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ABSTRACT

Researchers have proposed a number of tools for automatic bug lo-
calization. Given a program and a description of the failure, such
tools pinpoint a set of statements that are most likely to contain the
bug. Evaluating bug localization tools is a difficult task because
existing benchmarks are limited in size of subjects and number of
bugs. In this paper we present iBugs, an approach that automati-
cally extracts benchmarks for bug localization from the history of
a project. For ASPECTJ, we extracted 369 bugs, 223 out of these
had associated test cases (useful to test dynamic tools). We demon-
strate the relevance of our dataset for both static and dynamic bug
localization tools with case studies on FINDBUGS and AMPLE.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—debug-
ging aids, diagnostics, testing tools, tracing; D.2.7 [Software En-
gineering]: Distribution, Maintenance, and Enhancement—cor-
rections, version control

General Terms
Management, Measurement, Reliability

1. INTRODUCTION

To perform a scientific experimental investigation
of software defects, we need bugs. Lots of them.
Thousands only begins to cover it.

— Spacco, Hovemeyer, Pugh [24]

In the recent past, researchers have proposed a number of tools for
automatic buﬂ localization [30, |8} |14, |2} 15} |16, |31} 4]. Given a
program and a description of the failure, a bug localization tool pin-
points a set of statements most likely to contain the bug that caused
the failure. Although all approaches try to solve the same problem,
many papers use different datasets to evaluate the bug localization
accuracy. This makes it difficult for researchers to compare new
approaches with existing techniques.

'We use the term bug to denote a defect in the code that causes a
program to fail.

Thomas Zimmermann
Dept. of Computer Science
Saarland University
Saarbriicken, Germany

tz@acm.org

The Software-Artifact Infrastructure Repository (SIR) [5] aims at
providing a set of subject programs with known bugs that can be
used as benchmarks for bug detection tools. Subjects from the SIR
have already been used in a number of evaluations [30, 8| |14} 2} |15}
16, |31} |4)]. Despite its success, the subjects currently present in the
repository have several drawbacks. Most of the subjects are rather
small and contain only a few known bugs. Another issue is that
the majority of programs contains only bugs that were artificially
seeded into the program. It is therefore difficult to argue that results
obtained for these subjects can be transferred to real projects with
real bugs. A reason why the SIR contains only few subjects with
real bugs is that collecting this data is a tedious task.

We propose iBugs, a technique that automatically extracts bench-
marks with real bugs from a project’s history as available in soft-
ware repositories and bug databases. Our approach searches log
messages of code changes for references to bugs in the bug database.
For example, a log message “Fixed bug 45298 indicates that the
change contains a fix for bug 45298. We provide faulty versions
for bugs by extracting snapshots of the program right before the
fix was committed. For each version we try to build the project
and execute the test suite. Syntactical analysis of the fixes allows
us to provide a categorization of bugs and to identify tests that are
associated with bugs.

We have applied our approach to ASPECTJ, a large open-source
project with more than 5 years of history. Using our technique we
were able to extract faulty versions for 369 bugs. For 223 of these
bugs we also provide at least one associated test. We assembled this
data in a repository called iBugs and made it publicly available for
other researchers. The contributions of this paper are as follows:

1. A technique to automatically extract bug localization bench-
marks from a project’s history.

2. A publicly available repository containing a large open source
project with 369 bugs, meta information about the bugs, and
a test suite to run the program.

3. Two case studies that show that the iBugs repository can be
used to evaluate bug localization tools.

4. A step-by-step guide for researchers that want to use our
repository to evaluate their own tools.

In the remainder of the paper we discuss related work (Section 2)),
explain our approach and practical experiences (Section[3), present
characteristics of the iBugs repository (Section ) as well as the
case studies (Section[3) and end the paper with concluding remarks
and ideas for future work (Section [6)).



2. RELATED WORK

We discuss the properties of existing benchmark suites, present a
selection of bug localization approaches published in the recent
past and what subjects were used for evaluation (see also Table/[T)),
and summarize related work about bug categorization.

2.1 Existing Benchmark Suites

PEST. The National Institute of Standards and Technologies pro-
vides a small suite of programs for evaluating software testing tools
and techniques (PEST). The current version contains two artificial
C programs with each less than 20 seeded bugs. In contrast to the
PEST suite, we aim at providing a set of real programs with bugs
that actually occured in the program.

BugBench. Lu et al. [17] describe a benchmark suite with 17 C
programs ranging from 2000 up to 1 million lines of code. The pa-
per describes 19 bugs the authors localized in those projects, with
more than two thirds being memory related bugs that can never oc-
cur in modern languages like JAVA or C#. We could not further
investigate the benchmark since we could not find a released ver-
sion.

Software-Artifact Infrastructure Repository (SIR). The publicly
available Subject Infrastructure Repository to date provides 6 Java
and 13 C-programs, including the well-known Siemens test suite
[21} [19]]. Each program comes in several different versions to-
gether with a set of known bugs and a test suite. Subjects from
the repository have already been used in a number of evaluations.
A drawback of the current subjects in the repository is that the av-
erage project in the repository is only 11 kLOC in size while most
real projects are much larger. Another problem is that almost all
subjects only have artificially seeded bugs which often represent
only a small portion of the bugs that occur in real projects. Using
our technique to mine bugs from source code repositories, we can
provide subjects for the SIR with a large number of realistic bugs.

