
Mining and Checking
Object Behavior

Valentin Dallmeier

Dissertation zur Erlangung des Grades des Doktors der Ingenierwissenschaften der
Naturwissenschaftlich-Technischen Fakultäten der Universität des Saarlandes
Saarbrücken, 2010

Day of Defense
Dean Prof. Holger Hermanns
Head of the Examination Board Prof. Dr. Reinhard Wilhelm
Members of the Examination Board Prof. Dr. Andreas Zeller,

Prof. Dr. Sebastian Hack
Dr. Gordon Fraser

ii

Summary

This thesis introduces a novel approach to modeling the behavior of programs at run-
time. We leverage the structure of object-oriented programs to derive models that de-
scribe the behavior of individual objects. Our approach mines object behavior models,
finite state automata where states correspond to different states of an object, and tran-
sitions are caused by method invocations. Such models capture the effects of method
invocations on an object’s state. To our knowledge, our approach is the first to com-
bine the control-flow with information about the values of variables. Our ADABU tool
is able to mine object behavior models from the executions of large interactive JAVA
programs. To investigate the usefulness of our technique, we study two different appli-
cations of object behavior models:

Mining Specifications Many existing verification techniques are difficult to apply be-
cause in practice the necessary specifications are missing. We use ADABU to
automatically mine specifications from the execution of test suites. To enrich
these specifications, our TAUTOKO tool systematically generates test cases that
exercise previously uncovered behavior. Our results show that, when fed into a
typestate verifier, such enriched specifications are able to detect more bugs than
the original versions.

Generating Fixes We present PACHIKA, a tool to automatically generate possible
fixes for failing program runs. Our approach uses object behavior models to
compare passing and failing runs. Differences in the models both point to anoma-
lies and suggest possible ways to fix the anomaly. In a controlled experiment,
PACHIKA was able to synthesize fixes for real bugs mined from the history of
two open-source projects.

iv

Zusammenfassung

Diese Arbeit stellt einen neuen Ansatz zur Modellierung des Verhaltens eines Pro-
grammes zur Laufzeit vor. Wir nutzen die Struktur Objektorientierter Programme aus
um Modelle zu erzeugen, die das Verhalten einzelner Objekte beschreiben. Unser
Ansatz generiert Objektverhaltensmodelle, endliche Automaten deren Zustände unter-
schiedlichen Zuständen des Objektes entsprechen. Zustandsübergänge im Automaten
werden durch Methodenaufrufe ausgelöst. Diese Modelle erfassen die Auswirkungen
von Methodenaufrufen auf den Zustand eines Objektes. Nach unserem Kenntnisstand
ist unser Ansatz der Erste, der Informationen über den Kontrollfluss eines Programms
mit den Werten von Variablen kombiniert. Unser ADABU Prototyp ist in der Lage,
Objektverhaltensmodelle von Ausführungen großer JAVA Programme zu lernen.

Um die Anwendbarkeit unseres Ansatzes in der Praxis zu untersuchen, haben wir
zwei unterschiedliche Anwendungen von Objektverhaltensmodellen untersucht:

Lernen von Spezifikationen Viele Ansätze zur Programmverifikation sind in der Pra-
xis schwierig zu verwenden, da die notwendigen Spezifikationen fehlen. Wir
verwenden ADABU um Spezifikationen von der Ausführung automatischer Tests
zu lernen. Um die Spezifikationen zu vervollständigen generiert der TAUTOKO
Prototyp systematisch Tests, die gezielt neues Verhalten abtesten. Unsere Ergeb-
nisse zeigen, dass derart vervollständigte Spezifikationen für ein spezielles Ver-
ifikationsverfahren namens ”Typestate Verification” wesentlich mehr Fehler fin-
den als die ursprünglichen Spezifikationen.

Automatische Programmkorrektur Wir stellen PACHIKA vor, ein Werkzeug das au-
tomatisch mögliche Programmkorrekturen für fehlerhafte Programmläufe vor-
schlägt. Unser Ansatz verwendet Objektverhaltensmodelle um das Verhalten von
normalen und fehlerhaften Läufen zu vergleichen. Unterschiede in den Modellen
weisen auf Anomalien hin und zeigen mögliche Korrekturen auf. In einem kon-
trollierten Experiment war PACHIKA in der Lage, Korrekturen für echte Fehler
aus der Versionsgeschichte zweier quelloffener Programme zu generieren.

Acknowledgments

First and foremost, I thank my adviser Andreas Zeller for his patience and support over
the years. A big thank you also goes to Sebastian Hack for being my second examiner
and for sharing his wisdom on static analysis.

Throughout the course of my PhD, I have had the pleasure to collaborate with
excellent researchers. A big thank you to Christian Lindig who taught me a lot in the
early years of my PhD. Thank you to Andrzej Wasylkowski for fruitful discussions and
sharing his knowledge. I also thank Thomas Zimmermann for his help with developing
IBUGS, and Bertrand Meyer for joint work on PACHIKA. A special thank you goes to
Laura Dietz for her patience explaining the secrets of machine learning. Thank you to
Tobias Scheffer for supporting our work on debugging with machine learning. I also
thank Nikolai Knopp for a great bachelor’s thesis, and Christoph Mallon for support
with JFIRM.

A big thank you goes to my colleagues at the chair for Software Engineering. I
really enjoyed the open atmosphere, fruitful retreats at Dagstuhl, and last but not least
the conversations in the coffee breaks. I am indebted to Kim Herzig, Sascha Just,
Christian Holler and Sebastian Hafner for keeping the infrastructure at the chair up and
running.

A special thank you goes to my friend and colleague Martin Burger, my office mate
through most of my PhD time. I also thank my parents and my sisters for supporting
me. Finally, I thank my wife Jasmin for her patience and love.

Contents

1 Introduction 1
1.1 About this Thesis . 3
1.2 Terminology . 4
1.3 Publications . 6

2 Classifying Bugs 7
2.1 Source Data . 7
2.2 Classification . 8
2.3 Conclusions . 10

3 State of the Art 11
3.1 Dynamic Program Behavior . 12
3.2 Program Spectra . 16
3.3 Call-Sequence Sets . 17
3.4 Finite State Automata . 20

3.4.1 Learning Finite State Automata 20
3.4.2 Software Process Models . 22
3.4.3 Extended Finite State Machines 23
3.4.4 Object Usage Specifications 25
3.4.5 Markov Chains . 27
3.4.6 Summary . 28

3.5 Invariants . 29
3.6 Conclusions . 30

4 Object Behavior Models 33
4.1 Identifiers . 36
4.2 Inspectors . 36

ix

CONTENTS

4.3 Value Access Paths . 37
4.4 Object States . 38
4.5 Object Behavior Models . 39
4.6 Model Depth . 42
4.7 State Abstraction . 43
4.8 Conclusions . 45

5 Mining Object Behavior Models 47
5.1 Tracing . 48

5.1.1 Data Collection . 48
5.1.2 Architecture . 49
5.1.3 Principles . 51
5.1.4 Traced Data . 54
5.1.5 Object Identifiers . 54
5.1.6 Tracing Inspector Values . 55
5.1.7 Multithreading . 55
5.1.8 Runtime Evaluation . 55

5.2 Model Mining . 57
5.2.1 Dynamic Heap Model . 57
5.2.2 Model Generation . 58
5.2.3 Runtime Optimizations . 60

5.3 Dynamic Side-Effect Analysis . 60
5.3.1 Pure Methods . 62
5.3.2 Analysis . 62
5.3.3 Tracing . 63
5.3.4 Algorithm . 63
5.3.5 Multiple Program Runs . 65
5.3.6 Soundness . 65
5.3.7 Evaluation . 65
5.3.8 Related Work . 70

5.4 Conclusions . 71

6 Mining Bug Benchmarks 73
6.1 Motivation . 74
6.2 Related Work . 75

6.2.1 Existing Benchmark Suites 75
6.2.2 Defect Localization Tools 76
6.2.3 Bug Classification . 77

6.3 Bug Extraction from History . 78

x

CONTENTS

6.3.1 Prerequisites . 78
6.3.2 Fix Identification . 79
6.3.3 Extraction . 80
6.3.4 Test Execution . 81
6.3.5 Associated Tests . 82
6.3.6 Meta Information . 83
6.3.7 Repository . 86

6.4 Subjects . 87
6.4.1 Characteristics . 87
6.4.2 Locality . 88
6.4.3 Size . 88
6.4.4 Syntactical Properties . 91

6.5 Minimizing Fixes with Delta Debugging 92
6.5.1 Delta Debugging . 93
6.5.2 Minimizing Fixes . 94

6.6 Biased Data Sets . 103
6.6.1 Bug Features . 103
6.6.2 Results . 104

6.7 Conclusions . 105

7 Mining Models for Typestate Verification 107
7.1 Typestate Analysis . 109
7.2 Mining Typestate Automata . 110
7.3 Enriching Typestate Automata . 111
7.4 Experimental Evaluation . 114

