
tests generated.
1http://commons.apache.org/codec/
2http://commons.apache.org/math/
3http://joda-time.sourceforge.net/
4http://www.jdom.org
5LOC stands for non-commenting lines of source code, calculated
with CLOC (http://cloc.sourceforge.net/)



Table 2: Number of inputs generated and number of execu-
tions.

Subject Iterations Fail Success Inputs Time (s)

Commons Codec 4.4 1.1 3.3 1.4 189.7
Commons Math 10.3 3.0 7.3 1.3 1,731.2
Java Collections 12.1 5.8 6.4 1.4 559.1
JDOM 10.5 3.1 7.3 1.3 366.3
Joda Time 9.1 4.8 4.3 1.5 644.6

� 9.3 3.6 5.7 1.4 689.2

5.2 Experimental Setup
Our prototype is built on our previous µTEST system [8] for auto-

matic generation of mutation detecting unit tests and oracles. For a
given class, the prototype first tries to generate a unit test (method
sequences with oracles) for each mutant (skipping those that are
covered by already generated tests); Table 1 lists the number of
test cases generated for the chosen classes. Then, each of these unit
tests is generalized to a parameterized unit test (PUT) using the
techniques described in Section 3 and Section 4. The search for
concrete parameter values uses the same data structures as µTEST,
such that each parameter of a PUT is assigned the result of a method
sequence.

We configured µTEST to use a steady state genetic algorithm
with a population size of 100, an elitism size of 1 individual, and
the maximum test case length was set to 60 statements. The initial
test suite for a class was generated for a maximum of 1,000,000
executed statements per class. This budget was equally divided on
all mutants, and for each mutant. We used a timeout of 5 seconds
for individual tests, and if a mutant timed out where the same test
case run on the original program did not timeout we assumed that
the mutant causes an infinite loop and ended the search for this par-
ticular mutant at this point. We used the same configuration to gen-
erate input sequences for parameters, but limited the search budget
for one input to 500 generations. To reduce the risk of erroneously
dropping a precondition because the search failed, we implement-
ed the loop at Line 6 in Algorithm 4 such that each precondition
was considered a second time at a later point, if the search failed.
For condition generation we used all assertions described in Sec-
tion 3.2 except for comparisons between inspector method return
values and comparisons with predefined values.

5.3 Effort
The generalization of method sequences to PUTs is costly, as

we experienced during our experiments. For each precondition, we
have to generate a test case. Often, the conditions offer little guid-
ance for a search based approach, letting the search exhaust. Many
preconditions are not independent of each other, which means that
often no solution for a single negated precondition exists. Further-
more, to determine the interesting behavior of a concrete input, the
PUT with this input has to be executed on every single mutant of
the class it tests.

To better understand the effort involved in the generalization, we
take a closer look at the numbers of inputs that needed to be gener-
ated and the number of tests that need to be executed. The number
of inputs generated might differ from the number of preconditions,
as one precondition might subsume several others. If a condition
is dropped, then we have to consider all conditions that were sub-
sumed by this condition; if it is not dropped, then the subsumed
conditions do not have to be analyzed.

Table 2 summarizes the average number of iterations for each
of the subjects. One iteration equals one attempt of generating an
input that satisfies all confirmed and remaining conditions as well
as the negation of one chosen condition. Note, that in our imple-
mentation each precondition for which the search for an input sat-
isfying the negated precondition failed is considered a second time,
as described in Section 5.2. Such a search requires execution of
an average of 500 (generations) times 100 (population) input sets
consisting of one method sequence per parameter. Table 2 lists the
average number of parameters per test for each of the subjects. If
an input is found (Success in Table 2), then it is executed against
each of the mutants; this again can be very costly, as the number of
mutants can be high (see Table 1), and mutants can often lead to in-
finite loops, which means that they run up to the predefined timeout
(5 seconds in our case). On average, it therefore took 12 minutes to
generalize a single test case on an Intel Xeon X5570 computer with
2.93GHz.

For the experimentation, we had the additional costs of generat-
ing the concrete method sequences in the first place, and of gener-
ating 1,000 valid inputs for each PUT. In sum, these costs required
us to reduce the number of repetitions for each experiment.

Generating parameterized unit tests is costly, requiring several
minutes per test case.

5.4 Examples
We have seen that much computation time goes into generat-

ing parameterized unit test. Does this effort pay off? Figures 4–7
show example method sequences and the resulting parameterized
unit tests (PUTs) derived during our evaluation. In addition, the
initial example in Figure 2 was also generated during this evalua-
tion. In all cases, the parameterized unit tests generated are far more
readable and meaningful compared to the original concrete tests.

