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Abstract—Generated test cases are good at systematically
exploring paths and conditions in software. However, generated
test cases often do not make sense. We adapt test case
generation to follow patterns of common object usage, as mined
from code examples. Our experiments show that generated tests
thus (a) reuse familiar usage patterns, making them easier to
understand and (b) focus on common usage, thus respecting
implicit preconditions and avoiding meaningless tests.
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I. INTRODUCTION

When generating test cases for object oriented software,
sequences of method calls are either assumed to be provided
by the user, or determined automatically using symbolic
techniques or evolutionary search. Such machine-generated
sequences are well suited to test robustness or contract
violations, and it is even possible to automatically add re-
gression oracles. All these generated tests are poised towards
automatic fulfillment of a testing goal such as coverage—
but they are not meant to be read by humans. In fact,
understanding a generated test case can be very difficult
simply because these machine-generated sequences do not
make sense.

As an example, consider Figure 1—a typical generated
test for one of the branches of the DateTime class in the
Joda-Time library. Yes, it covers the branch in the minus
method. Yes, it sets up a number of objects and calls to reach
that very branch. But what is the expected outcome of this
test? What would be a suitable assertion that could serve
as oracle for this test case? While automated exploration of
method sequences will plug together any values and methods
that contribute to achieve the goal, the user is left with a high
number of generated executions that are hard to understand,
but for which the expected outcome still must be specified.

One might argue that generated test cases are not meant
for functional testing, but for robustness testing—that is,
have the run-time system detect faults such as dereferenced
null pointers, boundary or type violations, or arithmetic
exceptions. But even with this restriction, generated test
cases cause trouble—because methods can have implicit
preconditions of which the developer might be aware but the
test case generation tool is not. For example, many methods
in the Joda-Time library take parameters of abstract base

int var0 = −77;
DateTime var1 = new DateTime(var0, var0, var0, var0, var0,

var0, var0);
Instant var2 = GJChronology.DEFAULT CUTOVER;
Date var3 = var2.toDate();
DateTime var4 = var2.toDateTime(var3);
DateTime var5 = var4.minus(var0);

Figure 1. Example test case generated for a branch in method minus in
DateTime using search only driven by coverage.

long var0 = 197;
DateTimeZone var1 = DateTimeZone.UTC;
DateTime var2 = new DateTime(var0, var1);
int var3 = −91;
DateTime var4 = var2.minus(var3);

Figure 2. A test for the same branch exploiting object usage information.

classes or even of type Object—what is a useful input
to such methods? As another example, passing null as
parameter will often reveal potential faults which are not
interesting as such a scenario will not happen in practice—
such a test case is essentially a kind of false positive.
And again, we have to assess hard-to-understand test cases
manually—dozens to thousands of them.

In this paper, we present an approach to alleviate these
problems. Rather than generating test cases entirely by
random, we leverage common object usage—patterns of
object interaction as found in manually written code—to
make generated test cases more similar to existing client
code. By following these implicit conventions, we address
the two central problems of generated tests: We make
them more readable, and we avoid violations of implicit
preconditions. To demonstrate the benefit of our approach,
consider Figure 2. It shows a test case that was derived for
the same branch as the test case in Figure 1—but is based
on common object usage found in the Joda-Time library and
its test cases. Intuitively, the test case in Figure 1 relies on
less functionality and should thus be easier to understand.

Summarizing, the contributions of this paper are:

API Usage Models: We analyze the source code of the
software under test, its existing test cases, and any avail-



Figure 3. Our approach in a nutshell. From client code (a), we extract object usage models (b) that reflect the usage of the software under test. These
models are merged into API models (c), representing the usage of the entire API. We then derive test cases (d) that conform to the API model and thus
cover typical usage in the software under test (e).

able client code of the API (application programmer
interface), and derive a model based on Markov chains
usage models (MCUM) that represents the common
usage of each of the API’s classes as well as their
interactions.

Test generation based on common usage: Based on the
usage model, we define test generation operators for
search based testing that generate test cases that re-
semble real code.

