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Abstract—Dynamic specification mining observes program executions
to infer models of normal program behavior. What makes us believe
that we have seen sufficiently many executions? The TAUTOKO1

typestate miner generates test cases that cover previously unobserved
behavior, systematically extending the execution space and enriching
the specification. To our knowledge, this is the first combination of
systematic test case generation and typestate mining–a combination
with clear benefits: On a sample of 800 defects seeded into six Java
subjects, a static typestate verifier fed with enriched models would report
significantly more true positives, and significantly fewer false positives
than the initial models.

1 INTRODUCTION

In the past decade, automated validation of software sys-
tems has made spectacular progress. On the testing side,
it is now possible to automatically generate test cases
that effectively explore the entire program structure; on
the verification side, we can now formally prove the
absence of undesired properties for software as complex
as operating systems. To push validation further, how-
ever, we need specifications of what the software actually
should do.

Writing such specifications has always been hard—
and so far prohibited the deployment of advanced de-
velopment methods. A potential alternative is specifi-
cation mining—i.e., extracting high-level specifications
from existing code. Mined specifications can be used for
program understanding, but also for formal verification
or regression testing.

To have specifications reflect normal rather than poten-
tial usage, dynamic specification mining observes execu-
tions to infer common properties. Typical examples of
dynamic approaches include DAIKON [11] for invari-
ants or GK-tail [20] for object states. The common issue
of these approaches, though, is that they are limited to
the (possibly small) set of observed executions. If a piece
of code is not executed, it will not be considered in the
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1. “Tautoko” is the Mãori word for “enhance, enrich”.

specification; if it is executed only once, we do not know
about alternative behavior.

To address this problem, we use test case generation
to systematically enrich dynamically mined specifications.
Combined this way, both techniques benefit from each
other: Dynamic specification mining profits from test
case generation, since additional executions can be ob-
served to enrich the mined specifications. Test case gen-
eration, on the other hand, can profit from mined speci-
fications, as their complement points to yet unobserved
behavior.

In a nutshell, our approach works as follows (see
Figure 1). We leverage our earlier work [8], [9] to dynam-
ically mine typestate specifications—finite state automata
describing transitions between object states. The initially
mined specification contains only observed transitions
(Section 2). To enrich the specification, our TAUTOKO
tool generates test cases to cover all possible transitions
between all observed states, and thus extracts additional
states and transitions from their executions (Section 3).
These transitions can either end in legal states, thus in-
dicating additional legal interaction; or they can raise an
exception, thus indicating illegal interaction. Discovering
such illegal interactions is the biggest advantage of our
approach, as exceptional behavior is rarely covered by
conventional executions or tests.

How can we assess the benefits of such enriched
specifications? For this purpose, we put them to use in
static typestate verification. Typestate verification statically
discovers illegal transitions. Its success depends on the
completeness of the given specification: The more transitions
are known as illegal, the more defects can be reported;
and the more transitions are known as legal, the more
likely it is that additional transitions can be treated as
illegal. We expect that our enriched specifications are
much closer to completeness than the initially mined
specifications; and therefore, the static verifier should be
much more accurate in its reports.

This hypothesis is confirmed by an experiment (Sec-
tion 4): On a sample of 800 defects seeded into six Java
subjects, we show that our static typestate verifier fed
with enriched models reports significantly more true
positives, and significantly fewer false positives than
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Fig. 1. TAUTOKO overview. TAUTOKO takes an executable JAVA program (a) and observes its execution (b) to extract an
initial typestate model (c). It then generates additional executions (test cases) to cover missing model transitions (d).
The additional observed behavior results in an enriched specification (e).

when being fed with the initial models.2 We expect this
increased accuracy to generalize towards arbitrary uses
of mined specifications, and thus conclude (Section 6)
that test case generation is a useful method to enrich
dynamically mined specifications.

This paper extends an earlier version presented at IS-
STA 2010 [7]. While in the previous version the test case
generation was limited to mutation of existing tests, this
version includes an improved approach which does not
require existing test cases. Starting with an automatically
generated initial test suite satisfying a standard criterion
such as branch coverage, we iteratively derive new test
cases from the typestate automaton to systematically
explore the behavior of the considered target class. Eval-
uation of the models derived with this method reveals
that the typestate automata are significantly larger, thus
leading to detection of more defects.

2 MINING TYPESTATES

A typestate automaton (or simply typestate) is a finite
state automaton which encodes the legal usage of a class
under test (CUT). Its states represent different states
of an object, and transitions are labeled with method
names. As an example, consider Figure 2, showing the
typestate for the SMTPProtocol class from the ristretto
[18] library. After initialization, an SMTPProtocol object
is in its initial state 0; calling openPort() brings it into
state 1; and calling quit() from this state brings it back
into the initial state 0.

If an invocation of method m in state s causes an
exception, the typestate contains a transition from s to a
special state ex labeled with m. In our example, this is
the case if quit() is invoked from the initial state 0; this
raises a NullPointerException. A static typestate
verifier can take this very specification and check a client
for conformance; if it is possible to invoke quit() while
still being in the initial state 0, the verifier will flag an
error.

To obtain such typestate specifications from programs,
we leverage the ADABU tool presented in earlier work

2. In the remainder of the paper, we will use the terms “specifica-
tion” and “model” interchangeably.
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 openPort()  quit()

Fig. 2. Typestate for SMTPProtocol. The failing call to
quit() shows as a transition to ex.

[8], [9]. ADABU mines so-called object behavior models that
capture the behavior of objects at runtime. A behavior
model for an object o is a finite state automaton where
states are labeled with the values of fields that belong
to o, and transitions occur when a method invoked on o
changes the state. Figure 3 shows an object behavior
model for an instance of SMTPProtocol. This model
was mined by ADABU from an execution of the regres-
sion test suite for SMTPProtocol.

Typestates and object behavior models are closely
related. The two main differences are as follows:

State In typestate automata, states are anonymous; in
object behavior models, they are labeled with the values
of fields.