Marmoset. The group around Bill Pugh collected bugs made by
students during programming projects. Their Marmoset project
contains several hundred projects including test cases [25]. How-
ever, most student projects are small and not always representative
for industrial development processes. In contrast to Marmoset, our
iBugs project focuses on large open-source projects with industrial
alike development processes.

2.2 Defect Localization Tools

Yang et al. [30] dynamically infer temporal properties (API rules)
for method invocations from a set of training runs. The approach
handles imperfect traces by allowing for a certain number of vio-
lations to a candidate rule. Violations of the rules in testing runs
may point to bugs. Hangal et al. [8] tries to automatically deduce
likely invariants from a set of passing runs. Invariants are used to
flag deviating behavior right before the program crashes in a failing
run. Li and Zhou [[14] mines programming rules from a program’s
code. Violations of these rules are flagged as possible bug loca-
tions. The previously described approaches provide an ad hoc eval-
uation with subjects that are sometimes not available to the public
(like the Windows Kernel). Most of them also report only bugs they
were able to detect, but omit information about bugs they missed.
This makes it difficult for other researchers to reproduce work by
others and to assess the performance of their own approaches.

Several researcher improved on the lack of reproducibility by ad-
ditionally testing their bug localization tools on publicly available

benchmarks such as Gregg Rothermel’s SIR. Cleve and Zeller [2]
establish cause-effect chains for failures by applying Delta De-
bugging several times during a program run. Suspected bug loca-
tions are pin-pointed whenever the variable relevant for the failure
changes. Liblit et al. [[15]] proposes a statistical approach that col-
lects information about predicate evaluation from a large number of
runs. Predicates that correlate with failure of the program are likely
to be relevant for a bug. The SOBER tool by Liu et al. [[16] calcu-
lates evaluation patterns for predicates from program executions. If
a predicate has deviating evaluation patterns in passing and failing
runs, it is considered bug relevant. Zhang et al. [31] automatically
identify a (set of) predicate crucial for a failure. The suspected bug
location is the dynamic slice of the crucial predicate(s). The AM-
PLE tool by Dallmeier et al. [4] captures the behavior of objects as
call-sequence sets. Classes are ranked according to the degree of
deviation between passing and failing runs.

2.3 Bug Classification

Several researchers investigated the phenomenon of bugs in the
past. Ko and Myers proposed a methodology that describes the
causes of software errors in terms of chains of cognitive break-
downs [12f]. In their paper, they also summarized other studies
that classify bugs. Defect classification has been also addressed
by several other researchers: Williams and Hollingsworth manu-
ally inspected the bugs from the Apache web server and found that
logic errors and missing checks for null pointers and return values
were the most dominant bug categories [26] 27|]. Xie and Engler
demonstrated that many redundancies in source code are indica-
tors for bugs [29]. Since such redundancies are easily caught by
static analysis, this lead to an advent of static bug finding tools,
such as FINDBUGS (9]}, JLint [11]], and PMD [10] (for a compari-
son we refer to Rutar et al. [22]). Typically, such tools take rules,
and search for their violations (roughly, every rule corresponds to
a bug category). Recently, automatic bug classification techniques
using natural language emerged: Anvik et al. used such techniques
to assign bugs to developers [1] and Li et al. investigated whether
bugs have changed nowadays [[13].

3. HOW-TO CREATE A SUBJECT

Our goal is to exploit the history of a project to build a repository
with realistic bugs that can be used to benchmark bug localization
tools. We classify each bug by the characteristics of its fix, for
example the size and the syntactical elements that were changed.
For each bug we provide a compilable version with and without the
bug as well as a means to run tests on the program.

The following steps are neccessary to prepare a subject for the
iBugs repository. The sequence in which the steps are performed
can vary, but some steps have to be performed before others (ver-
sions need to be extracted before they can be built):

. Recognize fixes and bugs.

. Extract versions from history.

. Build and run tests.

Recognize tests associated with bugs.

. Annotate bugs with size properties.

. Annotate bugs with syntactic properties (fingerprints).

R N N T

. Assemble iBugs repository.

We first discuss the prerequisites for our approach and then present
each step in detail. The number of bug candidates that we analyzed
at the various stages are summarized in Table 2]



Approach

Language Evaluation Type

Subjects

SOBER C Benchmark + Ad hoc  Siemens Test Suite (SIR), BC
AMPLE Java Benchmark + Ad hoc  Java Subject from SIR, 4 Bugs in Aspect]
Liblit05 C Benchmark + Ad hoc  Siemens Test Suite (SIR)
Cause Transitions C Benchmark Siemens Test Suite (SIR)
Predicate Switching C Benchmark Siemens Test Suite (SIR)
Perracotta Java, C Ad hoc JBOSS Transaction Module, Windows Kernel
PR-Miner C Ad hoc Large C projects (Linux Kernel)
Diduce Java Ad hoc Java SSE, MailManage, Joeq
Table 1: How are bug localization tools evaluated?
Number
Candidates
— retrieved from CVS and BUGZILLA 489
— after removing false positives 485
— that change source code 418
— for which pre-fix and post-fix versions compile 406
— for which test suites compile 369
_AiingJ dataset 369 Changes Bug Report
— bugs with associated test cases 223

Table 2: Breakdown of the analyzed bug candidates.