Our work is in line with previous research on testing with
usage information (Section II), but represents an entirely
new process in structural test generation. Figure 3 illustrates
the overall approach: First, we extract usage models from
code examples such as existing test cases or client programs,
and generate an API Usage Model from this information
(Section III). This model is used to drive the test case
generation in producing coverage test suites (Section IV).
As we show in Section V, this usage information has an
observable effect on the resulting test suites. Even if the
model information is not complete, testers can seamlessly
regulate between readability and exploration, and allow
uninformed search where no usage information is available.

II. BACKGROUND

Usage models have been incorporated into black-box
testing techniques before: Whittaker and Thomason [1] pro-
posed the use of Markov chain usage models for statistical
testing. Since then, usage models have for example been
used for model based testing [2], [3], GUI testing [4], and
web testing [5].

Usage models are often generated manually, possibly
supported by dedicated languages [6] and tools [7], but
can also be generated using systematic methods [8], [9],
or mined from different artifacts such as log files [10].

In the context of structural testing based on source
code, Sayre and Poore [11] describe test generation for
C++ templates, where manually written usage models are
annotated with test code. Thummalapenta et al. [12], [13]
mined method sequences from source code with the goal
to increase coverage, which is different to our goal of
improving readability of test cases. Other than that, we are

not aware of any work that would include usage information
when deriving test cases from source code.

Structural test generation is commonly based either on
symbolic techniques such as (dynamic) symbolic execution
(e.g., [14], [15]) on search-techniques [16]. The prime appli-
cation of such automatically generated test cases is to find
possible program crashes [17] or contract violations [18].
In the context of test generation for object-oriented code,
different techniques to derive method sequences have been
proposed, including several search-based techniques [19]–
[22].

In this paper, we propose a search-based approach to
derive test cases for object-oriented software based on
usage models. In a different context, meta-heuristic search
techniques have already been applied to extract tests from
Markov models [23].

III. COMMON OBJECT USAGE ANALYSIS

In order to analyze class usage, we define a class as
a set of methods C = {m1,m2, . . . ,mn}, where for the
sake of simplicity we treat constructors and field accesses
as methods. A method mi = (R,P ) is defined by its
return type R ∈ C, where C is the domain of classes,
and P = 〈p1, p2, . . . , pn〉 is the (possibly empty) set of
parameters, pi ∈ C. Without loss of generality, we treat
primitive datatypes as elements in C, as is common in many
programming languages.

A. Mining Temporal Properties of Object Usage

The first step in analyzing common object usage is to
mine existing source code for usage examples. We use the
tool JADET [24] to mine object usage information from
Java bytecode. JADET uses temporal properties to express
relationships between individual functions. To extract such
temporal properties, JADET uses two main steps:
• Mining object usage models: An object usage model

is a finite state automaton that shows how an object
“flows” through various events in a method.

• Extracting temporal properties: Temporal properties
provide a succinct and easy-to-manipulate representa-
tion of how objects are used within the object usage
models.



public DateTime plusMinutes(int minutes) {
if (minutes == 0) {

return this;
}
long instant =

getChronology().minutes().add(getMillis(), minutes);
return withMillis(instant);
}

Figure 4. Method in DateTime class.

DateTime.getChronology @ (0)

DateTime.getMillis @ (0)

DateTime.withMillis @ (0)

Figure 5. Object usage models for the DateTime object in Figure 4.

JADET creates an object usage model for each statically
identifiable object used within a method. These objects are:
formal parameters of methods (including the implicit this
parameter), objects created via new, return values of method
calls, values read from fields, and explicit constants (such
as null and "OK").

Figure 4 shows a code snippet taken from the DateTime
class in Joda-Time. This snippet contains an instance of
DateTime (this), and the return values of the method
calls getChronology, minutes, and withMillis.
Figure 5 shows the object usage model derived for this
in the example, where the notation @(0) means the object
was used as parameter 0 (callee) of the method call.