Exceptions Typestates represent failing method calls
by transitions to a special state ex. In object behavior
models, information about exceptions is only stored at
edges.

Since both types of models are based on finite state
automata, it is easy to convert an object behavior model
to a typestate. We therefore use ADABU to mine behav-
ior models, and convert them to typestates afterwards.
Converting behavior models into typestate automata is
straightforward and essentially consists of the following
three steps:
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state=NOT_CONNECTED;
socket=null

 <init>()

 !quit()

state = PLAIN;
socket=1238

 openPort()  quit()

Fig. 3. Object behavior model mined by ADABU from
an execution of the regression test suite. Calls that raise
an exception (such as quit()) are marked with “!”. This
model can be automatically converted into the typestate
in Figure 2.

1) The automaton is initialized with two states labeled
start and ex.

2) Each state s of the behavior model is assigned a
unique number n, and a corresponding state labeled
n is added to the typestate.

3) For each invocation of a method m between two
states si and sj , a new transition labeled with m
is added to the typestate: If the invocation raised
an exception, the transition is added from si to ex,
otherwise it is added from si to sj .

The typestate in Figure 2 introduced earlier was not
specified manually, but automatically obtained from the
object behavior model in Figure 3.

3 ENRICHING TYPESTATES

To yield precise results and few false positives during
verification, a typestate needs to be complete, i.e. it needs
to contain all relevant states and transitions for all meth-
ods in all states. To test TAUTOKO, we ran it on a set of
projects and mined typestates from the test suite execu-
tions for a set of interesting classes. Unfortunately, for the
investigated classes, we found that most typestates only
contained a fraction of all transitions. In particular, most
typestates were missing transitions for failing methods,
which renders mined typestates useless for typestate
verification.

We believe that the lack of observed failures is an issue
that is common to many projects—and thus affects every
approach for dynamic specification mining:
• Most defects due to wrong usage of a class raise

exceptions and are therefore easy to detect and fix.
Thus, a specification miner will seldom record mis-
use and exceptions when tracing normal application
executions.

• Unfortunately, we observed the same problem of
missing exceptions when tracing test suites. Most

1  data(),authSend(),mail(),
rcpt(),authReceive(),helo()

0

 quit() 2

 auth()

 openPort()

 quit() 

start

<init>()

Fig. 4. An initial model of the SMTPProtocol class as
mined from the unmodified regression test suite.

developers do not test for exceptions. One expla-
nation for this is that triggering an exception often
only covers a few lines.

• To generate a complete model, lots of tests are
required. Usually, developers do not have enough
time to write so many tests. Also, developers tend
to skip tests which they consider to be too obvious
or are convinced that they should work.

One way to approach this problem is to use test case
generation to create new tests that execute previously
unknown states and transitions. The general idea of
combining specification mining with test case generation
was first described by Xie and Notkin [34]. In this paper,
we extend the original idea to generate tests specifically
targeted at enriching typestate automata. There is a
huge variety of test generation strategies, ranging from
complex static analyses such as symbolic execution [31]
to simple random testing techniques [5], [24].

In this work, we first apply a test generation strategy
that generates new tests by mutating an existing test suite.
Then, we demonstrate how to drop the requirement on
an existing test suite by generating test cases automati-
cally, and using the learned behavioral model to drive further
test generation.

3.1 Mutating Existing Test Cases
Our initial technique works as follows: In the first step,
TAUTOKO executes the test suite and mines a model for
the CUT. This model is called the initial model. After
that, it attempts to generate mutations to the test suite
such that all methods are executed in all states of the
initial model. TAUTOKO then applies each mutant in
isolation and mines new models from the execution of
the modified test suite. Finally, the initial model and all
new models are combined into the model for the CUT.

To demonstrate the effect of TAUTOKO, consider
Figure 4 which shows the initial model of class
SMTPProtocol mined from an execution of the project’s
test suite. In contrast, Figure 5 shows the enriched model
generated by TAUTOKO after evaluating all mutations.
Not only does the enriched model contain several ad-
ditional transitions, but it now also explicitly lists the
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1  data(),authSend(),getHostName(),getService(),mail(),
              getState(),rcpt(),authReceive(),reset(),helo()

0

 dropConnection(),quit()2

 auth()

ex

 startTLS()

 openPort()

 dropConnection(),getHostName(),getService(),getState()

 noop(),startTLS(),authSend(),auth(),quit(),
authReceive(),reset(),helo()

 dropConnection(),quit()

 getHostName(),getService(),getState() start

<init>()

Fig. 5. Enriched model of the SMTPProtocol class. Compare with the initial model in Figure 4.

exceptional behavior in its ex state. We will use these
models to illustrate the techniques presented in this
section.

Mutant generation starts by statically determining the
set of methods that belong to the CUT or one of its
super types. For every such method m, TAUTOKO tries
to generate mutations such that m is invoked in all states
of the initial model. To invoke method m in state s,
TAUTOKO will either add an invocation of m, or suppress
one or more existing method invocations. The choice of
adding or deleting invocations depends on the number
and types of the parameters m expects.

If m only requires a reference to the receiver object,
TAUTOKO simply adds a new call to m right after a
method call that caused a transition to s in the initial
model. For example, in Figure 4, to invoke method
dropConnection() in state 1, TAUTOKO adds a call to
dropConnection() right after the call to openPort()
that causes the transition to state 1.

A problem arises if m expects parameters beyond
the receiver object. In this case, we need to provide
values for the parameters in order to call m. Our initial
approach is to reuse existing invocations of m. If the initial
model contains an invocation of m in another state t,
TAUTOKO suppresses method calls such that the call
occurs in state s instead. For example, to call method
authSend(byte[]) in state 0, we can suppress the
invocation of openPort() that causes the transition
from state 0 to 1.