ASPECT]J: | To illustrate how our approach works in practice, we

describe our experiences with preparing the ASPECTJ compiler project

as a subject.

3.1 Prerequisites
In order to be suitable for the iBugs repository, a project needs to
meet the following prerequisites:

Source repository (required). The project must provide access to
a system like CVS or SVN where the project history is stored.
We use the repository to identify changes that fix a bug.

Bug tracker (optional). The availability of a bug tracking system
like Bugzilla or Jira helps eliminate false positives in the de-
tection of changes that fix a bug.

Test infrastructure (optional). If the project has a test infrastruc-
ture we can use it to provide runs of the program. If there is
no test suite available, the subject can still be used to evaluate
static bug detection tools.

Our experience with open-source projects shows that all successful
projects meet these requirements. Organizations like the APACHE
and ECLIPSE foundations use a standard infrastructure with source
repositories and bug trackers for all of their projects.

The project builds a compiler that extends the JAVA

language with aspect-oriented features. It provides access to a CVS
repository with over 5 years of history and a bug tracking system
with more than 1000 entries. With over 75000 lines of code exclud-
ing test code, it is among the larger open source projects.

3.2 Recognize fixes and bugs
The first step in the iBugs approach is to identify changes that cor-
rect bugs, in particular, bugs that were reported to bug databases

Figure 1: Linking bug reports and changes.

such as Bugzilla. Typically, developers annotate every change with
a message to describe the reason for that change. As sketched in
Figure[I] we automatically search these messages for references to
bug reports such as “Fixed 42233” or “bug #23444”E| Basically
every number is a potential reference to a bug report, however such
references have a low trust at first. We increase the trust level when
the message contains keywords such as “fixed” or “bug” or matches
patterns like “# and a number”. Since changes may span across sev-
eral files, we combine all changes made by the same author, with
the same messages and the same timestamp (with a fuzziness of 200
seconds) into a transaction [33]]. Finally, every change with a refer-
ence to a bug report is assumed to be a fix and serves as a candidate
for our bug dataset. Our approach for mapping code changes to
bug reports is described in detail by Sliwerski et al. [23] and is sim-
ilar to the approaches used by Fischer et al. [6] and by Cubrani et
al. [3].

We were able to identify 890 transactions that fixed a

bug. We removed all bugs that took more than one change to be
fixed, since we cannot be sure which change was really neccessary
to fix the bug. For similar reasons we did not consider changes that
fix more than one bug. Altogether we found 489 bugs that were
fixed only once in a transaction that fixed only one bug. A manual
investigation of log messages revealed that 4 of them were actually
false positives (the number in the log message accidentaly matched
a bug id) and had to be removed.

3.3 Extract versions from repository

For each bug we extract two versions of the program (see Figure|2|):
The pre-fix version represents the state of the program right before
the bug was fixed, while the post-fix version also includes the fix.
We then compare these two versions and remove all fixes that don’t
change the program code. This is neccessary because some fixes
don’t affect the functionality of the program (like for example a

>The format of references to bug reports is project specific. It de-
pends especially on the bug tracking system that is used.
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Figure 3: Building and testing pre-fix and post-fix versions.

misspelled dialog title in a resource file).

Altogether we found 67 bugs that did not change the

source of the program and removed them from the iBugs repository.

3.4 Build and run tests

In the next step we prepare the pre- and post-fix versions of all bugs
for execution (see also Figure[3). First we try to build each version.
If the build process goes beyond a simple compile, most projects
provide a build file. We identify the build file by examining the
project and use it to run a build. Depending on the project, this may
already include building and running a unit test suite. If this is not
the case, we manually trigger the test suite and collect information
about which tests were run and the outcome (pass or fail) of each
test. After this step we remove all versions that fail to build.

The project provides a build file with seperate targets

for building and running the program and its test suite. We first
tried to build the program and found 12 versions that had compiler
errors. We removed those versions and tried to build the test suite
for all remaining versions.

Building and running the test suite for all versions required a lot
more effort than building the project. This is due to some inconsis-
tencies in the test system and the fact that the test process changed
several times over the history of the project. This caused (amongst
others) the following problems:

e For some versions the tests cannot be built without having all
modules in an Eclipse workspace.

e In some cases the program built fine but the tests had com-
piler errors.

e The names of build targets and output files changed several
times.

We analyzed the changes in the test system over time to fix as many
problems as possible. For 37 bugs we could not build the test suite
and therefore removed them. The remaining 369 bugs were in-
cluded in the iBugs repository.