A temporal property is an ordered pair of events a and b
associated with the same object, where a ≺ b represents an
ordering where event a may happen before event b. An event
associated with an object is one of the following:

• A method call (including constructor calls) with the
object being used as callee or argument: var3 =
var2.toDateTime(var3) is an event associated
with var2 and var3.

• A method call with the object being the value that was
returned: var3 = var2.toDate() is such an event
associated with var3.

• A field access; e.g., var2 = GJChronology.
DEFAULT_CUTOVER is an event associated
with var2.

Figure 6 shows the temporal properties derived from the
object usage model shown in Figure 5.

DateTime.getChronology @ (0) ≺ DateTime.getMillis @ (0)
DateTime.getMillis @ (0) ≺ DateTime.withMillis @ (0)

Figure 6. Temporal properties for the DateTime object usage model in
Figure 5.

Temporal properties are the main unit of usage informa-
tion we consider when deriving usage models. We therefore
define a temporal property T = (A1, A2) as a pair of method
calls, where Ai = (C,m, p) is a triple with C ∈ C, m ∈ C,
and 0 ≤ p ≤ |P | for m = (R,P ).

B. Class Usage Models

Each object usage model describes how one particular
instance of an object was used, and temporal properties
make the relationships between pairs of events on such
objects explicit. As our aim is to produce object instances
adhering to common usage, we extract the usage information
in terms of Markov chain usage models (MCUM) [1]. A
Markov chain is a sequence of random variables {Xt} with
the Markov property P [Xt+1 = y|Xt = xt, ..., X0 =
x0] = P [Xt+1 = y|Xt = xt], and can be thought of as
a directed, weighted graph. We define how each class is
used in isolation as its class usage model:

Definition 1 (Class Usage Model): A class usage model
UC = (V,E, P ) for class C = {m1,m2, . . . ,mn} is a
Markov chain consisting of the set of vertices V ⊆ C,
the set of edges E = V × V , and transition probabilities
P = E → [0, 1].
Each v ∈ V represents one of the methods of the class, and
the probability of an edge between v1 and v2 represents the
probability that method v2 is executed after v1. The class
usage model does not need to be fully connected.

Generating class usage models from a set of temporal
properties is done by iterating over all properties. If one of
the method calls in a temporal property is not in the model,
then a new vertex is added to V , and a new edge with weight
1 is added between the two vertices. If the edge already
exists, the weight is increased by 1. After iterating over all
temporal properties, the weights of the edges are normalized
such that the sum of weights of all outgoing edges for a state
equals to 1.

C. API Usage Models

The class usage model represents common usage se-
quences of class C, but for test case generation we also
need information on how classes interact with each other. To
this extent, we need to combine the class usage models into
a single API Usage Model, which contains the information
how the individual classes of an API interact with each other:

Definition 2 (API Usage Model): An API usage model
for the set of classes C is a directed, weighted graph
MC = (V,EC , EP , PC , PP ), where V ⊆

⋃
C∈C C is the

set of all methods with usage information. EC = V × V



Algorithm 1 Generating an API Usage Model MC from a
set of temporal properties T .
Require: Set of temporal properties T

1 MC ← (V,EC , EP , PC , PP )
2 for ((c1,m1, p1), (c2,m2, p2)) ∈ T do
3 V ← V ∪ {m1,m2}
4 if c1 = c2 then
5 EC ← EC ∪ (m1,m2)
6 PC((m1,m2))← PC((m1,m2)) + 1
7 end if
8 EP ← EP ∪ (m2, p2,m1)
9 PP ((m2, p2,m1))← PP ((m2, p2,m1)) + 1

10 end for
11 normalize weights in EC and EP

is the set of class usage edges with ∀(v1, v2) ∈ EC : v1 ∈
C → v2 ∈ C, and EP = V × V is the set of parameter
usage edges. PC = EC → [0, 1] maps class usage edges
to their probabilities, and PP = EP × N → [0, 1] maps
parameter usage edges with their parameter number to their
probabilities.

Intuitively, the API Usage Model is a superset of all the
class models for a set of classes C with an additional set of
edges EP and attached information (PP ).