The advantage of this approach is that it is simple
to implement and works also for complex parameters
that are difficult to generate. However, this approach
is unable to handle methods with parameters that are
never invoked by the program. To call such methods,
we need to apply more generic test generation schemes,
as described in Section 3.2. Still, our evaluation results

show that even with this simple approach, enriched
specifications already contain much more information
and are likely to be much more useful in any verification
setting.

Algorithm 1 shows pseudo code for the procedure to
enrich a typestate for class c. Input to the algorithm
consists of the test suite, the initial typestate and the
set of methods that can be called on c. The main loop
of the algorithm (lines 3-23) iterates over all states s of
the initial typestate. For every method m that expects
parameters other than the receiver (lines 7-14), TAUTOKO
finds all invocations of m in the initial typestate (line
8), tries to find a path that leads to s, and creates a
mutated test that suppresses all method calls along the
path (line 12). If the sole parameter to m is the receiver
(lines 16-20), TAUTOKO finds all transitions after which
the object is in state s (line 16) and generates a new
test that invokes m right after the call that caused the
transition (line 18). The final loop (lines 25-28) executes
all tests, mines new typestates from each execution, and
merges the new typestate into the current version. After
the loop has finished, the procedure returns the enriched
typestate.

3.2 Test Case Generation Using Typestate Automata
The improvements achievable by mutating test cases
depend to a large extent on the type and quality of the
already existing test cases – a simple test case mutation
approach can only add new method calls for which all
parameter dependencies are satisfied. To overcome this
limitation, a full fledged test generation approach can
be employed, such that new objects are generated as
necessary. This allows extension of the above approach
in two ways:

1) Rather than having a single improvement step,
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Algorithm 1 Enrich Typestate Automaton
Require: Test Suite T = (t1, . . . , tn)
Require: Initial typestate Minit = (Vinit, Einit)
Require: Methods to investigate M
Ensure: Enriched Typestate Mfinal = (Vfinal, Efinal)

1: procedure ENRICH(T,Minit, M)
2: T ′ = {}
3: for all s ∈ Vinit \ {start, ex} do
4: Ms ← {Methods invoked in s}
5: for all m ∈ {M \Ms} do
6: if hasParameters(m) then
7: Sm ← {ŝ ∈ Vinit | ∃(ŝ, ŝ′, n) ∈ Einit : m =

n}
8: for all ŝ ∈ Sm do
9: p← getPath(T, ŝ, s)

10: if length(p) <∞ then
11: T ′.add(suppressCallsOn(T, p))
12: end if
13: end for
14: else
15: R← {(s, s′, n) ∈ Einit}
16: for all t ∈ R do
17: T ′.add(appendCall(T, t,m))
18: end for
19: end if
20: end for
21: end for
22: Mfinal ←Minit
23: for all t ∈ T ′ do
24: Mnew ← run(t)
25: Mfinal ← merge(Mnew,Mfinal)
26: end for
27: end procedure

we can iteratively derive new test cases from the
typestate automaton, systematically exploring new,
previously unknown states.

2) Independently of any existing test cases, this process
can be bootstrapped or complemented with any
automatically generated test suite.

Using automatic test generation to bootstrap the pro-
cess is not only convenient when no previously written
test cases are available; automatically generated test
cases can have very high coverage and include a signif-
icant amount of exceptional behavior. Thus, even when
there is an existing test suite, additional automatically
generated test cases might provide useful information.

To generate the initial test suite, we use an evolution-
ary approach based on the work of Tonella [30], using
our own test framework [13]. We use branch coverage of
the CUT as test objective, which gives us a reasonably
diverse test suite to start with. From this test suite, we
derive a typestate automaton as described above.

Using this initial typestate automaton, we systemati-
cally derive new test cases. The aim of this exploration
is to find new states and transitions that are not yet part

of the automaton. To this extent, we try to execute each
method of the CUT in every (abstract) state, as shown in
Algorithm 2: This algorithm just requires the CUT and
the set of methods that should be considered as inputs.
First, a branch coverage test suite is generated (line 3),
and an initial typestate automaton is derived for this test
suite (line 7 - 10). This automaton is traversed (lines 11
- 24), keeping track of the sequence of method calls that
leads to the current state. For each state, we go through
the set of methods that has not been called in this state
(line 15) and generate a new test case that calls this
method in the current state. In the next iteration, these
new test cases are executed, and a new model is learned
from these executions and merged with the previous
model (line 7 - 10). This process is repeated until a
fixpoint is reached (i.e., no more tests can be derived —
line 5) or another possible limit (e.g., maximum number
of tests or iterations) has been reached.

When deriving new test cases from the automaton
it is important to notice that a state of a behavioral
model can have several transitions labeled with the same
method call, as different input parameters can lead to
different states – in other words, the automaton is non-
deterministic. This means that deriving a single sequence
of method calls that reaches a state is not sufficient to test
for potential successor transitions. Therefore, when de-
riving a new test case for a given state of the automaton,
we randomly select one previously generated test case
that leads to this state (line 16), and extend the prefix
sequence of this test leading to the considered state with
the new method call. If this fails, a completely new test
case matching the sequence of method calls is generated.

To avoid explosion of the number of test cases, we
only add a test case to the set of tests T if there is no
test in T that is a prefix of the new test. Vice versa, if
there already is a test case that is a prefix of the new
test, then we replace this test with the new test.

4 EXPERIMENTAL EVALUATION

In this section, we investigate how well our approach
works in practice. Our goal is to compare the usefulness
of enriched models versus initial models as well as manu-
ally generated complete models, and thus investigate the
benefits and potential drawbacks of our approach.