3.5 Recognize tests for bugs

Many dynamic bug localization tools [4] 2| [31]] require a run that
reproduces the failure and a passing run. While the project’s test
suite provides us with passing runs, it almost never contains fail-
ing runs for a previously unknown bug. This is because otherwise
the bug would have been caught already by running the test suite
and we assume that developers run the tests before realeasing the
project.

To solve this problem we analyze the fixes for each bug and look
for new tests that are committed together with a fix. The fact that a
test is committed together with a fix is a strong indication that the
test is related to the bug. Not all of these tests actually fail when
executed since sometimes developers commit more than one test to
check interesting cases that were discovered when fixing the bug.
Bugs for which we can’t find an associated test are not removed
from the iBugs repository, as they may still be useful for static bug
localization tools.

The method to identify tests committed with fixes depends on the
type of tests that are used in the project. However there is only a
small number of testing frameworks used in practice and we can
cover a lot of projects with techniques for the most popular ones.

The project uses two different types of tests. Unit tests
are implemented using the JUNIT [[7] framework, a popular testing
framework for JAVA. Integration tests for the compiler (referred to
as harness tests) are described in XML files. Our approach for iden-
tifying new JUNIT tests is straightforward: We examine all classes
that were changed during the transaction that fixed the bug. A new
test is found if a new subclass of TestCase was committed or a
new test was added to an existing TestCase. New harness tests
are found by analyzing the differences in the test description files.
Altogether we found 223 bugs for which the fixing change added
or touched at least one test case.

3.6 Annotate Bugs with Size Properties

Some bugs may not meet the assumptions and prerequisites of a
specific bug localization tool. For instance a tool may pinpoint to
exactly one code location. In this case, bugs that span across sev-
eral files would never be recognized completely by the tool and
should be treated separately in the evaluation. In order to provide
an efficient selection mechanism for bugs we annotate them with
size properties (discussed in this subsection) and syntactic prop-
erties (discussed in the next subsection). When computing these
properties, we ignore changes to test files and classes, since they
are not part of the actual correction.

For each bug, we list size properties of the corresponding fix.

o files-churned: the number of program files changed
e java-files-churned: the number of JAVA files changed
o classes-churned: the number of classes changed

o methods-churned: the number of methods changed



For computing the size of a fix in terms of lines, we parse the hunks
returned by the GNU diff command. A hunk corresponds to a region
changed between two versions. If the region is present in both ver-
sions, the hunk is called a modification, otherwise it is an addition
(region is only present in the post-fix version) or deletion (region
is only present in the pre-fix version). We use the line ranges of a
region to compute the size of a hunk. Since for modification hunks
the size may differ between pre-fix and post-fix region, we take the
maximum in this case. In order to get the actual size of a fix, lines-
churned, we aggregate the sizes of the hunks; we additionally break
down the size to additions, deletions, and modifications.

e hunks: the number of hunks in a fix.

o lines-added: the total number of lines added.

o lines-deleted: the total number of lines deleted.

e lines-modified: the total number of lines modified.

o lines-churned: the total number of lines changed, i.e., the
sum of lines-added, lines-deleted, and lines-modified.

From the bug report we extract priority and severity of a bug and
include them as properties in our dataset. The priority of a bug
describes it importance and ranges typically from P1 (most impor-
tant) to PS5 (least important). In contrast the severity describes the
impact and is one of the following: blocker; critical, major, minor,
trivial, or enhancement. A severe bug may be have low priority
when only few users are affected by a bug. However, in most cases
bugs with high severity have also a high priority.

In addition to the above properties, we annotate bugs that produce
exceptions with zags. We obtain this information by parsing the
short description of a bug for keywords: null pointer exceptions
typically are indicated by the keywords “NPE” or “Null”, while
other exceptions are indicated by “Exception”.

We have included size properties for all bugs in the

iBugs repository in the description file repository.xml.

3.7 Annotate Bugs with Syntactic Properties
In addition to size properties, we provide syntactic properties of
changes. This supports the retrieval of bugs that were fixed in a
certain way, say by changing a (single) method call or expression.

In order to express how a fix changed the program, we use the
APFEL tool [32]. APFEL builds the abstract syntax trees of the
pre-fix and post-fix version, flattens the trees into token sets and
computes the difference between these sets (see Figure E])E] APFEL
supports different types of tokens for method calls, expressions,
keywords, operators, exceptions handling, and variable usage. The
type of the token is encoded in a single capital letter (see Table[3).

We use the differences computed by APFEL to create two finger-
prints of a change at different levels of detail: The concise fin-
gerprint summarizes the most essential syntactic changes such as
method calls, expressions, keywords, and exception handling. In
contrast the full fingerprint additionally records changes in variable
names and contains more detailed information about the affected
tokens.

e The concise fingerprint shows whether a bug (more pre-
cisely, its fix) is related to keywords (presence of the “K”

3Note that APFEL is insensitive to the order of tokens because it
relies on sets. This means that certain types of changes are missed
such as swapping two lines.

abstract
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Figure 4: APFEL compares pre-fix and post-fix versions.