Again, an API Usage Model can be generated from a set
of temporal properties by iterating over this set, as shown in
Algorithm 1: For each temporal property, vertices are added
for both method calls. If a property describes class usage,
then an edge with weight 1 is added to EC if there is no such
edge yet, else its weight is increased by 1. In addition, an
edge is added to EP for the parameter of the target method
(p2), or its weight is updated.

IV. TEST CASE GENERATION
USING API USAGE MODELS

In general, test case generation from usage models is
a stochastic process, where the next transition is chosen
according to the probabilities of the transitions outgoing
from the current state. In the case of an API usage model,
this process needs to be refined to accommodate for the
forward (class usage) and backward (parameter usage) edges
of the model.

A. Usage driven Test Cases

We assume that testing should focus on one particular
class C, and therefore select one of the methods of C as
initial state. A test case t = 〈m1,m2, . . . ,mn〉 is a sequence
of method calls. The forward exploration adds new method
calls of C to t according to the API Usage Model (or rather,
the subpart that constitutes the class usage model of C). This
process is illustrated in Algorithm 2.

When adding a new method call to the test case, its
parameters need to be satisfied. If t contains an object o

Algorithm 2 GENERATETEST(C)
Require: Set of classes C
Require: API Usage Model MC = (V,EC , EP , PC , PP )

1 t← 〈〉
2 M← choose method in C randomly
3 while not done do
4 ADDCALL (t,M)
5 M’← select stochastically such that (M , M’) ∈ EC

6 M← M’
7 end while
8 return t

Algorithm 3 ADDCALL(T, M)
Require: API Usage Model MC = (V,EC , EP , PC , PP )

1: for each parameter p of M do
2: if t has object o such that last call N: (N, p,M) ∈ EP

then
3: use o for this parameter
4: else
5: select method N: (N, p,M) ∈ EP stochastically
6: o←ADDCALL (t,N)
7: use o for this parameter
8: end if
9: end for

10: t← t.M
11: return return value of M

created as a return value or by a constructor, such that the last
method call on this object o is a successor edge of the current
state in EP , then this object can be used as a parameter. If
no suitable object exists, then an object can be generated
by inserting a method call that is an outgoing edge for the
parameter in EP to t. This backward exploration has to be
performed until the target object is created, at which point
the originally chosen method call of C can be appended to
the test case. This process is illustrated in Algorithm 3.

By construction, any sequence generated with this algo-
rithm consists only of pairs of method calls that were also
observed in the code examples. However, the combination
of such behaviors can lead to exploration of new behavior
not part of the mined examples.

Depending on the completeness of the usage information,
ADDCALL may fail on trying to generate an object, or it
might create disproportionally long sequences due to the
recursion. To counter this effect, a limit on the recursion
depth can be used – however, this cannot overcome the
problem of missing information in MC .

B. Integrating Usage Information into Search-based Testing

While the test generation approach described above can
generate any number of test cases of any length resembling
common object usage, the aim of achieving readable and
understandable test cases requires to focus on a small set of



representative test cases. To this extent, code coverage (e.g.,
branch coverage) is often used to control which and how
many test cases are generated in practice.

A coverage criterion defines a set of goals that a test
suite should satisfy. Given such a coverage goal, test cases
can be generated using a number of different approaches.
Meta-heuristic search techniques have been suggested as
a possible solution to automate test case generation [16].
Search-based techniques have been applied to test object
oriented software using method sequences [19], [22], [25]
or strongly typed genetic programming [20], [21]. Following
the method sequence approach [19], [22], [25], we define
search operators that allow evolutionary testing of classes
based on common object usage.

A genetic algorithm is an evolutionary testing technique
where a set of candidate solutions is evolved using genetics-
inspired operations towards satisfying a given objective. In
principle, it works as follows:

1) Generate initial population (usually randomly)
2) Generate new generation as follows:
• Determine fitness of current population
• Select parents
• Create offspring by crossover of parents and mutation

3) Repeat (2) until stopping criterion holds
Different objective functions have been defined in the con-
text of test case generation; in this paper, we aim at branch
coverage and use the traditional approach level and branch
distance approach [16], which estimates the distance of a
test case to executing a target branch.