7.4.1 Subjects . 116
7.4.2 Quantitative Evaluation . 117
7.4.3 Qualitative Evaluation . 118
7.4.4 Usefulness . 120
7.4.5 Threats to Validity . 124

7.5 Related Work . 126
7.5.1 Test Case Generation . 126
7.5.2 Typestate Verification . 127
7.5.3 Specification Mining . 128

7.6 Conclusions . 128

xi

CONTENTS

8 Generating Fixes from Object Behavior Anomalies 131
8.1 Mining Models . 134

8.1.1 Mining Preconditions . 135
8.2 Detecting Violations . 137
8.3 Generating Fixes . 139

8.3.1 Inserting Calls . 139
8.3.2 Deleting Calls . 140

8.4 Choosing the Best Fix . 140
8.5 Experimental Evaluation . 141

8.5.1 Subjects . 141
8.5.2 Experimental Setup . 141
8.5.3 Running the Experiments . 142
8.5.4 Performance . 143
8.5.5 Results . 144
8.5.6 Discussion . 150
8.5.7 Threats to Validity . 151

8.6 Applicability . 152
8.7 Related Work . 154

8.7.1 Locating Bugs . 154
8.7.2 Repairing Programs . 154
8.7.3 Leveraging Specifications 155
8.7.4 Repairing State . 155
8.7.5 Mining Specifications . 155
8.7.6 Generating Tests . 156

8.8 Conclusions . 156

9 Conclusions and Future Work 157
9.1 iBugs . 159
9.2 Tautoko . 159
9.3 Pachika . 160

A Additional Figures and Tables 161

B Trace File Format Description 169
B.1 Concepts . 169

B.1.1 Serialization . 170
B.1.2 Object Identifiers . 170
B.1.3 Method Identifiers . 170
B.1.4 Field Identifiers . 170

xii

CONTENTS

B.1.5 Thread Identifiers . 171
B.1.6 Allocation Site Identifiers 171
B.1.7 Invocation Site Identifiers 171

B.2 Events . 171
B.2.1 Identifier Events . 171
B.2.2 Method Call Events . 174
B.2.3 Parameter Events . 175
B.2.4 Return Events . 175
B.2.5 Field Access Events . 176
B.2.6 Array Access Events . 177
B.2.7 Inspector Events . 178
B.2.8 List of Event Identifiers . 178

Bibliography 181

xiii

List of Figures

1.1 The first computer bug. 5

2.1 Syntactical properties of bugs in Eclipse. 9

3.1 A generic execution model. 12
3.2 Different program spectra for gcd. 18
3.3 Call-sequence set abstraction. 18
3.4 Over-generalizing automata. 21
3.5 Automaton generated by the k-tail algorithm. 23
3.6 Example of an extended finite state machine. 24
3.7 An object usage specification for Iterator. 25
3.8 Branch-based Markov model. 28

4.1 An object behavior model for the Vector class. 34
4.2 Uml schema for a car management application. 38
4.3 An object behavior model for the IMAPProtocol class. 40
4.4 An object behavior model for Vector. 41
4.5 A model for PersistenceManager. 43

5.1 Overview of Adabu. 48
5.2 Architecture of the tracing framework. 51
5.3 Example instrumentation for a field write operation. 52
5.4 Stack manipulation step by step. 53
5.5 An example of a dynamic heap. 58
5.6 Examples of pure methods. 61
5.7 Purity results for AspectJ. 66

6.1 Linking bug reports and changes. 80

xv

LIST OF FIGURES

6.2 Pre- and post-fix versions for a bug. 81
6.3 Building and testing pre-fix and post-fix versions. 82
6.4 Comparison of pre-fix and post-fix versions. 85
6.5 Fingerprints for Bug 87376. 87
6.6 Histogram for fixes in AspectJ and Rhino. 89
6.7 Sizes of fixes for AspectJ and Rhino. 90
6.8 Example fix for bug 203402. 101

7.1 Overview of Tautoko. 108
7.2 Typestate for SMTPProtocol. 110
7.3 Initial model of the SMTPProtocol class. 112
7.4 Enriched model of the SMTPProtocol class. 113
7.5 Evaluation scheme for Tautoko. 121
7.6 A screenshot of the Eclipse integration for JFTA 129

8.1 Combined model for the BaseIOAcceptor class. 132
8.2 Overview of how Pachika works. 133
8.3 A deep model for PersistenceManager. 136
8.4 Fix generated by Pachika for bug 173602. 144
8.5 Fix generated by Pachika for bug 121616. 148
8.6 Fix generated by Pachika for bug 51322. 149
8.7 Fix generated by Pachika for bug 60015. 150

A.1 Step-by-step guide to iBUGS (1/2). 162
A.2 Step-by-step guide to iBUGS (2/2). 163
A.3 Examples for different bugs with fingerprints (1/3). 164
A.4 Examples for different bugs with fingerprints (2/3). 165
A.5 Examples for different bugs with fingerprints (3/3). 166
A.6 Repository entry for bug 69459. 167

xvi

List of Tables

2.1 Manual classification of bugs. 8

3.1 Tracing results for the Spec benchmarks. 15
3.2 A subset of invariant types provided by Daikon. 30

4.1 Invariant templates used by abstraction function. 45

5.1 Runtime overhead of Adabu. 56
5.2 Runtime overhead of JPure. 69

6.1 Overview of evaluation methods for bug localization tools. 77
6.2 Bug candidates analyzed for AspectJ. 79
6.3 Token types in Apfel. 85
6.4 Statistics of the development history of AspectJ and Rhino. 88
6.5 Number of bugs per fingerprint in AspectJ and Rhino. 91
6.6 Minimization results for Rhino. 97
6.7 Minimization results for AspectJ (1/2). 98
6.8 Minimization results for AspectJ (2/2). 99
6.9 Subjects used in the evaluation of bug bias. 104

7.1 Subjects of the Tautoko case study. 114
7.2 Quantitative results for Tautoko. 117
7.3 Statistics of manually specified models. 118
7.4 Sources of test runs for Tautoko. 122
7.5 Evaluation of true positives for Tautoko. 123
7.6 Evaluation of false positives for Tautoko. 125

8.1 Subjects used in the evaluation of Pachika. 142

xvii

LIST OF TABLES

8.2 Runtime overhead of Pachika. 143
8.3 Evaluation results for crashing bugs in AspectJ. 145
8.4 Evaluation results for non-crashing bugs in AspectJ. 146
8.5 Evaluation results for bugs in Rhino. 147
8.6 Overview of classes with preconditions. 153

B.1 Event identifiers processed by Adabu. 179

xviii

Chapter 1

Introduction

According to a study in 2002 by the National Institute of Standards and Technology
(NIST), software errors cost the economy of the United States ”an estimated $59.5
billion annually” [79], which amounts to 0.6 percent of the gross national product of
the United States in 2002. Obviously, software errors (also referred to as bugs) and
their effects are a serious problem for the economy. Almost eight years have passed
since the NIST study was published. Have things improved since then?

In the last few years, we have witnessed several bugs in widely-used systems. In
January 2009, Microsoft’s Zune player stopped working due to a bug in the date calcu-
lation library. Millions of users were unable to use their Zune for a few days. Not being
able to listen to music admittedly is no life-threatening problem. However, one year
later, millions of clients of easycash (a large electronic cash provider) were unable to
use their cards for a few weeks. Again, there was a bug in the date calculation library.
In that case, the effects of the bug were more severe. Customers were unable to shop,
and thousands of ATMs had to be re-programmed, causing costs of millions of Euros.
Obviously, bugs are still a problem and the effects are getting worse as more people
rely on software-based systems. Hence, the need for solutions that help avoid bugs or
limit their effects is strong.

Researchers have long since recognized this problem and are developing approaches
to solve it. A broad range of techniques tries to prevent bugs from occurring: The
EROSE tool [123] leverages historical information to remind a developer of missing
changes. New programming languages such as JAVA make whole classes of errors
obsolete, and new programming paradigms such as Extreme Programming introduce
new ways to develop software. However, as the Zune and easycash examples show,
software still contains bugs and hence we also need techniques that help us debug a

1

2 CHAPTER 1. INTRODUCTION

program.
Researchers have proposed a number of approaches that try to automatically local-

ize bugs. For example, the TARANTULA tool ranks statements according to execution
profiles from passing and failing runs. A statement that is executed often in the failing
run, but seldom or never in passing runs is likely to be the cause for the problem and
is therefore ranked at the top. TARANTULA is an example of a class of techniques
that are based on comparing the behavior of programs across different runs. Many of
these approaches compare the behavior of a failing run that exhibits a problem to one
or more passing runs where the program behaves correctly. By analyzing differences
in the behavior, these approaches identify statements that are likely to be the cause
for the failure. The key feature of such behavior-based approaches is the way pro-
gram behavior is modeled. Existing techniques range from simple statistical models
[52, 57, 92, 29] to sophisticated techniques that model program behavior as dynamic
invariants [39].