Token type Description

Z—expression Expressions that are used in casts, con-
ditional statements, exception handling,
loops, and variable declarations.
K-keyword Keyword such as for; if, else, new, etc.
M-method-name Method calls.

H-exception-name  Catch blocks for exceptions.
V-variable-name Names of variables.

T-variable-type Types of variables.

Y-literal Literals such as numbers or strings)
O-operator-name  Operators such as +, —, &<&, etc.

Table 3: Token types in APFEL.

character), method calls (“M”), exception handling (“H”), or
expressions (“Z”). In contrast to the full fingerprint, the con-
cise fingerprint omits variable usage, operators, and literals,
i.e., it is a subsequence of “KMHZ”.

e The full fingerprint additionally shows variable usage (“V”
and “T”), operators (“O”), and literals (‘“'Y”"). Furthermore, it
specializes keywords (null, true, false, etc.), expression (if,
while, for, cast, etc.) and operators (+, —, &&, etc.).

Figure [5] shows an example for a fix of a bug that caused a null
pointer exception (NPE). The differences computed by APFEL show
that a new if statement was inserted: several keywords (if, null,
else, and return) and the operator /- were added exactly once; APFEL
additionally reports the new usage of the variable declaration, its
type MethodDeclaration, and the condition of the if-statement. For
the concise fingerprint, we omit the variable, literal, and operator
tokens and the names of the other tokens. This results in the fin-
gerprint “KZ”, telling us that keyword(s) and expression(s) were
changed. In contrast, the full fingerprint contains all tokens, but
omits names, except for keywords and operators. In the example of
Figure|itis “K-else K-if K-null K-return O-I= TV Z-if”.

We included fingerprints in our dataset to support researchers when
retrieving a set of bugs that match certain syntactic properties. Say,
a researcher is interested in bugs that are related to null pointer
checks. In order to come up with a set of initial candidates, she can
query for bugs containing “K-null” in their fingerprint.

Fingerprints for all bugs in the iBugs repository are

provided in the description file repository.xml.

3.8 Assemble IBugs repository

The iBugs repository may contain several hundreds of versions for
a program. For a typical project the size of a checkout from the
source repository can contain 50 MB or more of data. This yields



TypeX onType = rp.onType;
if (onType == null) {

onType = member.getDeclaringType () ;
if (declaration.binding != null) {

onType = member.getDeclaringType () ;
} else {
return null;

o+ o+ o+

}
}
ResolvedMember [] members = onType.getDeclaredPointcuts (world) ;

- Member member = EclipseFactory . makeResolvedMember (declaration . binding) ;

Member member = EclipseFactory . makeResolvedMember (declaration . binding) ;

Tokens changes computed by APFEL:

K-else (+1) K-if (+1) K-null (1) K-return (+1)
0-I= (+1)

T-MethodDeclaration (+1) V-declaration (4-1)
Z-if-"declaration.binding != null” (41)

Concise fingerprint:
KZ

Full fingerprint:
K-else K-if K-null K-return O-!=T V Z-if

Figure 5: Fingerprints for Bug 87376 “NPE when unresolved type of a bound var in a pointcut expression (EclipseFactory.java:224)”.

ASPECTJ  Size of code (latest revision) 75 kKLOC
Number of commits to CVS repository 7947
Number of tests (latest revision) 1178
Number of developers 13

Number of bugs in iBugs repository 369
Bugs with associated tests 223

Size of iBugs repository 260 MB
First bug report in iBugs repository 2002-07-03
Last bug report in iBugs repository 2006-10-20

Table 4: Characteristics of the ASPECTJ dataset

a size of several gigabytes for the iBugs repository, which makes
distribution difficult. We therefore create a new Subversion repos-
itory that stores the code for all versions. This greatly reduces the
amount of space required to store the versions for the fixes in-
cluded in the iBugs repository. Meta information about the fixes
in the iBugs repository is stored in an xml file. For each bug we
give information about the test suite, a pointer to the tests that were
committed with the fix (if any), and the diffs for all files that were
changed in the fix.

Snapshots of the project are approximately 60 MB in

size. Although we have more than 700 versions (2 for each bug) in
the iBugs repository, the resulting file size is only 260 MB. Figure
[l shows an excerpt of the description file repository.xml.

3.9 Summary

The ASPECTJ dataset provides 369 bugs for the evaluation of
static bug localization tools; 223 out of these have test cases
associated and therefore can be used to evaluate dynamic bug
localization tools.

4. THE ASPECTJ DATASET

In this section we present several characteristics of the dataset that
we created from the ASPECTJ project. ASPECT] is an aspect-oriented
extension to the Java programming language and includes among
other tools a compiler. Its history is well-maintained, the 13 devel-
opers regularly provide links to the bug database and include test
cases in their commits.

4.1 Size of ASPECT)J

The ASPECTJ compiler consists of 75 kLOC and its test suite con-
tains more than 1000 test cases. From its history we identified 369
bug reports that changed program code, for 223 we found associ-
ated test cases. The total size of the iBugs repository is 260MB (see
Table [@).