In the method sequence approach, a chromosome is a list
of method calls 〈m1,m2, . . . ,mn〉 just like defined in the
previous subsection. Based on this representation, we only
need to define operators for mutation and for crossover to
allow search-based test generation [19] to make use of object
usage information.

When aiming to achieve code coverage, an incomplete
usage model can affect the exploration ability. Therefore,
we relax the requirement that test cases have to consist of
only observed behavior to requiring that test cases reflect
observed behavior as well as possible. In practice, this
simply means we allow non-observed behavior with a low
probability, both when selecting a method call to generate a
parameter object and to select the next method call.

C. Mutation

Mutation is an essential part of evolutionary search, where
individuals are changed independently of the population.
Tonella [19] defined a set of mutation operators for method
sequences, which need to be adapted to make sure that the
resulting test cases still conform to the API usage model.
We distinguish three main types of mutation operators:

Insertion: This operator adds a new statement to an
existing test case t = 〈m1, . . . ,mn〉, and is illustrated in

Algorithm 4 MUTATIONINSERT(t)
Require: API Usage Model MC = (V,EC , EP , PC , PP )

1: i← random position [0,length(t)]
2: mo ← random method in t within [0, i]
3: ml ← last method call in t on object represented by mo

in range [0, i]
4: select method n : (mo, n) ∈ EC stochastically
5: ADDCALL(t, n)

Algorithm 4. First, a position i is randomly chosen within the
range [0, n]. Then, an object defined by one of the methods
m1, . . . ,mi is selected randomly, and the last method call
on this object up to position i is determined. Then, a new
method call is selected stochastically from the usage model
based on this last method call.

Change: This operator changes an existing method
call in one of several ways; for example, it may change
parameter objects with other valid, existing objects, changes
primitive data types, or replaces a method call with another
method call. A replacement method call has to satisfy three
conditions: (1) there has to be a usage transition from the
previous method call on the same object to the replacement
method in the API usage model, (2) there has to be a usage
transition from the replacement method to the next method
call on the same object, and (3) for each parameter transition
that exists in the test case for the old method, there has to
be a suitable replacement parameter transition to the new
method, or to an alternate method in the test case. Again,
with a certain probability these conditions can be relaxed to
allow exploration of uncommon behavior.

Deletion: When selecting a method call for deletion,
we try to replace all parameter uses of the method call with
alternatives in the test that satisfy the above listed conditions,
or else recursively delete the dependent methods as well.

When an individual is selected for mutation during the
search, then each method call in the test case of length l
is changed or deleted with probability 1/l, and insertion
happens with a predefined probability.

D. Crossover

Crossover of two method sequences is problematic as the
parameter dependencies of a part of one of the parents might
not be satisfied in the other parent. Consequently, we use the
following crossover function: We select a crossover point p,
and then for the first offspring append one statement after
the other of the second half of one parent to the first half of
the other parent. This insertion works same as the insertion
used for mutation.

V. EVALUATION

To evaluate the approach presented in this paper, we
conducted a set of experiments on the open source library



Table I
SOURCES FOR USAGE INFORMATION: NUMBER OF JODA-TIME CLASSES

FOR WHICH INFORMATION EXISTS, NUMBER OF MODELS OF THESE
CLASSES, AND CONSTRAINTS RESULTING FROM THE MODELS.

Name Classes Models Constraints

Joda-Time Source 221 11198 11526
Joda-Time Tests 376 32865 33419

Σ 521 44653 45413

Joda-Time1. As source for code examples we used the Joda-
Time library itself, and consider the set of JUnit test cases
part of the Joda-Time distribution as client code that uses
the API we are testing. Table I summarizes statistics on the
usage information contained in these model sources. The
number of classes listed in Table I includes member classes,
anonymous classes, and classes belonging to the Joda-Time
test suite, as these classes are contained in the same package.