In this thesis, we present a novel approach to modeling program behavior. In con-
trast to existing approaches, our technique is specifically targeted at object-oriented
languages. In the object-oriented world, code and variables that are concerned with im-
plementing an entity are grouped together in objects. Our approach mines so-called ob-
ject behavior models that describe the behavior of individual objects at runtime. Such
models come in the form of finite state automata, where states correspond to different
states of the object, and transitions occur due to method invocations. To learn these
models, we observe example executions of the program as provided by the program’s
test suite. When learned from correct examples, an object behavior model describes the
correct usage of a class. In this thesis, we investigate two different approaches that use
object behavior models as a specification of correct usage, and to compare the behavior
of objects across different program runs:

Preventing Bugs We learn behavior models by tracing the regression test suite of a
library and use existing static analysis techniques to find incorrect API usage
already when code is developed. Our approach is implemented as an ECLIPSE
plugin that highlights incorrect usage whenever the developer changes code.

Fixing Bugs We present an approach that generates fixes for failing runs. Our tech-
nique compares object behavior models from passing and failing runs, and gen-
erates fix candidates based on differences in the models. Evaluated on a set of
realistic projects, our tool was able to generate fixes for a number of real-life
bugs.

To judge the effectiveness of these techniques, we would like to evaluate their per-
formance on a set of real-life bugs. Unfortunately, existing bug repositories such as

1.1. ABOUT THIS THESIS 3

the Software-Artifact Infrastructure Repository (SIR) [37] provide mostly small sub-
jects with artificially seeded bugs. An evaluation based on subjects from this repository
would be flawed, because the results can hardly be generalized to realistic programs. To
avoid these problems, we have developed a new approach to mining bug benchmarks
from a project’s development history. The result of our efforts is a publicly available
repository called IBUGS that contains over 300 bugs mined from the history of two
large open-source projects.

1.1 About this Thesis
The most important contribution of this thesis is an approach to mine models of object
behavior for programs with realistic size and an evaluation of two approaches that use
these models to solve real-world problems. A lot of effort went into making our tools
scale to real-world programs and to empirically validate the usefulness of our tech-
niques. All tools and data sets developed in the course of our work are publicly avail-
able. This will hopefully encourage other researchers to further explore the approaches
presented in this thesis and to find new applications for object behavior models.
The remainder of this thesis is structured as follows:

• In Chapter 2, we pave the road for the work presented in subsequent chapters by
analyzing structural properties of a large number of fixes. Our findings show that
many bug fixes are small and touch only few lines in a single method.

• In Chapter 3, we present the state of the art in software execution models. We
provide a classification of approaches based on the types of information used,
and discuss advantages and disadvantages of each approach.

• In Chapter 4, we introduce object behavior models as a novel way of represent-
ing program behavior. We give a formal definition and present advantages and
disadvantages of our technique.

• In Chapter 5, we present ADABU, a tool that mines object behavior models from
the execution of JAVA programs. We highlight important technical aspects of the
tool, and present lessons learned for implementing dynamic program analysis
techniques in JAVA.

• In Chapter 6, we present the IBUGS approach, which mines real bugs from ver-
sion archives and bug databases. Based on our technique, we have created a
repository of programs with real bugs. This repository is publicly available and

4 CHAPTER 1. INTRODUCTION

can be used to compare the performance of approaches that are concerned with
bugs and their effects.

• In Chapter 7, we use object behavior models as input for typestate verification,
a static analysis that detects misuses of classes. Since most test suites do not
trigger exceptions, our tool called TAUTOKO mutates the test suite in order to
enrich the initial specification. Evaluated on a set of seeded bugs, a typestate
verifier that uses enriched specifications finds significantly more bugs that when
using the initial specification.

• In Chapter 8, we present PACHIKA, a tool that generates fixes for bugs based on
differences in object behavior models mined from passing and failing runs.

The thesis concludes with a summary and ideas for future work in Chapter 9. The
remainder of this chapter defines common terms used throughout the thesis, and lists
publications related to this thesis.

1.2 Terminology
A widely accepted model for software failures was developed by Zeller [119]. When
working with a program, we sometimes observe incorrect behavior: The program
crashes or produces incorrect output. In this case, we say that the program fails or
that we can observe a failure. An example for such a failure that occurred often in
the early days of the Windows operating system is the famous blue screen: All of a
sudden, Windows displayed a white error message on blue background and completely
stopped working. A program run that exhibits no failure is referred to as a passing run.
Accordingly, a run that shows a failure is called a failing run.

Zeller identifies four different stages of how a failure comes to be:

• At the beginning, the programmer introduces a defect (or bug) in the program. A
defect is a piece of code that causes an infection of the program state (see below).
In other words, a defect is the piece of code that is responsible for the failure.

• When the defective code is executed, it creates an infection of the program state.
After the defect is executed the program state differs from what the programmer
had in mind.

• As the execution continues, the infection is further propagated through the pro-
gram state. Functions that take already infected program state as input may cause
the infection to spread through the program state.

1.2. TERMINOLOGY 5

Figure 1.1: The first computer bug. In 1945, scientists working at the Mark II computer
at Harvard University found a dead moth in one of the components. This soon became
known as the “first actual case of bug being found”.

6 CHAPTER 1. INTRODUCTION

• Finally, the infection causes the failure. For example, the infection may violate
conditions that are necessary for the invocation of a function. Such violations
may result in null pointer dereferences, or in failed assertions. At this point, the
problem becomes visible to the user.

As soon as the developer observes a failure, he has to debug the program. Debug-
ging requires to analyze the infection chain, find the root of the infection (the defect)
and remove it such that the failure no longer occurs and the program behaves correctly.

1.3 Publications
This thesis builds on the following papers (in chronological order):

• Valentin Dallmeier, Christian Lindig, Andrzej Wasylkowski, Andreas Zeller.
Mining object behavior with ADABU. In WODA ’06: Proceedings of the 2006
International Workshop on Dynamic Systems Analysis, pages 17–24, New York,
NY, USA, 2006. ACM.

• Valentin Dallmeier and Thomas Zimmermann. Extraction of bug localiza-
tion benchmarks from history. In ASE ’07: Proceedings of the twenty-second
IEEE/ACM International Conference on Automated Software Engineering, pages
433–436, New York, NY, USA, 2007. ACM.

• Valentin Dallmeier, Andreas Zeller, and Bertrand Meyer. Generating fixes
from object behavior anomalies. ASE ’09: Proceedings of the twenty-fourth
IEEE/ACM International Conference on Automated Software Engineering, pages
550–554, 2009.

• Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Sebastian Hack, and
Andreas Zeller. Generating test cases for specification mining. In ISSTA ’10:
Proceedings of the 19th International Symposium on Software testing and anal-
ysis (New York, NY, USA, 2010), ACM, pp. 85–96.

Chapter 2

Classifying Bugs

In this thesis, we are concerned with finding new approaches related to bugs in pro-
grams. Before developing our approach, we first perform a syntactical analysis of a
large number of real bugs and attempt to find a classification that covers as many bugs
as possible. Such a classification would provide us with insights on the structure of
bugs, and would also allow us to direct our work towards large bug classes.

In this chapter, we present an analysis of the bugs recorded for the ECLIPSE project1,
which provides an open-source development environment for JAVA. We first try to au-
tomatically classify bugs based on a comparison of the program right before and right
after a bug was fixed. After that, we manually verify the results of the automatic clas-
sification. Our results show that even when manually analyzing each bug, it is difficult
to provide a precise classification for the majority of bugs.

In the remainder of this chapter, we present details of the data used in the study
(Section 2.1), present the results of our experiment (Section 2.2), and discuss our find-
ings (Section 2.3). Parts of this study were carried out by Markus Thiele in his bache-
lor’s thesis [102].