4.1 Subjects

To evaluate the effectiveness of TAUTOKO, we have
applied it to six different JAVA subjects listed in Ta-
ble 1. Altogether, we chose 6 different classes for which
we generated and evaluated typestate automata. Three
classes (upper half in Table 1) are part of publicly avail-
able libraries, whereas the remaining classes are part of
the JAVA standard API. In terms of domain, the sub-
jects can be divided into I/O (javamail, ristretto,
socket and zip) and security (javax.security and
signature).
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Algorithm 2 Generate and Explore Typestate Automaton
Require: Class C
Require: Methods to investigate M
Ensure: Typestate M = (V,E)

1: procedure GENERATE(C,M)
2: t = 0
3: T = generate branch coverage test suite
4: M = ({}, {})
5: while t 6= |T | do
6: t = |T |
7: for all t ∈ T do
8: Mnew ← run(t)
9: M ← merge(Mnew,M)

10: end for
11: Q = { (initial state of M, 〈〉)}
12: while Q is not empty do
13: s, p = get element from Q
14: Ms ← {Methods invoked in s}
15: for all m ∈ {M \Ms} do
16: t = get test from T matching prefix p
17: T.add(append(t,m))
18: end for
19: for all {s′ | (s, s′, n) ∈ E} do
20: if s′ has not been visited then
21: Q = Q ∪ {(s′, p.n)}
22: end if
23: end for
24: end while
25: end while
26: end procedure

We chose our subjects by investigating a subset of
open-source projects from big hosting sites such as
Sourceforge and java.net, as well as classes from
the JAVA standard API. We included subjects that met
the following criteria:

1) The API documentation of the class explicitly or
implicitly mentions restrictions on the order of method
invocation. In other words, we made sure that our
subjects are complex enough to yield interesting
specifications.

2) As a source for test runs, in the first step we solely
rely on executions as provided by the developers of the
subject class. This is to avoid introducing additional
bias with self-constructed test-cases. For the first
three subjects in Table 1, we use sample executions
and regression test suites provided by the respective
projects. We made sure that these runs cover all
essential methods of the subject class. For the JAVA
standard classes in our evaluation, we use confor-
mance tests of the APACHE HARMONY project. This
project aims at providing an open-source alternative
to the JAVA standard classes, and therefore has a
sophisticated test suite to ensure compliance with
the original implementation by SUN.

3) To conduct the evaluation using the static typestate

TABLE 1
Subjects used in the case studies.

Subject Type Description

javamail SMTPTransport Sending mails via smtp.

javax.
security

LoginModule User authentication.

ristretto SMTPProtocol Sending mails via smtp.

signature Signature Handling of digital signa-
tures.

socket Socket Network communication.
zip ZipOutput

Stream
File compression with zip
algorithm.

verifier, we needed an additional application for
each subject that uses the subject class in its imple-
mentation. To find such applications, we searched
the web using koders.com and google code
search engines. To qualify for our evaluation, a
project had to offer a minimum level of maturity
and provide a test run that executes the subject class
(See Section 4.4.2 for a rationale).

We are aware that our selection process creates a
bias towards complex classes and well-tested projects.
However, the purpose of this evaluation is not to eval-
uate the usage of mined specifications in general. In-
stead, we study how our approach for enriching mined
specifications improves quality and applicability of the
specifications. Section 4.6 provides a detailed discussion
of threats to the validity of our results.

4.2 Enriching Models:
Quantitative Evaluation
In this section, we provide a quantitative evaluation of our
technique for enriching mined specifications. For every
subject, we mine an initial model (see Section 2) from the
execution of the test suite. Afterwards, we use TAUTOKO
to mutate the test suite and mine an enriched model.
To quantify the difference between the two versions, we
count the number of states and the number of transi-
tions. A transition in this context means a method call.
Since we are mostly interested in exceptional behavior, we
also measure the number of exceptional transitions. The
results of the quantitative evaluation are summarized in
Table 2.

For SMTPProtocol, we also provided the initial
model in Figure 4 and the enriched version in Figure 53.
Both versions have the same number of states. However,
the enriched version has about three times as many
transitions. Also, the initial model has no exceptional
transitions, compared to 9 transitions in the enriched
version.

Applied to all subjects, TAUTOKO discovers new states
for three out of six subjects, and significantly increases

3. Models for the remaining subjects are available online at the
website given in Section 6.
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TABLE 2
Enriched models have more transitions, and many more exceptional transitions.

Original model Enriched model

Subject Mutations States Transitions Exceptional States Transitions Exceptional
Transitions Transitions

javamail 61 6 5 0 13 48 2
javax.security 9 6 5 0 6 14 6
ristretto 55 5 11 0 5 33 9

signature 23 5 30 8 5 39 13
socket 540 11 35 2 17 251 55
zip 145 11 24 5 14 62 18

the number of transitions for all of them. None of the
initial models for the first three subjects has exceptional
transitions, hinting at a low quality of the test suite.
This is a general trend we observed in many projects, as
discussed earlier. For each of those subjects, TAUTOKO
discovers new transitions that trigger exceptions. Initial
models for the JAVAAPI classes already contain transi-
tions to the error state. Obviously, the conformance tests
of the HARMONY project also test for expected negative
behavior. For the API subjects, TAUTOKO significantly
increases the number of both exceptional and normal
transitions. The largest relative increase is observed for
socket, with a total of 55 exceptional transitions com-
pared to only 2 in the initial model.

Overall, applying TAUTOKO leads to larger models
with significantly more transitions. In the next section,
we investigate if TAUTOKO also improves the quality of
the mined specifications.

4.3 Enriching Models:
Qualitative Evaluation

In this section, we take a look at how well the initial and
enriched models reflect the complete model of the class. To
this end, we compare the mined models with complete
usage models. Since there are no models available for
our subjects, we had to manually create them. To create
the models, we investigated the source code to build a
mental model that was translated into a typestate. In a
few cases it was difficult to reliably judge if a method
could be called in a certain state. To clarify those cases,
we wrote small test cases that resolved the issue.

One problem with manual model generation is how to
deal with unchecked exceptions. In JAVA, many instruc-
tions may cause null pointer dereferences or illegal array
accesses. Including transitions for all those exceptions
would introduce a high degree of non-determinism,
which essentially renders the model useless. We there-
fore only include transitions for checked exceptions.