For experimentation, we selected the top-level, concrete
classes in Joda-Time, as these represent the API that will
be most commonly accessed from the outside, resulting in
a set of 26 classes. For each of these classes we ran test
case generation without usage models, and using the usage
models derived from the source code, the client code (tests),
and the combined usage model, varying the probability
of uncommon transitions between 0–100%. Resulting test
suites are minimized after test case generation by succes-
sively removing statements until all remaining statements
contribute to the coverage goal. For each configuration we
ran 40 experiments with different random seeds, averaging
the results.

Our prototype tool is implemented in Java, and imple-
ments a steady state genetic algorithm. For each run in the
experiments, the search limit was set to 500,000 executed
statements.

A. Influence of Model Quality

By construction, test cases generated from usage models
follow the observed usage information. The resulting code
coverage therefore depends on the code examples from which
common usage is learned. To see how this influences the
quality of resulting test suites in terms of code coverage,
we measured the branch coverage of the existing, manually
written test cases, and generated test suites without usage
information and with each of the model sets. For each class
and usage model, we generated 40 test suites using different
random seeds.

Figure 7 shows the branch coverage averaged over all
runs and all classes, comparing it to test cases generated
using the same test generation techniques but without usage
information. “Manual Tests” denotes the test cases that
are included in the Joda-Time distribution. The information

1http://joda-time.sourceforge.net/
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Figure 7. The branch coverage achieved using different model sources,
averaged over 40 runs.

mined from the source code leads to relatively low coverage
in the tests, which is in contrast to the large amount of
models mined from the source code. We expect that this is
because these models largely reflect usage of the internal
API, and not the external API for which we are generating
the tests.

The usage information contained in the test cases proved
to be a good source of information. There is no coverage
increase by combining the models, which is likely because
the test case generation is misguided by incomplete infor-
mation learned from the source code. Still, the coverage is
about 10% lower than that of the manual test suite, which
indicates room for improvement.

Finally, note that the coverage achieved without usage
information (“no model”) is higher even than the cover-
age of the manual test suite. However, as we will see in
Section V-D, this additional coverage includes runs that are
likely candidates for violating implicit preconditions.

The larger the variety in usage examples,
the higher the resulting coverage.

B. Effect of Usage Models on Test Suites

Figure 8 shows the number of test cases produced per
class on average. The test suites derived from the client
code model are overall the smallest, which is also due to
the lower coverage. Interestingly, there is a huge difference
in the number of test cases in automatically generated test
suites vs. manually written test cases, even if the coverage
increase is not overly large over automatically generated test
cases. This can be interpreted as redundancy in the manually
written test cases; it may show that it takes extra effort to
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Figure 8. The number of test cases contained in a test suite using different
model sources, averaged over 40 runs. The chart is cut off at size 110 to
increase readability.

Model from

 Source

Model from

 Tests

Combined

Model No Model Manual Tests

0
5

1
0

1
5

2
0

2
5

3
0

A
ve

ra
g
e
 t
e
s
t 
c
a
s
e
 l
e
n
g
th

Figure 9. The average length per test case created using different model
sources, averaged over 40 runs.

obtain the highest coverage; but it may also show that branch
coverage is not a good estimate to measure test quality.
Finally, Figure 9 shows that the average length of test cases
created with usage information is significantly smaller than
when using no usage information, which proves the expected
reduction of “noise” (i.e., unneeded functionality).

Test cases derived from common usage are shorter
than test cases generated without usage information.
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Figure 10. Box plot of coverage for different probabilities of random
choice over common usage, varying from 1.0 (= only common usage) to
0.0 (= only random choice), for the test suites generated with the test usage
model.

C. Exploration versus Common Usage

As seen in Figure 7, restricting exploration to already seen
usage may reduce the resulting code coverage, depending
on the amount of available usage information. Furthermore,
in practice there can be scenarios where there is no usage
information available for some of the classes. For example,
when creating test cases for a newly written class which is
not used anywhere in source code there exist no examples
to learn from. Usage information can still be useful in order
to create suitable parameter objects.