2.1 Source Data

To perform our experiment, we use the APFEL [122] tool to extract data from the
version archives and bug databases of ECLIPSE. APFEL represents source code as sets
of tokens extracted from the abstract syntax tree. By comparing token sets of versions

1http://www.eclipse.org

7

http://www.eclipse.org

8 CHAPTER 2. CLASSIFYING BUGS

Bug Class Percentage

Missing or Faulty Null Check 19.09
Faulty Boolean Expression 8.50
Faulty Arithmetic Expression 1.38
Faulty Comparison 1.21
Lacking Exception Handling 1.08
Lacking Thread Synchronization 0.16
Lacking Initialization 0.45

Unclassified 68.13

Table 2.1: Results of the manual classification of bugs. The largest class of bugs is
concerned with null pointer dereferences. Two thirds of the bugs cannot be classified.

right before and after a bug was fixed, we are able to characterize the changes that
comprise a bug fix.

For our study, we have used APFEL to process all files and bug reports of ECLIPSE
filed before the end of May 2006. APFEL links bug reports to code changes by ana-
lyzing commit messages for keywords and bug identifiers. We leverage this linking to
identify versions and analyze token sets of changes that fix bugs.

Altogether, the database contains 24300 bugs that can be associated with code
changes. Figure 2.1 shows the size distribution of all changes in terms of the number
of affected files, classes, methods and lines. For all features, the distribution is roughly
exponential, indicating that the typical bug is small and affects only few lines of code
that are usually located in a single method. The size of the fixes ranges from a single
line to huge changes affecting several thousand methods. Since classifying such com-
plex changes is difficult, we chose to include only fixes that touch at most six lines in a
single method. Altogether, we found 2478 such fixes.

2.2 Classification

Once the dataset was fixed, we collected a catalog of potential bug classes. To that end,
we analyzed the types of bugs found by existing bug finding tools such as FINDBUGS
[54]. The resulting catalog contains seven classes of bugs, which are intentionally
kept abstract to capture larger classes of bugs and to facilitate the analysis. Each class
maps to a certain set of tokens as extracted by APFEL, which allowed for an easy
classification.

2.2. CLASSIFICATION 9

3.2 Choice of Candidates 11

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 2 4 6 8 10 12 14 16 18 20

fr
e

q
u

e
n

cy

revision count

Revision Count Frequency

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2 4 6 8 10 12 14 16 18 20

fr
e

q
u

e
n

cy

file count

File Count Frequency

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2 4 6 8 10 12 14 16 18 20

fr
e

q
u

e
n

cy

class count

Class Count Frequency

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 2 4 6 8 10 12 14 16 18 20

fr
e

q
u

e
n

cy

method count

Method Count Frequency

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

-50 -40 -30 -20 -10 0

fr
e

q
u

e
n

cy

removed line count

Removed Line Count Frequency

 0

 500

 1000

 1500

 2000

 2500

 5 10 15 20 25 30 35 40 45 50

fr
e

q
u

e
n

cy

added line count

Added Line Count Frequency

Figure 1: Size Distributions of Bugfixes

Obviously the size of a bugfix is likely related to its complexity. A bugfix span-
ning several revisions may not have been fixed properly originally or the original
fix may have introduced new errors or neglected to fix all causes of the bug. In-
deed a bugfix spanning several revisions may fix different problems in different
revisions altogether which may have been perceived as a single problem at the
time the bug was reported. Bugfixes spanning several methods or classes/files or
many lines of code are also likely to be complex and include code changes not
immediately pertaining to the bugfix (as an example, modifications of function
calls may require modifications of exception handling as a side effect, as different
functions may throw different exceptions).

Considering these points and given the high frequency of small bugfixes, it seems
reasonable to choose bugs fixed in a single revision inside a single method (or class

Figure 2.1: Syntactical properties of bugs reported for the ECLIPSE development en-
vironment. For all size properties, the distribution is exponential, indicating that the
typical fix is small.

10 CHAPTER 2. CLASSIFYING BUGS

Unfortunately, automatic classification based on APFEL turned out to be too im-
precise. In many cases, fixes were classified wrong due to changes unrelated to fixing
the bug. To overcome this problem, we complemented the automatic classification by
manually verifying all classified fixes. The results of the manual verification are sum-
marized in Table 2.1. It shows the bug classes and the percentage of bugs in each class.
The table shows that about two thirds of all classifications are wrong or just coinciden-
tal. Coincidental classifications are mostly due to the nature of the data generated by
APFEL, which sometimes provides a too coarse abstraction over the data in the syntax
tree.

Among those bugs that were classified, we were able to identify two classes that
occur relatively often in practice. Missing or wrong null checks account for almost
20% of all bugs. Missing checks are often related to variables whose value is obtained
by calling another method, indicating that developers often make wrong assumptions
about the postconditions of other methods. Another large class of bugs is due to errors
in boolean and arithmetical expressions. One reason why these expressions are often
wrong is that they are usually more complex than for example simple method calls, and
therefore provide more potential for errors.

2.3 Conclusions
There are two important conclusions we can draw from the above study. First, the
typical bug fix is small and affects only a small number of methods. We suspect that
this is at least partly due to the fact that we are dealing with post-release bugs, where
the program usually works and only seldom shows erroneous behavior. Thus, a bug
often requires only a small change, since the functionality is already implemented and
to a large part tested. This gives rise to the hope that it may actually be feasible to
synthesize fixes, at least for a small class of bugs. In Chapter 8, we investigate such an
approach and show that automatically generating fixes is actually possible.

Our second conclusion is based on our failure to classify over two thirds of the bugs
in the study. Obviously, despite the small size, most bug fixes are too complex to be
expressed in terms of static information such as tokens from an abstract syntax tree. To
be able to capture more complex bugs, we need more information, and possibly also
a better formalism to represent the information. One way to obtain more information
about a program is to execute it and gather information while the program runs. As
our experiments in the next chapter will show, observing an execution yields gigabytes
of data, and the challenge for any approach to modeling program behavior is therefore
find a good abstraction over all this data that captures the essence of the program run.

Chapter 3

State of the Art

Once a developer has finished implementing a program, he needs to test the correctness
of the implementation. To test a program, it is usually executed several times with dif-
ferent inputs. If the program crashes or the observed output is incorrect, the developer
knows that the program contains a bug. To solve this problem, the developer needs to
debug the program, that is he needs to locate and fix the bug in the source code.

One way to debug a program is to execute it and investigate each step of the exe-
cution. Inside his head, the developer creates a mental model of the program and its
behavior. By comparing the model against a specification of the intended behavior, the
developer is able to find locations where the observed behavior first deviates from the
intended behavior. Assuming that the model is accurate and the specification correct,
these locations contain bugs. Depending on the complexity of the program, locating a
bug may take days or even weeks.

This thesis investigates the use of software execution models to help the program-
mer in various debugging related activities. A software execution model captures the
behavior of a program in a model that can be processed automatically. Thus we can
hopefully reduce the manual effort that is related to debugging.

There are a number of existing approaches that mine varying forms of software
execution models. In general, the biggest challenge when developing a model is to find
the right level of abstraction to use. In this Chapter, we investigate the state of the art
in software execution models. To approach the problem, we first introduce a notion
of what constitutes dynamic program behavior (Section 3.1). Starting from a generic
execution model, we discuss what kinds of information are available at runtime, and
present an experiment that investigates how much data is accumulated when observing
all aspects of an execution. Observations from this experiment form the starting point

11

12 CHAPTER 3. STATE OF THE ART

...

MemoryCode Program
counter

Environment

...

Figure 3.1: A generic execution model. The program consists of individual instructions
which alter memory and update the program counter. The environment encompasses
all external resources.

for a survey of existing software execution models presented in the remainder of the
chapter.

3.1 Dynamic Program Behavior
What information can we observe when executing a program? To answer this question,
we first need to devise a model for the execution of a program. As there are many
different programming languages and platforms upon which programs are run, such a
model has to be very abstract to be valid for a broad range of configurations. Figure 3.1
shows a generic execution model that consists of four different parts:

Code This is the actual code of the program that is to be run. It consists of a list
of instructions (machine code, virtual machine instructions) that are executed
individually. Each instruction is identified by its address.

Program Counter The program counter (pc) is a special variable that stores the ad-
dress of the next instruction to execute.

Memory At runtime, data is stored in memory, which is organized in individual cells
that hold the values of variables or constants. In general, an instruction can read
or write the contents of individual cells.

Environment The environment summarizes all external resources that are accessible

3.1. DYNAMIC PROGRAM BEHAVIOR 13

during the execution. Examples for external resources are files and network con-
nections.

After initialization, execution of a program proceeds as follows: First, the instruc-
tion referenced by the pc is loaded. After that, the instruction is executed, possibly
altering memory cells. Finally, the pc is updated with the next instruction to execute.
At first glance, it may seem unnecessary to distinguish the program counter from the
rest of the memory. However, in contrast to all other cells, the pc has a predefined
semantics that is vital for the execution of the program.