Manually creating models involves a lot of human
effort (which, of course, is why we wanted to build TAU-
TOKO in the first place.) We therefore restricted our eval-
uation to only three subjects, namely SMTPProtocol,
ZipOutputStream and Signature. In total, we spent
over 10 hours on creating the specifications, where most

of the time was spent on SMTPProtocol, which is
also the most complex. Due to space restrictions, we
cannot depict the complete specifications here. However,
they are available for download at the address given in
Section 6. Table 3 lists structural details of the manually
built models.

To investigate whether TAUTOKO also improves the
quality of the mined specifications, we compared initial
and enriched models against the complete model:

ristretto
The complete model has two more states than the initial
and the enriched models. The two additional states are
related to sending mails, which requires a call to initiate
the mail, followed by several calls to set receivers, and
a final call to send the mail. No state-based specifica-
tion miner can detect this protocol, since relevant state
information is transmitted to the server and is not kept
locally. Apart from this, all states and transitions of the
initial model are also reflected in the complete model.

The enriched model adds twenty valid transitions and
nine exceptional transitions. Two exceptional transitions
are invalid according to the complete model. They are
caused by limitations of the mock server, which is used
in the test suite of SMTPProtocol. This shows a limita-
tion of our completion technique: TAUTOKO may break
the boundaries of the test suite and generate invalid
transitions.

signature
The initial and the enriched models have the same
number of states. All transitions in the initial model
are in accordance with the complete model. TAUTOKO
adds nine additional transitions, five out of which are
exceptional transitions. All transitions are also reflected
in the complete model. In total, the enriched model
misses six transitions. This is due to the way TAUTOKO
injects and suppresses method calls, which prevents
some methods from being called in certain states.

zip
The complete model has many fewer states than both
the initial and the enriched model. This occurs because
states in the model miner also include values for fields
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TABLE 3
Manually specified typestate models.

Subject States Transitions Exceptional
Transitions

ristretto 7 86 29
signature 5 48 12
zip 6 31 9

that are irrelevant for the usage of the object, such
as comment or method. The initial model essentially
contains the structure of the complete model twice, once
with method set and once without. The enriched model
contains additional states with comments. Despite the
blow-up, the mined models are still useful since they
capture all exceptional transitions of the complete model.

In summary, we found that the specification miner in
combination with TAUTOKO generates valid specifica-
tions compared to manually deduced models. Like any
test case generation technique, TAUTOKO cannot guaran-
tee to cover all possible transitions; and this limitation
also holds for the present subjects. Section 6 presents
ideas for future work to improve coverage. In one case,
TAUTOKO generates transitions that do not match the
complete model. This is due to restrictions which are
inherent to the general technique of enriching models
by manipulating an existing test suite.

4.4 Are enriched models
more useful in practice?
Results of the previous sections show that applying TAU-
TOKO yields better specifications. However, we would
also like to know if this improvement matters in practice.
To investigate this, we ran a static typestate verifier on
a set of randomly generated defects and compared the
results for initial and enriched models. For ristretto,
signature and zip, we also included complete models
from the previous section. The evaluation setting is
summarized in Figure 6 and detailed in the following
sections.

4.4.1 Experimental setting
Our experiment assumes the following situation: A de-
veloper starts building an application and uses classes
from a library l that are unknown to her. To help the
developer avoid bugs due to incorrect usage of those
classes, her IDE supports lightweight typestate verifica-
tion. Whenever the developer changes a method that
uses classes of l for which a specification is available,
the IDE launches the typestate verifier. The verifier then
analyzes all changed methods and looks for incorrect
usage of classes; if it finds a violation, it is presented
to the user. Obviously, we would like to catch as many
defects (true positives) and report as few false alarms
(false positives) as possible.

To simulate the above situation in a controlled exper-
iment, we take the following steps:

(a) Class Client (c) Initial Model (d) Enriched Model

↯
open

close

open

close

close

open open

(e) Second Client (f) Mutated Client

(h) Error
Reports

(g) JFTA 
      Static Typestate Verifier

(b) Tautoko
      Spec
      Miner +

Fig. 6. Evaluation overview. We take the client (a) of
a class and use TAUTOKO (b) to mine both the initial
model (c) and the enriched model (d). We then take
a second client (e) of the same class and seed in a
defect (f). The JFTA (see Section 4.4.2) static typestate
verifier (g) then produces error reports (h) for the mutated
client using both the initial model and the enriched model.
Where available, we also include complete models (see
Section 4.3). We compare the error reports in terms of
true positives and false positives.

1) For each subject used in the evaluation so far, we
find an application that uses the subject. We also
require the application to provide a test suite or
other means to execute the program.

2) We use our mutation tool to simulate changes a
developer might make to the application. To this
end, we generate mutants that randomly inject or
suppress method calls to instances of the subject
class in the application.

3) For each mutated version, we execute the test suite
of the application to classify mutants. Mutants that
raise an exception at runtime are defects that we
would like a typestate verifier to detect. Mutants
that do not raise an exception use the class correctly,
and therefore the verifier should not report a warn-
ing.

4) Finally, we run the verifier for each mutated version
to analyze all methods touched by the mutant and
remember all reported violations. We use the gen-
erated mutants to measure how often the verifier
points to a method invocation that actually triggers
an exception (true positive), and how often the
verifier reports a violation although the program
runs without producing an error (false positive).

The purpose of this experiment is to measure the
effect of using enriched specifications as generated by
TAUTOKO over using initial specifications produced by
the test suite. We therefore repeat step 4 with initial
models generated by the test suite and enriched models
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generated by TAUTOKO. For three subjects, we also
include results for the complete models created for the
qualitative evaluation of Section 4.3.

We ran our evaluation for the same set of subjects
used for the previous experiments. Table 4 lists the test
sources for generating models, as well as the names of
all applications used in the evaluation.