In practice, this means that there is a trade-off between
readability and coverage: One will want to maintain as
much readability as possible, but needs to allow exploration
of new sequences to cover new parts of the source code.
(Some of the high coverage may be explained by explicitly
covering exceptional behavior, though, as we will discuss
in Section V-E.) Our approach allows the tester to easily
regulate between readability and exploration, by choosing
the probability with which a transition is chosen out of
the API Usage Model or randomly out of the entire set of
possible methods.

Figure 10 illustrates the effects of varying the probability
of random choice. It is interesting to see that once allowing
random choice, the actual value of the probability has little
influence on the achieved result in terms of coverage, given
enough time for test case generation. In practice, these
effects imply a simple ranking: testers can focus on common
usage first, and explore uncommon usage until the test cases
become too hard to understand.

By defining the amount of non-common usage, testers can
seamlessly choose between readability and exploration.
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Figure 11. Diversity of classes used in the test cases for different
probabilities of random choice over common usage, varying from 1.0
(= only common usage) to 0.0 (= only random choice), for the test
suites generated with the test usage model. With increasing probability of
uncommon transitions, the amount of “noise” (i.e., unneeded functionality)
in the test cases increases.

D. Quantifying Readability

As stated in the introduction, our goal is to make test cases
easier to understand. But how does one quantify readability?
In Figures 1 and 2, we already have seen that readability
can be associated with the amount of functionality a test
case relies upon—the more functionality a test case needs to
satisfy its purpose, the longer it takes to understand it. More
specifically, we examine the diversity in terms of classes
—the more classes a test case requires, the harder it is to
understand.

In Figure 9, we already have seen that test case generation
without usage information leads to longer test cases. To
quantify the amount of diversity, we repeat the sensitivity
analysis of Section V-C and count the different classes
accessed in the test cases. Figure 11 shows that the number
of different classes increases on average with increasing use
of uncommon behavior. Interestingly, with only common
usage allowed (probability 1.0), the number of classes is
reduced by 68.1% in contrast to test cases generated without
usage information. (Keep in mind, though, that this increase
in readability comes with a decrease in coverage, as shown
in Section V-A).

In our experiment, test cases based on common usage
use 68% fewer different classes,

making them easier to understand.

E. Exceptional Behavior

After discussing the basic metrics of our test cases, let
us now focus on their effects—specifically, the outcome of
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Figure 12. Number of exceptions raised per test suite per class, averaged
over all runs on all classes.

test cases. In the absence of generated oracles, we can still
check whether a test case raised an exception, and if so, of
which kind. Figure 12 shows the number and distribution of
exceptions for the tests generated with (p = 1.0) and without
(p = 0.0) common usage model.

The striking observation is that with leveraging common
usage, the number of exceptions is much lower. Why is this
the case? As seen in Section V-A, test suites without model
are longer, thus increasing the chance of triggering excep-
tions. But even if we normalize the number of exceptions
per statement, on average we obtain 0.07 exceptions per
statement with common usage model, in contrast to 0.14
without—that is, 50% less.

Manual investigation of this effect reveals that Joda-Time
comes with a large number of built-in runtime checks,
checking against illegal arguments. Not knowing whether
these are part of the specification or not, our “no model”
test case generator attempts to cover all these branches
by specifically generating illegal arguments. Generating test
cases based on common usage reduces the number of these
exceptions, because common usage does not expect runtime
exceptions. In practice, this again means that testers can
focus on common usage first, and exceptional behavior later.

Test cases based on common usage
raise fewer exceptions.

F. Implicit Preconditions

In testing practice, any unexpected exception raised by
a test indicates an error—either in the code, or in the test.
In the case of Joda-Time, we already know that the Joda-
Time code already passes all the tests of the handwritten
Joda-Time test suite (which is of high quality—see the
above experiments for its coverage and extent). Therefore,
we assume that any raised exceptions are there on purpose. If
we had no confidence in the test subject, however, we would
now be faced with assessing hundreds of test outcomes—
out of which almost all would eventually turn out as false
positives.