Given the above model, what information can we record for the individual parts?

Code For this thesis, we assume that the code does not change over time1. Hence,
the set of instructions is already known at program start and we do not need to
record it.

Program Counter The program counter is the part that changes most often in the
course of the execution. Its values over time capture the order in which instruc-
tions are executed. This information, which we refer to as the control-flow of the
execution, is a vital part of the program’s runtime behavior. To capture control-
flow, we need to record the pc after the execution of every instruction.

Memory When the program executes, it uses the memory to store information. In-
dividual cells may hold interim results of an algorithm or values that affect the
control-flow of the program. The state of the memory over time is therefore also
an essential part of the program’s runtime behavior. For the remainder of this
thesis, we will use the term memory state to refer to the state of all memory
cells. When tracing memory state, we record all changes to memory cells.

Environment Capturing the environment, although theoretically possible, is difficult
in practice. For example, if the program uses a network link to communicate
with a server, there is no way to access the state of the other machine. Thus,
for this thesis, we do not trace the program’s environment. However, we do not
expect this to be much of a problem, as those parts of the environment that are
important for the behavior of the program will eventually be stored in memory
and thus become part of the memory state.

For this thesis, we consider dynamic program behavior to consist of control- and
memory state information as defined above. Depending on the application, the amount

1 Many applications (e.g. RHINO [78], an interpreter for JAVASCRIPT) written in modern languages use
dynamically generated code. For such applications it might be interesting to also trace changes to the code.

14 CHAPTER 3. STATE OF THE ART

to which each type is recorded can vary. For example, an application may only be
interested in specific parts of the memory, and thus records only changes to those parts.
How can we record dynamic behavior in a way that is flexible enough to support the
needs of different applications? In this regard, we follow existing approaches and
record a trace of events that are interesting for the application. For example, an event
may be the execution of an instruction that changes the value of a memory cell. We
refer to such traces as execution traces:

Definition 1 (Execution Trace) An execution trace s is a sequence s = < (t1,d1),
(t2,d2), . . . ,(tn,dn) > of trace entries (ti,di) where di denotes the data that is recorded
for the entry, and ti denotes the time stamp of the entry (ti−1 < ti < ti+1).

This definition is intentionally very generic, since existing approaches require dif-
ferent kinds of data. Depending on the application, a single trace may contain entries
with both control-flow and memory state information. For example, the program spec-
tra approach (Section 3.2) traces only control-flow information, whereas the DAIKON
tool (Section 3.5) traces a mixture of control-flow and memory state information.

Even short program runs execute millions of instructions and update memory mil-
lions of times. Is it actually feasible to trace all this information, and if so, how much
data is accumulated? To answer these questions, we have used the tracer of the ADABU
tool (see Chapter 5) to trace all control-flow and memory state information available
when executing a JAVA program. As a subject for our investigation, we have used a
subset of the programs in the SPEC JAVA virtual machine benchmark suite, which con-
tains a set of programs used to test the performance of virtual machines. To collect
the data, we ran the tracer with different configurations and analyzed the sizes of the
generated traces.

Table 3.1 summarizes the results of the experiment: The first column lists the
benchmark name, the second column gives the execution time of the original program
run measured as CPU seconds. The remaining two columns list the sizes of the trace
files for tracing only control-flow (column three), as well as tracing both memory state
and control-flow (column four).

Trace Size On average, a program run generates over 19 gigabytes of trace data per
second. This is a very large number, especially when compared to the relatively
small sizes of the programs and their input data (the whole benchmark with input
data has less than 100 megabytes). The huge amount of data makes it difficult to
capture and analyze the whole execution.

Control-Flow vs. Memory State Tracing only the control-flow reduces the amount
of data produced to roughly one third. At first glance, this seems surprising since

3.1. DYNAMIC PROGRAM BEHAVIOR 15

Trace Sizes

Runtime Control-Flow Memory + Control-Flow
Benchmark (Seconds) (Gigabytes) (Gigabytes)

compress 3.2 23.1 75.2
crypto.rsa 3.6 16.2 35.8
crypto.signverify 2.6 4.3 11.2
scimark.fft 1.1 7.9 23.2
scimark.lu 1.9 13.2 55.2
scimark.monte carlo 5.0 41.1 146.1
scimark.sor 2.0 4.5 35.3
scimark.sparse 2.6 18.2 51.6

Table 3.1: Trace sizes and execution times for the compress, crypto, and scimark
benchmarks in SPECJVM2008.

there is only one program counter but there can easily be hundreds of variables.
This is due to the fact that the trace only records changes of values. Changing
the value of a variable requires to execute an instruction, which in turn causes
a change to the program counter. Thus, for every change to a variable we also
record one change to the program counter.

To summarize, tracing control-flow and memory state for the whole execution is
possible, however it generates gigabytes of data. The sheer size of the trace file makes
it difficult to handle the data, and comparing runs based on such large amounts of data
is even more difficult.

In the remainder of this chapter, we present an overview of existing software exe-
cution models that apply different abstraction techniques to reduce the amount of infor-
mation: Program spectra (Section 3.2) and call-sequence sets (Section 3.3) count how
often certain features of the control-flow such as executed statements or sequences of
method calls can be observed. Section 3.4 presents a number of approaches that encode
dynamic behavior using finite state automata. The presented approaches range from
grammar inference techniques (Section 3.4.2) to probabilistic models (Section 3.4.5).
We conclude our survey with DAIKON (Section 3.5), one of the few approaches that
focus on the values of variables rather than on control-flow.

16 CHAPTER 3. STATE OF THE ART

3.2 Program Spectra
Early approaches to capture dynamic program behavior focused on finding perfor-
mance bottlenecks in applications. To that end, these approaches record execution
times for code blocks on different levels of granularity. The first approach that went
beyond simple timing analysis is the work by Reps et al. [87], which gave rise to a
series of other publications [52, 57, 92] that use the same underlying idea. Reps et
al. introduced program spectra, a statistical approach that records how often a certain
characteristic is observed in a run.

Definition 2 (Counting Spectrum) A counting spectrum of a run consists of a map-
ping of features to the number of times the feature was observed in the run.

Most spectra use control-flow information as features. For example, a counting
path spectrum counts the number of times each loop-free path through the control-flow
graph was executed in a run. In their work, Reps et al. use counting path spectra
to identify paths in the program along which the control-flow diverges. The goal of
this work was to automatically identify parts of the code that were affected by date
calculations, and hence might be affected by the y2k problem. To achieve this goal,
Reps et al. compare counting path spectra of runs where the supplied inputs are the
same except for the dates. In an evaluation, the approach reliably identified a large
portion of the relevant code sections.

Besides counting spectra, another type of program spectra used in many applica-
tions is called binary spectra.

Definition 3 (Binary Spectrum) A binary spectrum is a counting spectrum that only
distinguishes counts equal to and larger than zero.

A popular binary spectrum is statement coverage, which records the set of state-
ments that were executed at least once in a run. Besides control-flow paths and state-
ments, there are a number of other features used for spectra:

Execution-trace spectra record the sequence of statements traversed in a program
run. The main conceptual difference to path spectra is that this type also reflects
how often loops in the program are executed. Execution-trace spectra are usually
much larger than path spectra.

Branch spectra record the set of conditional branches that are traversed in a run. The
spectrum is either binary (that is, a branch was hit or not) or includes counts for
each time a branch was hit. Compared to path spectra, this spectrum does not
record whole paths but instead only counts how often branches in the control-
flow graph are visited.

3.3. CALL-SEQUENCE SETS 17

Data-dependence spectra count how often a definition-use pair was traversed. A
definition-use pair consists of a defining statement (usually an assignment to
a variable) and a use statement (read access to the previously stored value from
the same variable). This spectrum captures how the execution follows data de-
pendencies in the program.

Figure 3.2 shows an example that illustrates the aforementioned types of spectra.
On the left side, the figure shows the code of a method to calculate the greatest common
denominator of two integers. The columns to the right show the binary statement,
branch and definition-use-pairs spectra obtained when invoking gcd with (6,3).

The dominant application for program spectra is bug localization. A spectra-based
bug localization tool requires a failing and one or more passing runs to analyze differ-
ences in failing and passing spectra. The hypothesis is that these differences point to
locations in the source code that are likely to contain the bug. Harrold and colleagues
[52] were the first to investigate this hypothesis for path and branch spectra. Their work
was later refined in the TARANTULA [57] tool which uses statement spectra to find po-
tentially buggy statements. Most recently, Santelices and colleagues [92] have used a
combination of statement, branch and definition-use pair spectra to further improve the
accurateness of fault localization using spectra.