4.4.2 The JFTA Static Typestate Verifier
Unfortunately, existing typestate verifiers are either un-
available to the public [12] or require additional input
[4]. We have therefore implemented our own typestate
verifier called JFTA. JFTA is a partially (up to a config-
urable call depth) inter-procedural, flow- and context-
sensitive typestate verifier for JAVA classes. Input to JFTA
consists of the program’s byte code, a set of typestate
automata, and a set of methods which are to be analyzed.
In contrast to other tools such as Plural [4], JFTA does
not require the programmer to provide annotations of
the program code.

The core part of JFTA consists of a conservative
dataflow analysis algorithm. Aliasing information is cal-
culated using a demand-driven points-to analysis [28].
As the primary focus of JFTA is to execute quickly,
the implementation uses several heuristics that trade
precision for speed:

• When analyzing a method, JFTA only follows
method calls up to a certain (configurable) depth.
Thus, the analysis may miss method calls which
potentially causes false positives or negatives.

• Information of different paths through a method is
merged together. Thus, the analysis is path insensi-
tive, which may cause false positives.

• Whenever the analysis is unable to determine the
state of an object, it simply assumes that the object
can be in any possible state. This may again generate
false positives.

Due to the above heuristics, our approach is less
precise than other tools such as [12]. However, in our
setting we are interested on the effect of using enriched
specifications rather than on absolute precision; and our
results thus are likely to generalize to all sorts of types-
tate verifiers. This is further discussed in Section 4.6.

4.4.3 Results: True Positives
Table 5 summarizes the results for all changes that
trigger exceptions, listing results using initial, enriched
and complete models where available. “Reported” lists
the number of defects for which the verifier reports a
violation. “Actual” gives the number of cases where the
reported method call exactly matches the call that raises
the exception. For all numbers of reported errors, higher
values are better.

The results show that, when using enriched models,
the verifier pinpoints more violations than with initial
versions. For the first three subjects, initial models cannot
point to defects since they do not contain exceptional

transitions. For the remaining three subjects, initial mod-
els also detect violations. For signature and socket,
enriched models detect considerably more violations.
For zip, both versions report violations for the same
number of changes. However, enriched models more fre-
quently point to the method call that raises the exception.

Better performance of enriched models in finding vi-
olations comes as no big surprise, as they include many
more exceptional transitions than initial models. Still, the
increase is considerable and the difference is statistically
significant according to a paired-t-test with p = 0.05.

Enriched models are better suited to finding errors
than initial models.

For zip and signature, complete models find
slightly more actual defects than enriched models. Thus
for those two cases, models enriched by TAUTOKO
are almost as good as manually created specifications.
However, for ristretto complete models find 4 more
defects (19 compared to 15). This is due to the nature of
the typestate miner, which relies on the values of fields
to capture an object’s state (see Section 4.3). Even when
using complete models, the verifier does not catch all
defects. This is due to technical limitations of JFTA, such
as the limited call stack depth.

Automatically enriched models can be almost as good as
manually specified models.

4.4.4 Results: False Positives
Apart from finding errors, we would also like to have
as few false positives as possible. To investigate the false
positive rate of initial and enriched models, we repeated
the above experiment with changes that did not cause
exceptions.4 For those changes, the verifier should not
output violations.

The results of this experiment are shown in Table 6.
The columns “Initial” and “Enriched” list the number of
false positives for all types of models. For javamail
and signature, we observe significantly fewer false
positives. For the remaining subjects, the difference is
smaller, but enriched models generally produce fewer
false positives. A paired-t-test yields a p-value of 0.0124,
which tells us that enriched models produce statistically
significantly fewer false positives than initial models.

Enriched models produce fewer false positives
than initial models.

Using complete models again yields the biggest im-
provement for ristretto with only seven false posi-
tives remaining. For the other two subjects, using man-
ually created models provides no benefits over using
enriched models from TAUTOKO.

4. We used coverage analysis to make sure that each change is
actually covered.
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TABLE 4
Details about where tests came from and which applications where tested.

Subject Test Source # Tests Application

javamail Regression test suite 6 JVerify Binary Verifier (sourceforge.net)
javax.security Regression test suite 5 Apache Jackrabbit (apache.org)
ristretto Regression test suite 5 Fin J2EE calendar server (dev.java.net)

signature Harmony compliance tests 16 opensc project (opensc-project.org)
socket Harmony compliance tests 5 CRSMail Server (sourceforge.net)
zip Harmony compliance tests 9 Huf 3.0 (sourceforge.net)

TABLE 5
Enriched models show more true positives.

Initial model Enriched model Complete model

Subject Defects Reported Actual Reported Actual Reported Actual

javamail 5 0 0 4 3 n/a n/a
javax.security 3 0 0 2 1 n/a n/a
ristretto 28 0 0 25 15 21 19

signature 12 6 4 12 10 12 10
socket 49 2 2 48 47 n/a n/a
zip 23 19 14 19 18 22 19
“Reported”: number of defects detected;
“Actual”: number of defects detected at the right method call.

TABLE 6
Enriched models show fewer false positives.

Subject Changes Initial Enriched Complete
model model model

javamail 28 26 2 n/a
javax.security 4 4 2 n/a
ristretto 53 53 47 7

signature 29 12 0 0
socket 460 300 283 n/a
zip 30 26 18 15

4.5 Test Case Generation Using Typestate Automata

To evaluate the fully automatic typestate automation
generation we use the same six case-study subjects. For
each class we first generate a test suite targeting branch
coverage, using a time limit of 10 minutes per class.
Then, based on the resulting minimized test suites, we
iteratively learn a new model from the execution traces
of these test cases, and derive new test cases from the
model, as described in Section 3.2. We limit the number
of iterations to 100, and use a maximum of 100 test cases
per iteration to keep the overhead of trace generation
and model learning in reasonable bounds.

Table 7 summarizes the statistics of the test
case generation. The subjects javamail, ristretto,
and socket use networking, and signature and
javax.security depend on internals of the Java secu-
rity and authentication mechanisms — these are serious
challenges for automated test case generation, which is
why the literature commonly only focuses on container
classes. To test the two SMTP implementations we ran

TABLE 7
Test case generation statistics.