Parameterized tests are more expressive than the original tests,
characterizing general rather than concrete behavior.

void concrete_test {
int var0 = 213;
ArrayList var1 = new ArrayList();
Integer var2 = new Integer(var0);
boolean var3 = var1.add(var2);
var1.trimToSize();
int var5 = var1.indexOf(var2);

}

void parameterized_test(Integer input1, Integer input2) {
assume(input1.equals(input2));

ArrayList var0 = new ArrayList();
boolean var1 = var0.add(input1);
var0.trimToSize();
int var3 = var0.indexOf(input2);

assert(var3 == 0);
assert(var1 == true);
assert(var0.isEmpty() == false);

}

Figure 4: Example method sequence and resulting PUT for the
ArrayList class in Java Collections: The object input2 is at
position 0 (var3) only if input1 and input2 are equal.



void concrete_test() {
Caverphone var0 = new Caverphone();
String var1 = "EL";
String var2 = "ILLA";
boolean var3 = var0.isCaverphoneEqual(var1, var2);

}

void parameterized_test(String input1, String input2) {
assume(!input1.equals(input2));

Caverphone var0 = new Caverphone();
boolean var1 = var0.isCaverphoneEqual(input1, input2);

assert(var1 == false);
}

Figure 5: Example method sequence and resulting PUT for the
Caverphone class in Commons Codec: Non-equal strings stay
different when encoded using the Caverphone algorithm.

void concrete_test() {
Complex var0 = Complex.ZERO;
double var1 = 0.39860618453401475;
Complex var2 = var0.multiply(var1);

}

void parameterized_test(double input1) {
Complex var0 = Complex.ZERO;
Complex var1 = var0.multiply(input1);

assert(var0.equals(var1));
}

Figure 6: Example method sequence and resulting PUT for the
Complex class in Commons Math: The value of input1 does
not matter in a multiplication with 0, therefore there is no pre-
condition.

5.5 Test Simplification
In the examples, we have seen that the number of statements

in the generated parameterized unit tests is generally reduced. The
first question we address in the evaluation is thus how much the
generalization step reduces the number of statements that need to
be analyzed by the developer. In a setting where test inputs are pure-
ly numerical, this step would not make a difference. However, our
original motivation is that generated test cases for object oriented
software tend to be cluttered with setup code, reducing the under-
standability.

Table 3 lists the mean values of the number of statements in
the original concrete tests, compared to the number of statements
that remain in the parameterized test; Figure 8 gives detailed statis-
tics on these values. On average, the PUTs only contain 57% of
the statements in their corresponding concrete method sequences—
simply because 43% of the statements of the original method se-
quences generate inputs, which a PUT replaces with parameters.
This reduction is statistically significant according to a Mann-Whitney
U test with p = 0.008.

In our experiments, parameterized unit tests only retain 57% of
the original statements in the concrete unit test.

5.6 Condition Generalization
The reduction of test statements clearly shows that the step of

converting a concrete method sequence to a PUT reduces the num-

void concrete_test() {
AttributeList var0 = new AttributeList((Element) null);
UncheckedJDOMFactory var1 = new UncheckedJDOMFactory();
String var2 = "namespace prefix on the element";
Attribute var3 = var1. attribute (var2, var2, (Namespace) null);
var0.uncheckedAddAttribute(var3);

}

void parameterized_test(Element input1, Attribute input2) {
assume(input1 == null);
assume(input2 != null);

AttributeList var0 = new AttributeList(input1);
var0.uncheckedAddAttribute(input2);

assert(var0.isEmpty() == false);
}

Figure 7: Example method sequence and resulting PUT for the
AttributeList class in JDOM: After adding a non-null ele-
ment to the empty list, it is no longer empty.

Table 3: Average number of statements.

Concrete Parameterized
Subject unit test unit test Size

Commons Codec 3.9 2.2 56%
Commons Math 4.3 2.7 62%
Java Collections 5.6 3.2 57%
JDOM 5.0 2.7 55%
Joda Time 5.1 2.9 56%

� 4.8 2.7 57%

ber of statements that need to be analyzed and understood by a
developer. This PUT and its postcondition, however, are still tied to
the concrete inputs the original method sequence represents.