To summarize, spectra are a concise way of representing a program run. By using
different features, spectra capture different aspects of the execution. Existing spectra-
based approaches mostly use control-flow features, as the range of values is usually
limited (for example, the number of different statements in a program usually is much
smaller than the range of different values a single numerical variable can have).

3.3 Call-Sequence Sets
One drawback of many types of spectra is that they disregard the temporal ordering
of events in the execution trace. As a consequence, such spectra cannot detect bugs
that solely affect the order of execution. In previous work [29], we have devised an
execution model called call-sequence sets that is specifically targeted at capturing the
order of events in a run. In short, the approach works by observing the sequence of
method calls issued by each object in isolation. The resulting per-object traces are
abstracted to call-sequence sets by sliding a window of length k over the trace. The
whole process is illustrated in Figure 3.3.

Definition 4 (Call-Sequence Set Trace) A trace for capturing call-sequence sets con-
tains one entry for every method invocation observed. A trace entry (tn,dn) contains

18 CHAPTER 3. STATE OF THE ART

Statements Branches def-use-pairs

int gcd(int a, 1 (a,1,5) 4
int b){ 2 (b,2,5) 4

int r; 3 (r,5,6) 4
do { 4 (r,5,8)

r = a % b; 5 4 (b,2,7)
if (r > 0){ 6 4 6,true (b,8,7)

a = b; 7 6,false 4 (r,5,10) 4
b = r; 8 (b,8,11) 4

} 9 (a,7,5)
} while (r > 0); 10 4 10,true (b,8,5)
return b; 11 4 10,false 4 (b,2,11)
} 12

Figure 3.2: Statement, branch and definition-use spectra for a run of the gcd method
with input (6,3).

mark read read skip read read skip read

mark read

read read

read skip

skip read

read read

read skip

skip read

mark read

read read

read skip

skip read

Trace

Sequences Sequence Set

anInputStreamObj

InputStream

Figure 3.3: Traces are abstracted into call-sequence sets by sliding a window of fixed
length over the trace. The call-sequence set contains all distinct observed window
contents.

3.3. CALL-SEQUENCE SETS 19

data dn = mn,on where mn is an identifier for the method and on is an identifier for the
object the method was invoked on.

Using object identifiers, the single call-sequence set trace is demultiplexed into one
trace per object. We group trace entries based on the caller of the invoked method2,
thus capturing the behavior of objects. Unfortunately, the resulting per-object traces are
still very large and difficult to compare. To reduce the amount of data to be processed,
we abstract the per-object traces into call-sequence sets as follows:

Definition 5 (Call-Sequence Set) For a given trace s of method calls and a window
size k, the set of call-sequences of length k C(s,k) is the set of k-long sub strings of s:
C(s,k) = {w | w is a sub string of s∧|w|= k}.

Example 1 (Call-Sequence Set) For a trace s =< a,b,c,a,b,c,d,c > and a window
size k = 2 slid over s, the call-sequence set C(s,2) is

C(s,2) = {〈a,b〉,〈b,c〉,〈c,a〉,〈c,d〉,〈d,c〉}

Obviously, abstracting an execution trace into a call-sequence set entails a loss of
information. The amount of temporal information retained in the call-sequence set is
controlled by the window size k. For larger values of k, the resulting set is larger and
contains more information.

Example 2 (Equivalence of Call-Sequence Sets) For k = 2, the set of call-sequences
C(s,2) for trace s from the previous example is equal to the set C(t,2) for t =<
a,b,c,d,c,a >. For k ≥ 3, the call-sequence sets are different.

To evaluate the usefulness of the model, we have used outgoing call-sequence sets
to localize bugs. The idea of the approach is to use call-sequence sets extracted from
passing runs to capture the normal behavior of objects. Differences in call-sequence
sets from failing runs may then point to the cause of the bug. Our hypothesis was that
the more a classes behavior deviates in the failing run, the more likely it is to contain
the bug. In a controlled experiment with seeded bugs, our approach was able to localize
bugs better than a comparable spectra-based approach.

The advantage of using a sliding window approach is a fine-grained control over
the amount of temporal information contained in the model. Besides method calls, se-
quence sets could also be extracted from the same features as spectra. In this regard,
the sliding approach is superior to the spectra approach. However, it is more difficult

2In the paper [29], this is referred to as outgoing method calls.

20 CHAPTER 3. STATE OF THE ART

to relate sequences of features to locations in the source. In our work on bug localiza-
tion [29], we had to resort to proposing all call locations in an abnormal sequence as
potential bug locations.

To summarize, program spectra and call-sequence sets are fairly simple statistical
execution models that mostly use control-flow information. Both approaches rely on
counting to reduce the amount of data, thereby loosing parts or all temporal information
from the execution trace. In the next section, we will present a class of approaches that
use a more sophisticated formalism to represent dynamic program behavior.

3.4 Finite State Automata

A popular way to represent dynamic behavior is to learn a finite state automaton (FSA)
from the execution trace. A finite state automaton is a directed graph with nodes rep-
resenting different states of the system (i.e. the program state), and edges representing
transitions between states. FSA permit having loops, that is (possibly endless) paths
through the automaton that contain nodes several times. Loops provide a compact
means to represent repetitive behavior. This makes FSA a good formalism for en-
coding program behavior, as execution information often is highly repetitive. In the
remainder of this section, we investigate the problem of learning an FSA from a trace
and present existing automata based software execution models.

3.4.1 Learning Finite State Automata

We start with the definition of a finite state automaton:

Definition 6 A finite state automaton (FSA) is a 5-tuple (Q,Σ,δ ,q0,F) where Q is the
set of states, Σ is the set of input symbols, δ is the transition function, q0 is the start
state and F is the set of accepting states. The transition function takes as input a
state q ∈ Q and an input symbol σ ∈ Σ and outputs the (possibly empty) set of states
reachable from q with σ .

FSA are also well-known in language theory for their correspondence with the
class of regular languages. Every FSA defines a regular language that is accepted by
the automaton.

Definition 7 We say that an FSA f accepts input sequence t iff the state q after pro-
cessing t is in F.

3.4. FINITE STATE AUTOMATA 21

q0 q1 q2 q3 q4
A B B C

q5
D

q1

A,B,C,D

q0
A,B,C,D

Figure 3.4: Two automata that accept input sequence “ABBCD”. The upper automa-
ton accepts only this sequence, whereas the lower automaton accepts all non-empty
sequences that contain only letters A,B,C or D.

How can we transform an execution trace into an FSA? First, we formulate the
FSA learning problem as follows: Given a set I of input traces, create an FSA that
accepts all traces in I. Formulated this way, the FSA learning problem corresponds
to the problem of learning a language based on a set of examples in the language.
Fortunately, the problem of learning regular languages is well understood and has been
thoroughly investigated. The seminal work on learnability by Mark Gold [48] proves
that it is not possible to learn a regular language solely from a finite set of examples.

According to the proof by Gold, the main problem is that the learner does not know
when it over-generalizes. To avoid over-generalization, the learner would require an
informant, i.e. an oracle that can be queried if a given sequence is part of the language
or not. However, in our scenario, there is no such informant and we therefore have to
rely on positive examples only. As a consequence, it is not possible to learn a minimal
automaton that only accepts all possible behaviors of a program solely from a set of
traces.

For example, assume we have an alphabet Σ = {A,B,C,D} and an example trace
t =< A,B,B,C,D >. Two automata that both accept t as input are depicted in Fig-
ure 3.4. The upper automaton accepts only t as input, whereas the lower automaton
accepts all non-empty sequences of characters in Σ. While the first automaton is a
precise representation of t, it will not recognize traces that are similar to t. Thus, this
automaton is useless to find traces similar to t. On the other hand, the second automa-
ton is too general, as it also accepts sequences that are totally unrelated to t. In practice,
the level of precision depends on the application. Many applications are interested in
finding an automaton that provides a compact representation of the input traces, but
also permit slight deviations in order to identify similar behavior.

22 CHAPTER 3. STATE OF THE ART

3.4.2 Software Process Models
Cook and Wolf [23] investigate the problem of discovering a software process model
from a trace of process events. Events include any activity in the process, such as the
creation of a document or the design of a component. As Cook and Wolf point out, such
processes are often not stated explicitly, but rather manifest themselves in the trace of
activities. A tool that makes the process explicit by extracting a model from the activity
trace allows to look for errors in the process and compare it to other process models.

Although software process models are slightly different from software execution
models, the underlying learning problem is the same. Cook and Wolf were the first to
investigate approaches that derive finite state automata from traces. In their work, the
authors present three different methods for extracting automata, ranging from purely
statistical to algorithmic approaches. We focus on the algorithmic approach, as it is
also used by several other FSA based execution models[1, 70].