<bug id="69459">

<property name="files—churned” value="1"/>
<property name="java—files—churned” value=""1"/>
<property name=""classes—churned” value="1"/>
<property name="methods—churned” value="1"/>
<property name="hunks” value="3"/>
<property name="lines—added” value="0"/>
<property name="lines—deleted” value="0"/>
< property name="lines—modified” value=""11"/>
<property name="lines—churned” value="11"/>
<property name=""priority” value="P3”/>
< property name=""severity” value=""normal”/>
< concisefingerprint>KMZ </concisefingerprint>
<fullfingerprint>K—else K—if K—null M O—! O—&amp;&amp;

O—+ T VY Z—if</fullfingerprint>
<pre—fix—testcases failing=""105" passing="1203"/>
<post—fix—testcases failing=""105" passing="1204""/>
<testsforfix type=""new”’>

<file location=""ajcTests.xml’>

<test name="Hiding_of _Instance_Methods”/>

</file>
</testsforfix>
<fixedFiles>

<file name=""ResolvedTypex.java” revision="1.27"">

1194¢1194,1202

&lt;

&gt; if (parent.isStatic()

&gt; &amp;&amp; !child.isStatic()) {

</file>
</fixedFiles>
</bug>

Figure 6: XML content descriptor for bug 69459.
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Figure 7: Most fixes churn only few lines of code.
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Figure 8: Most fixes affect only few files, classes, and methods.

4.2 Size of fixes

The histogram in Figure[8]shows the number of bugs that were fixed
in one, two, three, four, five, or more than five Java files (blue, left
bars), classes (red, middle bars), and methods (green, right bars),
respectively. The majority of bugs in ASPECTJ (201 out of 369)
was corrected in exactly one method. This suggests that most bugs
are local, spanning across only few methods.

Figure[7]shows the distribution of churned lines of code. There are
many small fixes for ASPECTJ, 44.4% of all fixes churned ten lines
or less; almost 10% of all fixes are one-line fixes, i.e., churned ex-
actly one line. Only few fixes deleted code (about one third), most
fixes modifies existing code (e.g., wrong expressions) or added new
code (e.g., null pointer checks). The percentages of small fixes that
we observed for ASPECT]J are consistent with the ones observed by
Purushothaman and Perry [18§].

4.3 Fingerprints

In Table[5]we show the distribution of concise fingerprints for small
fixes (i.e., five lines or less churned within one method) and all
fixes of the ASPECTJ dataset. The most dominant fingerprint is
“KMZ” indicating that most fixes are of complex nature. Several
fixes change only literals and variable names and therefore have an
empty fingerprint. Exception handling (fingerprint with substring
“H”) is exclusive to larger fixes, likely, because adding the skeleton
of try/catch already takes four lines.

Simple fingerprints are most dominant for small fixes: 12 fixes
changed only method calls (“M”), 5 fixes changed only keywords
(“K”), and 5 fixes changed only expressions. The fingerprint “KZ”
typically points to the addition of null pointer checks, that consist
of a keyword (either if or null and an expression that checks for
null).

We inspected all small fixes and observed mainly three categories:
(1) fixes that change expressions, mostly checks for null pointers
(presence of “Z” in the fingerprint), (2) fixes that add or change
method calls (presence of “M” and absence of “Z”), and (3) other
fixes (for instance empty fingerprint). In future work we plan to
classify fixes automatically. For examples of fingerprints and char-
acteristic fixes, we refer to Figure[TT]

Fingerprint Small fixes All fixes Examples in Figure

empty 6 33 Bug 132130
HK 2

HKM 1 4

HKMZ 32

K 5 10 Bug 151182
KM 7 24 Bug 43194
KMZ 13 192 Bug 67774
KZ 20 31 Bug 123695
M 12 18 Bug 80916
MZ 10 16 Bug 42539
zZ 5 7 Bug 69011, Bug 161217
Total 79 369

Table 5: Number of bugs per fingerprint in ASPECTJ.

5. CASE STUDIES
We have conducted two case studies to verify that the ASPECTJ
dataset can indeed be used to easily evaluate both static and dy-
namic bug localization tools.

5.1 FindBugs

FINDBUGS [9] is a static bug pattern detection tool for JAVA. The
current version has a catalogue of 183 bug patterns, which are or-
ganized in categories like Correctness, Bad Practice, and Perfor-
mance. FINDBUGS takes a set of jar files as input and looks for
instances of the patterns in its catalogue. It outputs the number of
bugs found for each class that was analyzed.

5.1.1 Experimental Setup

For our experiments we used the command-line client of FIND-
BUGS 1.1.3. We ran FINDBUGS using the default configuration on
each of the 369 bugs in the iBugs repository.

5.1.2  Running the Experiment

Running the FINDBUGS experiment requires only two steps. First
we checkout and build the buggy version for each build using the
scripts provided with the iBugs repository (see Steps 2 and 3 of
Figure [T0). Then we run FINDBUGS on each version that we built
and store its output.