Subject Branch Coverage Initial Tests Total Tests

javamail 40.9% 20 4,102
javax.security 67.7% 1 2,042
ristretto 55.5% 5 43
signature 54.3% 9 602
socket 79.9% 17 1,218
zip 95.8% 20 9,787

TABLE 8
Generating test cases from automata leads to automata

with mode states and transitions.

Subject States Transitions Exceptional
Transitions

javamail 290 1,780 613
javax.security 19 112 43
ristretto 4 49 17

signature 5 110 32
socket 27 540 204
zip 22 149 61

a simple SMTP server5 which gives valid responses but
does not deliver messages, and modified the classes un-
der test to always connect to this server. For signature
and javax.security we also used some of the helper
classes that are written as part of the handcrafted test
cases.

Table 8 shows that the models resulting from this
process are larger than the original and the enriched
models as listed in Table 2. Only for ristretto there is

5. http://www.aboutmyip.com/AboutMyXApp/DevNullSmtp.jsp
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one state less, although the number of transitions is still
higher. This demonstrates that existing test cases are not
a requirement, and that iteratively extending the model
can effectively cover new, unknown behavior.

Existing test cases are not required
to generate typestate automata.

Table 9 lists the results of this approach in terms of
the quantitative analysis as described in Section 4.4. The
results show that the models can find more violations
than both the initial and the enriched models as shown
in Table 5. Although the number of reported violations
for socket is equal to that reported by the enriched
model, this is the only subject where the number exact
matches of method calls (“Actual”) is smaller than in
the enriched model. In all other cases, the number of
reported and actual violations is larger or at least equal
to the number of violations reported by the initial and
the enriched models.

Deriving tests from typestate automata
increases the number of errors found.

On the other hand, the number of false positives for
javamail, socket, and zip is larger than that of the
initial and enriched models, whereas javax.security
and signature are equal, and ristretto has less
false positives. Although the typestate verifier may cause
several of these false positives (see Section 4.4.2), to
some extent this can be attributed to automatic test
case generation, which will sometimes generate input
parameters that are good at covering branches, but do
not represent normal usage. If a method is only covered
with invalid parameters (i.e., parameters that lead to
exceptions) but has no execution without exception, then
this will lead the typestate verifier to issue false warnings
for these methods.

Automatically deriving tests from typestate
automata may lead to more false warnings.

4.6 Threats to Validity
As any empirical study, the results of our experiments
are subject to threats to validity. We distinguish between
threats to internal, external, and construct validity:

Threats to external validity concern our ability to
generalize the results of our study. We cannot claim that
the results of our experimental evaluation are generaliz-
able. Our sample size is small; in total we investigate six
subjects in twelve different applications. Also, our choice
of subjects is biased towards more complex classes of
projects with executable regression test suites. Less com-
plex classes tend to generate only trivial models, and
therefore TAUTOKO is unlikely to enrich them. However,

applying TAUTOKO on such classes would not cause
any harm, since the enriched model always contains the
initial model. In practice, though, only specifications for
classes that are complex enough to be misused should
be distributed.

Threats to internal validity concern our ability to
draw conclusions about the connections between our
independent and dependent variables. Our process of
manually creating complete models in Section 4.3 may be
subject to errors or bias. When creating the models, we
may have unintentionally left out states or transitions,
which may influence our results. We therefore have used
test cases to distinguish ambiguities wherever necessary.
In addition, we make the models available at our web-
site so that other researchers can investigate them (see
Section 6).

Threats to construct validity concern the adequacy
of our measures for capturing dependent variables. The
last experiment uses our typestate verifier to compare
models in terms of their ability to detect errors. A po-
tential problem exists because the typestate verifier may
miss violations due to over-approximations or technical
limitations. We may therefore be unable to measure the
number of correctly identified violations for a specifi-
cation. However, our evaluation uses the same set of
changes for both types of models. If over-approximations
prevent the verifier from detecting a violation, it will
do so for both types. As our evaluation focuses on the
increase of true positives (or decrease for false positives),
we believe that this is no real threat for the results of this
experiment.

5 RELATED WORK

The idea of combining test case generation with speci-
fication mining was conceived by Xie and Notkin [34].
They present a generic feedback loop framework where
specifications are fed into a test case generator, the
generated tests are used to refine the specifications, and
the refined specifications are again given as input to the
test case generator. We extend this work by providing an
implementation of the framework for typestate mining,
as well as an evaluation of how useful enriched specifi-
cations are for a real-world application.

TAUTOKO uses techniques from several different areas
of software engineering. The following sections summa-
rize related work in the fields of test case generation,
typestate verification, and specification mining.

5.1 Test Case Generation
There is a large body of work on test case generation,
which is why we will limit the discussion to only a few
representative approaches. If available, we cite surveys
that provide more details in specific areas.

Several approaches use simple randomized algorithms
to generate tests. Ciupa et al. [5] apply random testing to
several industrial sized applications. Their work uses the
AUTOTEST approach, which relies on invariants as test



12

TABLE 9
Generated models have less false negatives, but more false positives.

True Positives False Positives

Subject Defects Reported Actual Changes Reported

javamail 5 4 4 28 28
javax.security 3 5 2 4 2
ristretto 28 21 16 53 45

signature 12 12 10 29 0
socket 49 48 2 460 335
zip 23 20 18 24 30

oracles. Milicevic et al. [25] present KORAT, which also
leverages preconditions but works for JAVA programs.
In contrast to random techniques, TAUTOKO specifically
generates test cases to enrich a given initial model.

Another area in test case generation are search-based
techniques, where meta-heuristic search techniques are
applied to derive test data; the existing search-based
approaches are surveyed by McMinn [22]. Evolutionary
testing of classes was proposed by Tonella [30], and
we apply a similar technique to derive an initial test
suite automatically. In contrast to Tonella’s approach our
fitness function for branch coverage is not only based on
the approach level but also the branch distance [22].