The k-tail approach devised by Cook and Wolf3 assumes that a state is defined
by the extent of different future behaviors that can occur. The future of a state s is
defined as the k tokens that follow after a token in the trace. Parameter k controls the
amount of temporal information maintained in the automaton. For larger values of k,
the automaton contains more temporal information.

The k-tail algorithm is defined as follows4:

Definition 8 (K-Tail) Let I be the set of sample strings, and let Σ be the alphabet of
tokens that make up the strings in I. Let P be the set of all prefixes in I, including the
full strings in I. Then p∈ P is a valid prefix for some subset of the strings in I, Let p× t
be a string consisting of a prefix p and a tail t. Finally, let Tk be the set of all strings
composed from Σ of length k or less. An equivalence class E is a set of prefixes such
that

∀(p, p′) ∈ E,∀t ∈ Tk, p× t ∈ P↔ p′× t ∈ P

Every prefix string is part of at least one equivalence class. Equivalence classes in
E are mapped to states in the resulting automaton. For a given prefix p mapped to state
Ei and a token σ ∈ Σ, the resulting automaton has a transition to all states to which
the new prefix p×σ belongs.

An example of an automaton produced by the k-tail algorithm is depicted in Fig-
ure 3.5. Cook and Wolf made several improvements to the original algorithm that yield

3This work is based on earlier work by Biermann and Feldmann [11]. We use the description given by
Cook and Wolf.

4This description is taken from [23].

3.4. FINITE STATE AUTOMATA 23

1

2

3

4

5

R C

E

E C

R

RCERCECRECRERCECRECRERCECRERCERCECRECR

Figure 3.5: Input sequence and automaton generated by the improved k-tail algorithm
by Cook and Wolf [23] with k=2.

better results in the presence of noise. In an evaluation, the authors found that the k-tail
method generally produces good models in the sense that the inferred automaton re-
flects actual patterns of the process (e.g. sequencing, iteration), and there are no invalid
states or transitions.

3.4.3 Extended Finite State Machines
Lorenzoli et al. [70] present an approach that extends finite state automata as presented
in the previous section with information about parameter values. To that end, Lorenzoli
et al. use DAIKON (see Section 3.5) to derive abstract predicates over parameter values
of different method invocations. The resulting automata called extended finite state
machines capture the interplay between parameters and temporal patterns.

An extended finite state machine is defined as follows (see [70]):

Definition 9 (Extended Finite State Machine (EFSM)) For a given set of methods5

M, a set of parameter identifiers U, and a set of global values V , an extended finite
state machine is a tuple (S,T,s0,sF) where S is a set of anonymous states, T is the
set of transitions, s0 ∈ S is the start state and sF ⊂ S is the set of accepting states. A
transaction t ∈ T is a tuple (s,s′,m,P) where s,s′ ∈ S are the source and destination
states of the transaction, m ∈ M is the method that was invoked, and P is a set of
predicates over the values of parameters and global variables associated with m.

An example EFSM is depicted in Figure 3.6. As is obvious from the figure, the
main difference to the approach by Cook and Wolf (Figure 3.5) is that transitions are

5In this thesis, we use the word method for both procedures and functions.

24 CHAPTER 3. STATE OF THE ART

0 1 2
open()

host="127.0.0.1"
port=22

login()

user="doe"
password="secret"

close() 3

socket=null socket≠null socket=null

Figure 3.6: An example extended finite state machine. Predicates over parameters and
global values are separated by a horizontal line (parameters above and global values
below the line).

labeled with method invocations and contain predicates over parameter values. In the
example, predicates over parameters are separated from predicates over global vari-
ables by a horizontal line.

Lorenzoli et al. propose an extension to the k-tail algorithm called gk-tail that mines
EFSM in three steps:

Merge Input Equivalent Traces In the first step, the algorithm combines traces with
similar method call sequences. The intuition behind this step is that such traces
often represent the same behavioral pattern.

Generate Predicates After that, the approach abstracts values of parameter and global
variables into predicates using the invariant detection engine of DAIKON (see
Section 3.5). In the example in Figure 3.6, DAIKON might infer that the port
variable always has a value larger than zero. The derived predicates summarize
the preconditions necessary to invoke the method.

Merge Equivalent States The final step uses the k-tail algorithm presented in the pre-
vious section to merge states based on the k future states. The precision of this
step is again controlled by the value of k.

Lorenzoli et al. have used their algorithm to mine EFSMs for several open source
projects. To evaluate the performance of their tool, Lorenzoli et al. investigated in how
many cases the EFSMs were able to capture interactions that cannot be captured by
finite state automata or invariants in isolation. The results of a preliminary evaluation
with five open source projects show that EFSMs capture new properties for four out of
five projects.

3.4. FINITE STATE AUTOMATA 25

START Iterable.
iterator()

Iterator.
hasNext()

Iterator.
next()

End
37

37

85 89

4

33

Figure 3.7: An object usage specification for the JAVA Iterator and Iterable classes. The
edge labels denote the number of objects for which the usage specification contains the
edge.

3.4.4 Object Usage Specifications
The approaches discussed in the previous section all use automata with anonymous
states. States in these approaches carry no semantics that would allow to tell them
apart. This lack of semantics is the reason why these approaches have to use sophisti-
cated learning algorithms to deduce automata from execution traces. In this section,
we present an automata-based approach that uses states labeled with the names of
methods. The advantage of having identifiable states is that creating the automaton
is significantly easier.

The approach by Pradel et al. [83] mines object usage specifications from an ex-
ecution trace consisting solely of start and end of method events. In contrast to the
approaches presented in the previous section, object usage specifications are specifi-
cally targeted at object-oriented languages. The approach is centered on the concept
of object usage specifications, which describe legal ways to use one or more objects
together. An example usage specification for the JAVA Iterator and Iterable
classes is depicted in Figure 3.7. In the first step, the Iterator is created by in-
voking the Iterable’s iterator() method. Afterwards, the iterator is traversed
by alternating calls to hasNext() and next(). The transition labels indicate how
often one method was invoked after another method. Transitions that end in state End
indicate the last method that was invoked on the object before the garbage collector
removed the object.

To mine such models, the approach needs to identify objects that collaborate. This
is challenging, since execution traces typically contain thousands of object creations.

26 CHAPTER 3. STATE OF THE ART

To solve this problem, Pradel et al. only investigate possible collaborations for objects
used within the same method invocation. The key assumption behind this idea is that
methods implement coherent functionality, and therefore objects used within the same
invocation are likely to be related. This idea greatly reduces the number of possible
collaborations to investigate, and therefore makes the approach feasible in practice.
Pradel et al. define an object collaboration as follows:

Definition 10 (Object collaboration) Let a method call be a pair (o,s) of the receiver
object o and the called method’s signature6 s. A collaboration is an ordered sequence

S =< (o1,s1), . . . ,(on,sn) >

of calls issued within the execution of a method (oouter,souter). Objects

O = {o | ∃(o,s) ∈ S}

are said to collaborate.

Once the approach has identified possible collaborations, it proceeds by grouping
related examples based on the set of methods in each collaboration. In this stage, the
number of collaborations to investigate is still very high. Pradel et al. therefore discard
collaborations with more than ten objects involved, and afterwards rank the remaining
collaborations by the number of different code locations. The intuition behind the
ranking is that a pattern is more likely to be valid if it is used in different places across
the program.

In the final step, each collaboration is transformed to a finite state automaton as
follows: For each method si in the collaboration, a new state labeled si is added to the
FSA. For each pair of consecutive method calls si,si+1, a transition from state si to state
si+1 is created, or, if the transition already exists, the transition counter is incremented.

In comparison to the approaches presented earlier, the step that creates the FSA
is much simpler for two reasons: First, object usage specifications use labeled states,
which makes state identification much easier. Second, Pradel et al. use only consecu-
tive method calls for transitions which limits the degree of ordering information avail-
able with object usage specifications. If we provide the k-tail algorithm from Sec-
tion 3.4.2 with the same input data, it would be able to detect more complex temporal
relationships between method calls. In contrast to extended finite state machines (Sec-
tion 3.4.3), object usage specifications only use control-flow information.

6In Java, a method signature encodes the parameter types of a method.