5.1.3 Results

The aim of our study was to investigate if FINDBUGS reports warn-
ings or errors close to the actual location of the fix for the bug. We
therefore used a simple approach to evaluate FINDBUGS precision:
we consider a bug caught by FINDBUGS if at least one error was
reported in a class that was changed when the bug was fixed.

Although FINDBUGS reported many warnings and errors, we found
no case where a potential bug was reported in a class that was
changed when the bug was fixed. This may be due to the fact that
the ASPECTJ developers use ECLIPSE, which provides many static
checks of the code that look for similar types of bugs like FIND-
BUGS. Another reason might be that the bugs in the iBugs reposi-
tory are too complex and FINDBUGS warnings are better suited to
point to less complex bugs.



5.2 Ample

Our second case study evaluates AMPLE [4]], a dynamic bug local-
ization tool for JAVA. AMPLE works on a hypothesis first stated by
Tom Reps et al. [20]]: bugs correlate with differences in traces be-
tween a passing and a failing run. AMPLE captures the control-flow
of a program as sequences of method calls issued by the program’s
classes. A class that produces substantially different call sequences
in failing and passing runs is more likely to contain the bug than a
class that behaves the same in all runs. The output of AMPLE is a
ranking of classes that puts the class with the strongest deviations
on top.

In previous work [4] we have evaluated AMPLE using NANOXML,
one of the subjects from the Software-Artifact Infrastructure Repos-
itory and four bugs from the ASPECTJ compiler. Back then finding
those four bugs required manually searching the bug database and
source repository of ASPECTJ. By using our iBugs repository we
were able to repeat our evaluation with a much larger number of
bugs in much less time.

5.2.1 Experimental setup

We used the same experimental setup as in our previous evalua-
tion [4]]: for each bug we compare the sequences of one failing run
and one or more passing runs. We use the tests that were com-
mitted together with the fix as failing runs and randomly choose
three passing tests from the regression test suite. In order to be able
to use the same evaluation method, we restrict our experiments to
bugs that were fixed in a single class. We use a value of 5 for the
length of call sequences as this produced the best results in our pre-
vious evaluation.

5.2.2  Running the Experiment

With the help of the meta information in the iBugs repository we
easily identified 74 bugs that fix problems in one class of the com-
piler. We then wrote a small JAVA program (142 lines of code) that
calls the scripts provided by the iBugs repository to build and run
the passing and failing tests. As mentioned in Section (3.3), not all
test cases committed together with a fix actually fail. An evaluation
of the test output revealed that this was the case for 30 bugs. We
removed those bugs and restricted our evaluation to the remaining
44 bugs.

5.2.3  Results

For each bug we get a ranking of all classes that were executed
during the failing run. This ranking is a recommendation in which
order a programmer should search the classes when looking for the
bug. We express the quality of a ranking as the search length: the
number of classes that are ranked higher than the class where the
bug was fixed. A low search length means that a programmer has to
check only a small portion of the code before he gets to the buggy
class.

Figure[]shows a cumulative plot of the relative search length for all
44 bugs. The plot shows that if a developer is willing to investigate
the top 10% of the ranked classes, she would have found 40% of all
bugs. A comparison to the results of our previous evaluation shows
that AMPLE works well in many cases but also produces bad results
in some. We now have a much broader range of bugs and can take
a closer look at what types of bugs produce bad rankings. This is
a good example of how the data in the iBugs repository can help
improve existing and upcoming bug localization approaches.
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Figure 9: 40% of all bugs are found by searching at most 10%
of the executed code.

5.3 Running your own evaluation

The prerequisites for using the iBugs repository are low: you need a
copy of Ant (a popular build tool available at ant . apache . org)
and the Java Development Kit, version 1.4. We tested iBugs under
Linux, Mac OS X, and Microsoft Windows XP.

The case studies from Section [3]illustrate that it is easy to use the
iBugs repository to evaluate both static and dynamic bug localiza-
tion tools. Figure[I0]contains a step-by-step guide how to conduct
an evaluation. We encourage other researchers to evaluate their bug
localization tools by using the iBugs repository and our guide.

6. CONCLUSION

The version history of a project collects all past successes and fail-
ures. In this paper we presented iBugs, an approach that leverages
the history of a project to automatically extract benchmarks for bug
localization tools. These benchmarks are useful for both static and
dynamic bug localization tools: for ASPECTJ, we extracted 369
bugs and their fixes (useful for static tools), 223 out of these had as-
sociated test cases useful for dynamic tools). We demonstrated the
relevance of our dataset with case studies on FINDBUGS (a static
tool) and AMPLE (a dynamic tool). To summarize, our contribu-
tions are as follows:

Automatic extraction. Our iBugs approach automatically extracts
benchmarks for bug localization from the history of a project
(using its version archive and bug database).

Realistic bugs. The bugs collected by iBugs are real bugs as they
occur in real projects. Therefore, results obtained by using
our ASPECTJ benchmark are more likely to transfer to real
projects.