The number of preconditions and postconditions can be high in
theory, but their number is dependent on the API under test: If there
are many inspector methods or public fields allowing many differ-
ent queries on the state, then there will be many conditions. If the
API hides most information and only offers few possibilities to in-
spect the state, then the number of conditions can be much smaller.

Table 4 summarizes the average statistics on the number of pre-
conditions before and after the optimization. The average number
of preconditions before the optimization is below 10. As can be
seen from Table 4, condition generalization significantly reduces
the number of preconditions. This result is again statistically signif-
icant according to a Mann Whitney U test with a p-value of 0.008.

Our approach for finding relevant preconditions eliminates 88%
of the preconditions as irrelevant.

Table 5 shows similar results for the postconditions. The number
of postconditions is generally smaller than the number of precon-
ditions, as the really irrelevant ones are already filtered out by the
mutation analysis step; only fault detecting postconditions are list-
ed here. Any postcondition that is removed from the original set
was specifically tied to an input, and represents generalization. The
reduction is again statistically significant with a p-value of 0.008.

Our approach for finding general postconditions eliminates 46%
of the postconditions as overspecified.



CC CM JC JD JT

0
1
0

2
0

3
0

0
1
0

2
0

3
0

Method Sequence

PUT

Figure 8: Numbers of statements in concrete method sequences
compared to the number of statements in the PUTs.

Table 4: Average number of preconditions.

Subject Original Relevant Size

Commons Codec 5.1 1.1 22%
Commons Math 6.8 0.7 10%
Java Collections 13.8 1.6 12%
JDOM 9.2 1.3 14%
Joda Time 8.1 0.5 6%

� 8.6 1.0 12%

5.7 Accuracy
Generalizing concrete runs to abstractions may produce approxi-

mations: While the original concrete input is always correctly han-
dled by construction, generalizing it to parameterized abstract val-
ues may result in false positives or false negatives. This happens
if the vocabulary of usable conditions is not sufficient to eliminate
invalid inputs, for instance. Similarly, if the input generation fails
for a particular negated precondition, then it is not known whether
this precondition can really be dropped or not. (To only present the
preconditions to the user that are known to affect the result, we
dropped such preconditions.)

To analyze the extent of false positives and negatives for new in-
puts, we generated 1,000 different inputs satisfying the minimized
precondition using different random seeds, and then executed the
PUT with these inputs. If one of the postconditions fails on an in-
put when run on the original class, then this is a false positive. If
none of the postconditions fails on an input when run on all the mu-
tants that should be detected, then this qualifies as a false negative.
Table 6 summarizes the number of false positives and negatives,
and Figure 9 shows detailed statistics on the accuracy.

For new inputs, the generated parameterized unit tests have a
false negative rate of 19.6% (i.e., failing to detect faults).

The rate of false negatives is based on our strict requirement to
detect all mutants that the original method sequence detected. This
requirement could be weakened, for example by requiring that each
postcondition detects at least one mutant. If we only count as false
negatives when an input leads to detection of less mutants than the
original method sequence, then the false negative rate would drop
to 4.2%.

Table 5: Average number of relevant postconditions.

Subject Fault detecting Generalized Size

Commons Codec 4.4 2.1 53%
Commons Math 4.2 2.7 64%
Java Collections 5.7 2.9 51%
JDOM 5.2 2.7 52%
Joda Time 5.4 3.0 56%

� 5.0 2.7 54%

Table 6: False positives and false negatives, evaluated with
1,000 different inputs per PUT.

Subject False Negatives False Positives

Commons Codec 23.5% 6.1%
Commons Math 26.0% 10.2%
Java Collections 26.8% 12.7%
JDOM 16.2% 5.9%
Joda Time 5.6% 6.4%

� 19.6% 8.3%

For new inputs, the parameterized unit tests have a false positive
rate of 8.3% (i.e., failing although no fault is present).

Given that parameterized unit tests are far more general than the
concrete original tests, the low false positives and false negative
rates are a small price to pay for the added value—not to speak of
readability or maintainability. On top, our setting used for evalu-
ating accuracy can also be used to increase accuracy—simply by
retaining those conditions that show no false positives or negatives,
and refining the others. This way, as the number of generated inputs
increases, so will accuracy improve further.

5.8 Coverage Increase
A test case with one concrete input will always follow the same

execution path – its coverage is fixed. By generalizing the pre-
conditions, other allowed test inputs might lead to different exe-
cution paths, resulting in different coverage. However, as we re-
quire generalization to preserve the fault detection ability, the exe-
cution paths may only vary as long as they do not affect the detected
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Figure 9: Rate of false positives and false negatives of the gen-
eralized PUTs.