As stated earlier, some of the exceptions are raised inten-
tionally by Joda-Time checks, possibly making them part of
the specification—and thus imposing a test obligation. There
are exceptions, though, that are never raised on purpose
by Joda-Time, such as NullPointerException. Again
assuming the high quality of Joda-Time, we can derive that
any NullPointerException raised is an involuntary
effect of the test suite violating some implicit precondition—
that is, a nonsensical test case. Considering Figure 12
again, we see that NullPointerExceptions are far
more prevalent in “no model” test cases. Normalized per
statement, we find that a test case reflecting common usage
only raises 48% as many NullPointerExceptions as
a “no model” test case, reducing the number of nonsensical
test cases by the same amount.

Test cases based on common usage
have fewer violations of implicit preconditions.

VI. THREATS TO VALIDITY

The results of our experiments are subject to the following
threats to validity:

• Threats to external validity concern our ability to
generalize the results of our study, and are common for
any empirical analysis. In particular, as we only consid-
ered classes of a single open source library, we cannot
claim that the results of our experimental evaluation are
generalizable. Hence, the evaluation should be seen as
investigating the potential of the technique rather than
providing a statement of general effectiveness.
Another threat to validity comes from the fact that we
used the Joda-Time test suite to learn models from
rather than actual client code. This is motivated by the
fact that we did not find sufficient suitable Joda-Time
clients to learn from. As demonstrated in Section V-A,
our approach is clearly dependent on the quality of
models; a sufficient number of client (or test) code is
therefore required to make it work.

• Threats to internal validity concern our ability to
draw conclusions about the connections between our
independent and dependent variables. To reduce the
probability of having faults in our framework, it has
been carefully tested. As the implemented algorithms
are randomized, we ran each experiment 40 times.

• Threats to construct validity concern the appropri-
ateness of our measures for capturing our dependent
variables. We measured the effects of our approach in
terms of size, length, coverage, diversity, and violations
of implicit preconditions. The measure of readability is
only assessed indirectly; measuring the true effort for
understanding would require human studies and is part
of our future work.

VII. CONCLUSIONS

Automated code-based test generation techniques suffer
from the problem that a tester needs to understand the
tests in order to generate effective oracles and to weed out
nonsensical test cases that violate implicit preconditions. In
this paper, we have shown how to exploit the information
contained in existing code examples in order to produce test
cases that resemble real code. The resulting test cases are
shorter, reference fewer different classes, and violate fewer
preconditions, making them altogether more understandable
and more valuable. These improvements come at the cost
of achieving a lower coverage; however, the tester can
seamlessly choose between readability and exploration and
focus on common usage before exceptional usage. Even in
the case of a newly written class for which no code examples
exist, this approach can be useful in order to generate valid
and understandable test inputs and parameters of complex
data types.

There are several ways in which our work can be ex-
tended. Technically, our current prototype tool does not yet
make full use of class hierarchies. For example, if class B
inherits from class A, and we mine usage of B for a method
that declares a parameter of type A, then this information
will be used during test generation. However, if we want
to test A directly, our prototype does not yet make use
of information mined for its subclass B. Similarly, usage
information related to class casts is not yet considered.

The usage models we used in this paper only analyze
the interactions between classes. However, when re-visiting
the test case example from Figure 2 in the introduction,
another thing that can influence readability is the choice of
primitive values. For example, it is not clear whether 197 and
−91 denote years, milliseconds, or something else. Although
we collect all constants that exist in the source code and
reuse them during test case generation, it would require
dynamic usage mining at runtime to collect more typical
values for parameters of primitive datatypes. We expect that
these improvements will lead to an increase in coverage.

In this paper we showed that learning and applying
common object usage is feasible, and has an impact on the
test cases. There is, however, no objective measurement for
readability of test cases to date. Similarly, it is not possible to
directly measure violations of implicit preconditions as, alas,
these preconditions are not explicit. Future work will include
work on quantifying readability, and setting up benchmarks
that allow evaluation of test generation techniques with
respect to how they treat implicit preconditions.
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