Publicly available. Our benchmark is publicly available (see be-
low). In addition to the bugs themselves, we provide a fully-
fledged infrastructure for reconstructing, building, and test-
ing the versions with and without bugs (see the step-by-step
guide in Figure[T0).

The ASPECTJ dataset is a first step towards the “huge collection of
software defects” that was demanded by Spacco et al. [24] at the
Bugs workshop at PLDI 2005. The history of open source projects
offer a huge number of collector’s bugs which wait to be discovered
by researchers. Therefore, our future work fur iBugs will consist of
the following:



Extend the repository. Obviously, we plan to add more subjects
to the iBugs repository. In particular, we want to add projects
that are multi-threaded and provide a graphical user inter-
face.

Classification of bugs. Our tags and fingerprint provide an initial
classification of bugs. We plan to further improve this clas-
sification by using automated techniques from data mining.
This will greatly improve the value of our datasets, because
researchers can test for which kinds of bugs their tools per-
form best.

Score measure. In order to measure the success of bug localiza-
tion tools, Renieris and Reiss introduced a score [|19] that
indicates the fraction of the code that can be ignored when
searching for a bug. In future releases of our dataset, we
want to provide a tool that computes this score. This will
hopefully unify the assessment of results.

To support ongoing work on bug localization, we made iBugs pub-
licly accessible, including the underlying infrastructure. For ongo-
ing information on the project, log on to

http://www.st.cs.uni-sb.de/ibugs/
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for (int i = types.length - 1; i >= 0; i—-) {

- if (typePattern.matchesExactly (types[i])) return true;
+ if (typePattern.matchesStatically (types[i])) return true;

}

return false;

+

ResolvedTypeX[] parameterTypes = searchStart.getWorld () .resolve (. ..);

arguments = arguments.resolveReferences (bindings) ;
TypePatternList arguments = this.arguments.resolveReferences (bindings) ;

IntMap newBindings = new IntMap () ;

+ o+ o+ +

if (getKind () .isEnclosingKind ()) {
return getSignature () ;
} else if (getKind () == Shadow.Prelnitialization) {
/I Prelnit doesn’t enclose code but its signature
/I'is correctly the signature of the ctor.
return getSignature () ;
} else if (enclosingShadow == null) {
return getEnclosingMethod () . getMemberView () ;

String packageName = StructureUtil. getPackageDeclarationFromFile (inputFile) ;
if (packageName != null ) {
if (packageName != null s&s packageName != "") {
writer.printin ( "package_" + packageName + ";" );
}

+ +

if (shadow.getSourcelocation () == null
| | checker.getSourcelLocation () == null) return;

// Ensure a node for the target exists
IProgramElement targetNode = getNode(...);

String sourceHandle = ProgramElement. createHandleldentifier (
checker . getSourceLocation () . getSourceFile () ,

+

/I matched by the typePattern.
ResolvedType[] annTypes =
if (annTypes.length!=0) {
if (annTypes!=null && annTypes.length!=0) {
for (int i = 0; i < annTypes.length; i++) {

annotated . getAnnotationTypes () ;

}
}

- if (it.hasNext()) sb.append(",_");
+ if (it.hasNext()) sb.append(",");

}
sb.append (’) ") ;

try {
synchronized (loader) {
WeavingAdaptor weavingAdaptor
if (weavingAdaptor == null)
if (trace.isTraceEnabled ())
return bytes;
}
return weavingAdaptor.weaveClass (className, bytes) ;

WeaverContainer.getWeaver (. . .) ;

= —~

race.exit ("preProcess", bytes) ;

}
} catch (Exception t) {
trace.error ("preProcess",t);

/I at the moment it only deals with 'declared exception is not thrown’
if (!shadow.getWorld () .islgnoringUnusedDeclaredThrownException ()

- && !thrownExceptions.isEmpty ()) {
+ && !getThrownExceptions () .isEmpty ()) {

Member member = shadow.getSignature () ;
if (member instanceof BcelMethod) {

Bug 42539: “throw derivative pointcuts not advised.”

Figerprint: M Z-if

Bug 43194: “java.lang.VerifyError in generated code”
Fingerprint: K-this M

Bug 67774: “Nullpointer-exception in pointcuts using within-
code() clause”

Fingerprint: K-else K-if K-return M O-== Z-if

Bug 69011: “ajdoc fails when using default package”
Fingerprint: O-!=0-&& T V Y Z-if

Bug 80916: “In some cases the structure model doesn’t contain
the “matches declare” relationship”

Fingerprint: M T V

Bug 123695: “Internal nullptr exception with complex declare
annotation statement that affects injected methods”

Fingerprint: K-null O-!= O-&& T V Z-if

Bug 132130: “Missing relationship for declare @method when
annotating a co-located method”

Fingerprint: Y

Bug 151182: “NPE in BcelWeaver using LTW”

Fingerprint: K-synchronized T V

Bug 161217: “NPE in BcelAdvice”

Fingerprint: Z-if

Figure 11: Examples for different bugs with fingerprints.
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