Table 7: Average number of covered branches and increase in
branch coverage.

Concrete Parameterized Coverage
Subject unit test unit test Increase

Commons Codec 23.6 51.4 118.4%
Commons Math 10.0 12.7 26.5%
Java Collections 13.0 18.9 44.8%
JDOM 7.7 10.3 34.5%
Joda Time 5.2 8.7 68.0%

� 11.0 19.0 72.6%
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Figure 10: Statistics on the branch coverage of concrete method
sequences compared to the generalized PUTs.

faults (i.e., the identical mutants need to be executed and their state
changes need to be propagated). We therefore expect a small but
measurable increase in the coverage. The quantify this effect, we
measured the coverage of the original method sequence, and also
measured the compound coverage achieved by all valid inputs (i.e.,
detecting the same defects with the same postconditions) generated
during the test case generation. Figure 10 illustrates this increase
using branch coverage; we see that the generalized parameterized
unit tests are far more effective than the original concrete tests.

On average, generated parameterized unit tests cover 72.6%
more branches as the original concrete unit test.

There are two ways in which the coverage could be further in-
creased: First, by focusing a single PUT on a single mutation the
variability in the taken execution paths would increase, thus allow-
ing higher coverage. Second, each time we detect a relevant precon-
dition, we could in theory create a new PUT that contains the nega-
tion of the currently considered precondition. This would increase
the number of test cases, but it would also increase the coverage
achieved with the same set of test statements.

6. THREATS TO VALIDITY
Threats to construct validity are on how the improvement of the

test parameterization is defined. We measured improvement of the
understandability in terms of the reduction of statements a user has
to analyze as well as the reduction of the conditions that need to be
analyzed. A reduction of elements that need to be considered is an
intuitive indication of simplification, but understandability cannot
be quantified – ideally, one would need human experiments for this.

Threats to internal validity might come from how the empirical
study was carried out. To reduce the probability of defects in our
testing framework, it has been carefully tested. As randomized al-
gorithms are affected by chance, we used statistical procedures to
evaluate the result of the experiments. Our findings might be biased
by the concrete method sequences and input sequences derived by
our own tool µTEST; however, µTEST implements state-of-the-art
techniques to generate method sequences [23]. The approach is al-
so dependent on the number and type of mutants seeded; we used
Javalanche [18] to produce mutants, which uses a commonly ac-
cepted standard set of mutation operators.

As in any empirical analysis, there is the threat to external valid-
ity regarding the generalization to other types of software. To avoid
a bias in the chosen evaluation subjects, we chose five different li-
braries of very diverse application areas.

7. CONCLUSIONS
Today’s techniques for “test” generation actually do not pro-

duce tests—they produce sequences of method calls. While they are
good at covering code, their effectiveness relies on good run-time
checks in the code or the run-time system. To turn these sequences
into proper test cases, they need oracles that check the correctness
of the observed behavior. These oracles need to be effective at de-
tecting faults while being robust against code changes—and most
importantly, they need to be confirmed by the developer, which
means the entire test case needs to be understandable.

Our approach presented in this paper addresses all of these prob-
lems: By systematically exploring and reducing the explicit precon-
dition of a concrete method sequence, we iteratively narrow down
the set of relevant preconditions and postconditions, leaving the de-
veloper with a crisp representation of the original test. Our initial
experiments show that the approach successfully generalizes a con-
crete method sequence to a parameterized unit test—a test that is
more general and more expressive, needs fewer computation steps,
and achieves a higher coverage than the original concrete test.

Besides these successes, there are ample opportunities for future
work. Generally spoken, the interplay of test generation and spec-
ification mining offers plenty of chances for improving both. The
combination with specification mining tools such as Daikon will
allow us to infer more general properties as pre- and postcondi-
tions. Efficient parameterized unit testing tools such as PEX can
be used to identify and eliminate false positives and negatives. Our
search-based solution in general could be augmented with the use
of constraint-based techniques, which might be able to cope with
some of the search targets better, and might be able to cut down the
overall time to generalize a single test case. Whenever we find an
input that does not match the observed behavior, we currently dis-
card it and only retain the information that the currently considered
precondition is relevant. This precondition, however, could serve as
a splitting point in the specification, leading to an additional PUT
which in turn could be optimized. Finally, while we currently focus
on unit tests, the is no reason this approach would not scale up to
mining specifications for any code.

To learn more about our work in test case generation, visit

http://www.st.cs.uni-saarland.de/
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