The power of modern constraint solvers allows an-
other recently popular approach to test case generation,
constraint-based testing. Symbolic execution [19] simu-
lates execution of the program using symbolic values
rather than concrete ones and relies on constraint solvers
to derive test data. Recently (e.g. [21]), combinations of
concrete and symbolic execution were proposed to over-
come limitations of symbolic execution in terms of scal-
ability. The majority of these approaches systematically
analyze control-flow. In contrast to these approaches,
TAUTOKO mutates the program to explore new behavior,
thus changing the control flow rather than analyzing it.

Given its ability to derive test cases from a model,
TAUTOKO is an instance of a model-based test generation
tool. Such tools require the presence of a model that
describes the intended system behavior. This model is
then used to derive tests or input data. They come in
very different forms, e.g. as finite state machines, or
algebraic specifications. A survey on existing model-
based approaches can be found in [17]. An example of a
model-based testing tool is SPECEXPLORER [31], which
is developed by Microsoft Research. SPECEXPLORER ex-
plores specifications written in SPEC# [2] and provides
test cases for explored behavior. To our knowledge,
we are the first that use test-generation techniques to
improve the quality of mined typestates.

In the area of web application testing, Mesbah et
al. [23] extract state machines that describe the user
interface of AJAX applications. Their tool called ATUSA
derives sequences of operations that are executed to
explore the application and trigger defects. In contrast,
our approach explores JAVA classes and generates new

tests to enrich specifications.
Gupta and Heidepriem [16] explore a new structural

coverage criterion based on dynamic invariants. They
use DAIKON [11] to mine an initial set of likely invari-
ants. Based on this set, Gupta and Heidepriem generate
a new test suite that tries to cover as many invariants as
possible. This test suite can be used to remove spurious
invariants from the initial set. In contrast, TAUTOKO
mines typestate automata and uses mutation to generate
new tests.

5.2 Typestate Verification

The term typestate was coined in 1986 by Strom and
Yemini [29]. Initially, typestates were used to distinguish
uninitialized from valid pointers. This information was
used to detect potential null pointer dereferences and
memory leaks in PASCAL programs.

Since then, several approaches have been developed
for different platforms such as .NET [10] or JAVA [14] with
varying levels of precision. A promising sound typestate
verifier for JAVA was presented by Fink et al. [12]. The
tool uses a staged approach with a total of four stages:
early stages use imprecise and fast techniques to filter
instances that need not be considered in later (more
precise and thus expensive) stages. The last stage is only
required for objects referenced by more than one method
or objects stored in collections. Fink et al. report analysis
times ranging from one to ten minutes for projects with
up to 200 classes. In contrast to their approach, JFTA is
less precise due to its conservative handling of arrays
and collections. We would expect that using the tool by
Fink et al. would further reduce the number of false
positives in our evaluation.

5.3 Specification Mining

The large body of work on mining specifications can be
grouped into dynamic and static approaches. The first
technique by Cook and Wolf [6] considers the general
problem of extracting a finite state machine based model
from an event trace. They reduce the problem to the well-
known grammar inference problem [15] and discuss al-
gorithmic, statistical and hybrid approaches. Later, Larus
et al. [1] proposed mining specifications for automatic
verification. Their approach learns probabilistic finite
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state automata for C programs. Following the assump-
tion that common behavior is correct behavior, Larus et
al. use the inferred automata to search for anomalies in
other executions of the program.

Among the first approaches that specifically mine
models for classes is the work by Whaley et al. [33]. Their
technique mines models with anonymous states and
slices models by grouping methods that access the same
fields. Lorenzoli et al. [20] mine so-called extended finite
state machines with anonymous states. To compress
models, the gk-tail algorithm merges states that have the
same k-future.

In terms of static techniques, there is also a huge
number of different approaches. Wasylkowski et al. [32]
mine object usage models that describe the usage of
an object in a program. They apply concept analysis
to find code locations where rules derived from usage
models are violated. Ramanathan et al. [26] use an inter-
procedural path-sensitive analysis to infer preconditions
for method invocations. Shoham et al. [27] discover that
static mining of automata based specifications requires
precise aliasing information to produce reliable results.

In the area of web services, Bertolino et al. [3] mine
behavior protocols that describe the usage of a web
service. The approach uses a sequence of synthesis and
testing stages that uses heuristics to refine an initially
mined automaton. In contrast, TAUTOKO mines typestate
automata for JAVA programs.

6 CONCLUSIONS

Dynamic specification mining is a promising technique,
but its effectiveness entirely depends on the observed
executions. If not enough tests are available, the result-
ing specification may be too incomplete to be useful.
By systematically generating test cases, our TAUTOKO
prototype explores previously unobserved aspects of the
execution space. The resulting enriched specifications
cover more general behavior and much more exceptional
behavior.

An evaluation with six different subjects shows that
TAUTOKO is able to enrich specifications with new tran-
sitions in all cases. With enriched specifications, a type-
state verifier produces significantly more true positives,
and significantly fewer false positives. We also showed
that systematic test case generation can iteratively learn
new states and transitions, further improving the num-
ber of detected defects. A potential higher number of
false warnings illustrates one of the current problems
of automated test case generation – generated tests do
not resemble real usage. Generally, we expect test case
generation to be applicable to all techniques of dy-
namic specification mining, improving the effectiveness
of mined specifications.

As demonstrated in this paper, there are many ways
to infer program properties: Not only can we examine
their code (static analysis) or their executions (dynamic

analysis); but also generate new executions (test case
generation) or even change their code (mutation anal-
ysis). The interplay of these techniques brings lots of
opportunities for exciting research topics.
All components of TAUTOKO are available for download.
We also include all models generated for our evaluation
subjects, as well as manually created models for three
classes. To learn more about TAUTOKO, visit its Web site:

http://www.st.cs.uni-saarland.de/models/
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