
Identifying Inspectors to Mine Models of Object Behavior

Valentin Dallmeier Andrzej Wasylkowski Nicolas Bettenburg
Saarland University

Department of Computer Science
Saarbrücken, Germany

{dallmeier,wasylkowski,nicbet}@st.cs.uni-sb.de

1 Introduction

In object oriented programming languages, classes are
used to incorporate state (fields) and behavior (meth-
ods) that modifies the state. Typically, only a sub-
set of a classes’ methods actually modifies the state.
Methods that don’t modify the state are called side–
effect free or pure methods.

We propose to use purity information to classify
methods as inspectors (methods that reveal informa-
tion about an object’s state) or mutators (methods
that change state). An inspector is a pure method
that takes no parameters and has a return type other
than void. Inspectors can often provide useful ab-
stractions over the internal state of an object. For ex-
ample, method isEmpty() in class Vector provides an
abstraction over the internal size attribute (namely
that size=0). The benefit of using inspectors is that
they provide an abstract characterization of an ob-
ject’s state that does not rely on internal implemen-
tation details like fields.

We use inspector and mutator methods to dynam-
ically mine models of object behavior. These models
show the effect of mutator invocations on an object’s
externally visible state (captured by calling all inspec-
tors). Thus, the models are not only meaningful, but
also aligned with the view of the user.

In the remainder of this paper we show how com-
mon inspector methods are in the wild, and illustrate
object behavior models using a real example mined
from the execution of the JAVA Vector class.

2 How Common are Inspectors?

In order to mine object behavior models, we need
a sufficiently large number of inspectors. To get an
idea how common inspector methods are, we analyzed
the purity of eight open-source programs and counted
the number of pure methods amongst them.

Our current implementation of the model miner
uses the purity analysis provided by Salcianu and Ri-
nard (2005). Their static analysis classifies methods
that do not modify objects that existed prior to the
invocation as pure, and all others as impure. Unfor-
tunately, the analysis is limited to classes that use
only the subset of the JAVA API implemented in

Classes Methods

A IC A I

Checkstyle 83 13 363 38
HTMLParser 69 54 469 161
JSMSEngine 26 9 125 27
JackSum 53 34 372 81
Jalopy 272 146 1757 225
Lucene 123 62 651 117
PMD 194 50 1397 119
ProGuard 263 99 3107 241

Table 1: Number of analyzed (A) classes and meth-
ods, inspector (I) methods and classes with at least
one inspector (IC).

GNU ClassPath 0.08 (an open-source implementation
of SUN’s JDK).

We searched several sites hosting open-source pro-
jects (Apache, SourceForge) and chose eight programs
we were able to analyze. The results are summa-
rized in Table 1. It shows the number of analyzed
classes and methods as well as the number of inspec-
tor methods and the number of classes with at least
one inspector.

Our results show that inspector methods occur fre-
quently. On average, half of a program’s classes (45%)
contain at least one inspector (with the average being
2.44), which is sufficient to investigate the state of an
object. The results also reveal that the usage of in-
spectors differs strongly between projects. While 78%
of the classes in HTMLParser contain inspectors, this
is true for only 15% of the Checkstyle classes.

3 Object Behavior Models

Having identified inspector methods of a class, we in-
strument the class by adding invocations to all inspec-
tors before and after each mutator. In order to avoid
state space explosion, we abstract from concrete val-
ues when converting results of inspector calls to a state
(unfortunately, describing this in detail is out of scope
of this paper). Executing a program that uses the in-
strumented class instead of the original one provides
us with an object behavior model for that class. This

1



isEmpty() ¬isEmpty()

add()

removeAll()

<init>()

clear()

add()

clear() remove()
remove()

Figure 1: An object behavior model for the JAVA
Vector class.

process makes our models mirror actual objects’ be-
havior. Like all dynamic analyses, we build on the
observation, that common behavior is often correct be-
havior ; thus, our models are likely to represent uni-
versal invariants.

As an example, consider an object behavior model
describing the behavior of the JAVA Vector class
(Figure 1). The model has two states: one, where
the vector is empty and one, where the vector holds
at least one element. Transitions (and lack thereof)
provide us with information about which method calls
were, and which were not observed in a particular
state during execution and how they changed the state
of an object.

We can for instance see, that calling Vector.add()
always ended up in a non-empty state and that
calling Vector.clear() always caused the vector
to be empty. We can also notice, that a call to
Vector.remove() was never observed on an empty
vector, and this is not without a reason. Calling
Vector.remove() on an empty vector always fails
with an exception being thrown.

On the other hand, some transitions may be non-
deterministic. This is the case for Vector.remove()
method call. Calling this method on a non-empty
vector may either change the state of the vector or
not. Knowledge in what states a particular method
call was observed, and how the call changed that state
allows us to extract pre- and postcondition for this
method. For example, in case of Vector.remove(), it
is necessary that the method is called on a non-empty
vector, but the call can result in an empty vector as
well as a non-empty one.

4 Related Work

Usage of finite state automata to abstract behavior
of the program was investigated by many researchers
in the past years, with Cook and Wolf (1998) being
the seminal work about inferring finite state automata
from event sequences.

In most approaches, anonymous states have been
used (Cook and Wolf, 1998; Ammons et al., 2002).
Some researchers have referred to implementation de-
tails when labeling states, like in the work of Whaley
et al. (2002), who used variables for this purpose.

The work closest to ours is by Xie and Notkin
(2004), but, unlike us, they need test cases to gener-
ate models and they do not restrict calls to only pure
methods when getting the state of the object. Addi-
tionally, they do not abstract from concrete values to
avoid state space explosion.

5 Conclusions and Future Work

Object behavior models capture essential properties of
an object from the view of the object’s client. Apply-
ing partitioning of class’ methods into inspectors and
mutators, and using return values of calls to inspec-
tors to represent an object’s state distinguishes our
work from prior work and is a central contribution of
our approach.

As a future work, we plan to use object behav-
ior models to check dynamically, whether executed
code does not violate previously learned behavior. We
also want to enhance models by extracting state of
objects being returned from inspector method calls.
This would allow us to express an object’s state as
the state of its constituents. Another idea is to check
programs statically against mined models. Deviations
from those models may point us to incorrect usage of
an API.

Acknowledgements Christian Lindig provided
valuable comments on earlier revisions of this paper.

References

Glenn Ammons, Rastislav Bod́ık, and Jim Larus. Mining
specifications. In Conference Record of POPL’02: The
29th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 4–16, Portland,
Oregon, January 16–18, 2002.

J. Cook and A. Wolf. Discovering Models of Software Pro-
cesses from Event-Based Data. ACM Transactions on
Software Engineering and Methodology, 7(3):215–249,
July 1998.

Alexandru Salcianu and Martin Rinard. Purity and side ef-
fect analysis for Java programs. In Proceedings of the 6th
International Conference on Verification, Model Check-
ing and Abstract Interpretation, number 3385 in LNCS,
pages 199–215, January 2005.

John Whaley, Michael Martin, and Monica Lam. Au-
tomatic extraction of object-oriented component inter-
faces. In Phyllis G. Frankl, editor, Proceedings of the
ACM SIGSOFT 2002 International Symposium on Soft-
ware Testing and Analysis (ISSTA-02), volume 27(4) of
SOFTWARE ENGINEERING NOTES, pages 221–231,
New York, July 22–24 2002. ACM Press.

Tao Xie and David Notkin. Automatic extraction of
object-oriented observer abstractions from unit-test ex-
ecutions. In Proceedings of the 6th International Con-
ference on Formal Engineering Methods (ICFEM 2004),
pages 290–305, November 2004.