3.4. FINITE STATE AUTOMATA 27

3.4.5 Markov Chains
Several automata-based approaches [15, 109, 56, 23] use Markov chains to augment
automata with probabilistic information. In these models, transitions are labeled with
the probability that a transition occurs. With this information it is possible to calculate
the probability of a path through the automaton, or to cut off edges that have a very
high or (depending on the application) a very low probability to occur. The theoretical
basis of these calculations is the Markov property, named after the Russian mathemati-
cian Andrey Markov. Intuitively, a Markov chain is a sequence of states where all
information about past states is contained in the present state:

Definition 11 (Markov Chain, Markov Property) A sequence of random variables
X1,X2,X3 . . .X j has the Markov property if ∀i ∈ {1, . . . , j}:

ψ(Xi = x|X1 = x1,X2 = x2, . . . ,Xi−1 = xi−1) = ψ(Xi = x|Xi−1 = xi−1)

where ψ is the probability that an event occurs.

Markov chains can be visualized as directed graphs, with nodes representing differ-
ent states of the system, and edges are labeled with transition properties. In the context
of software execution models, states usually correspond to different memory states of
the program.

Markov models are often used to model systems with unknown properties whenever
it can be assumed that the unknown properties do not depend on historical information
that is not part of the state description. A simple example of a Markov chain is the
so-called random number line walk: The states of this system correspond to the entries
on the number line (1, 2, 3 . . .). At each state, the system advances to one of the
neighboring numbers with equal probability. In this system, the transition probabilities
depend only on the current state (the position on the number line) and not on the way
the state was reached.

The advantage of using Markov chains is that the theory allows to calculate the
statistical properties of the system given only the current state. Thanks to this property,
Markov models are used in many different areas of research. One example of a software
execution model that uses Markov models is the approach by Bowring and colleagues
[15]. The goal of this approach is to automatically label program runs as passing or
failing. To that end, Bowring and colleagues learn Markov models based on branch
profiles of a program execution. A branch profile captures how often each branch
evaluated true and false. The branch profile yields the probabilities for the transitions,
while the structure of the model is derived from the control-flow graph. An example
Markov model for the gcd method introduced earlier is depicted in Figure 3.8.

28 CHAPTER 3. STATE OF THE ART

1 public static int gcd(int a,
int b) {

2 int r;
3 do {
4 r = a % b;
5 if (r > 0) {
6 a = b;
7 b = r;
8 }
9 } while (r > 0);

10 return b;
11 }

Entry

Exit

S1
1

p1

S2S3

1

T [0.66]
F [0.33]

p2

1
1

T [0.66]

F[0.33]

Figure 3.8: Example of a branch-based Markov model. Edge labels indicate the transi-
tion probabilities for each edge.

To distinguish runs as passing or failing, Bowring and colleagues train separate
classifiers for a priori labeled training runs using a technique called hierarchical clus-
tering. Clustering arranges similar models into clusters that represent the same be-
havior. To determine the distance between two models, the approach uses transition
probabilities to cut off transitions below a certain threshold. Finally, models in the
same cluster are merged by accumulating probabilities of shared edges.

The output of the machine learner is a classifier that can be used to label unknown
runs as passing or failing. The labeling step exploits the Markov probability to calculate
the probability of a new execution under each model in the classifier. If a model from
the passing run yields the highest probability, the new execution will also be labeled as
passing.

The authors evaluate the technique with a medium-sized application that contains
real faults. They report precision values up to 0.97 for classifying over 13000 runs
with a training set of up to 350 runs. Thus, the authors prove that the Markov property
holds since the technique works very well. However, there is no proof that the Markov
propert holds for the branch-based model.

3.4.6 Summary
To summarize, many software execution models use finite state automata as they offer
a compact way to represent recurrent program behavior. They can be grouped into ap-
proaches with labeled states and approaches with unlabeled states. Learning automata

3.5. INVARIANTS 29

with unlabeled states is equivalent to learning a regular language from a set of posi-
tive examples. Theoretical bounds prevent learning a minimal automaton that accepts
a whole language, which is why learning models with unlabeled states is a trade-off
between over-generalization and specificness. Some approaches interpret transition
counts as probabilities and assume an underlying Markov model to calculate the prob-
ability of an event sequence given a certain model.

3.5 Invariants

The majority of software execution models use control-flow information only. How-
ever, control-flow is only a small part of the information available at runtime (see Sec-
tion 3.1). Why is it that so many approaches do not take memory state into account?
We believe that this is due to two reasons: First, there is a large number of variables
that could be observed. Tracing all of them, as shown in Section 3.1 creates gigabytes
of data, and is therefore infeasible in practice. Second, in contrast to variables related
to control-flow (e.g. statement or instruction counters), the range of values for arbitrary
variables is much larger. Also, there is usually no predefined semantics for individual
values. Together, those two problems make it difficult to produce concise models based
on the values of variables.

The first approach that tries to alleviate these problems is the DAIKON tool by
Michael Ernst and colleagues [39]. DAIKON is a tool to automatically infer dynamic
program invariants from executions. A program invariant is a property of one or more
variables that is true for at least one program point. A program point is any point in
time during the execution of a program. For example, one invariant might be that at
the start of method foo, variable x always has a value larger than zero. Invariants may
also express relationships between variables, such as the value of x always equals the
value of y.

Internally, DAIKON traces the values of all interesting variables7. For each variable,
the tool tries to match it against a predefined set of invariant templates. For example,
one invariant template is that all values of a variable are larger than zero. A subset of
all types of invariants supported by DAIKON can be found in table 3.2. This part, which
is called the invariant deduction engine is by far the most complex part of DAIKON. It
uses sophisticated techniques to reduce the number of invariants examined, and to find
the most general invariant for each variable.

Together, the set of invariants DAIKON deduces from a program run form a software
execution model based solely on the memory state at different points of the execution.

7The set of interesting variables is specified by the user. By default, Daikon includes all variables.

30 CHAPTER 3. STATE OF THE ART

Invariant Example Description

OneOf x one of {1,2} This invariant indicates that a variable only
takes a few distinct values.

LowerBound x≥ 0 This invariant indicates that a variable does
not fall below a certain lower bound.

Equality x == y Indicates that two variables always hold
the same value. DAIKON computes sets of
equal variables so that equality can also be
detected for larger groups of variables.

NonZero x 6= 0 A variable never takes the value zero.

Table 3.2: A subset of invariant types provided by DAIKON. In total, DAIKON supports
over one hundred different invariants.

DAIKON alleviates the problem of large variable value ranges by mapping values to a
set of predefined invariant types. Combining different types of invariants and different
variables allows for a flexible categorization which makes DAIKON a valuable tool for
extracting properties of what should be achieved by executing a program. However, in
contrast to other software execution models, the set of invariants does not capture the
temporal ordering of events. Thus, errors related to the sequencing of events can not
be captured by this model.

3.6 Conclusions
In this chapter, we have provided an overview of existing software execution models. In
an initial experiment, we saw that, even for short runs, observing all available dynamic
information produces gigabytes of data. To be useful in practice, a software execution
model needs to reduce the amount of data. This can be done either by restricting the
model to a subset of all information (e.g. control-flow only), or by using abstraction.

Both program spectra and call-sequences use a simple counting approach to re-
duce the amount of data. As a consequence, these models do not contain information
about the order of events, which is a vital part of dynamic behavior. A large group of
approaches improves on this problem by using finite state automata to represent dy-
namic behavior. For automata with unlabeled states, it is necessary to use sophisticated
learning algorithms in order to derive the automaton from an execution trace.

All of the aforementioned approaches put an emphasis on control-flow information,
since there the range of values is limited. In contrast, the DAIKON tool uses a set of

3.6. CONCLUSIONS 31

templates to deduce invariants that characterize the range of values for a variable. Such
invariants provide a good abstraction over the values of different variables. However,
a drawback of this approach is that invariants do not maintain the temporal ordering of
events.

Overall, we found it difficult to provide a classification of software execution mod-
els. For most approaches, there is no theoretical foundation. Instead, many models are
simply based on intuition. Most papers that introduce a new software execution model
validate an approach by showing that the model yields good results for an application.

To summarize, the state of the art in software execution models is a set of ap-
proaches ranging from simple statistical representations to complex invariant mining.
All approaches focus either on control-flow or on memory state, but there is no model
that combines these two aspects of dynamic program behavior.

32 CHAPTER 3. STATE OF THE ART

Chapter 4

Object Behavior Models

The previous chapter presented a survey of existing software execution models. In this
chapter, we introduce a new type of software execution models. In contrast to most ex-
isting approaches that can be applied to arbitrary program languages, our approach is
specifically targeted at object-oriented programming languages. In the object-oriented
world, code and variables that are concerned with implementing an entity are grouped
together in so-called objects. Objects communicate with each other by invoking meth-
ods.

We leverage concepts from the object-oriented paradigm to devise a new type of
software execution models called object behavior models. An object behavior model
describes the behavior of an object at runtime. Such models are finite state automata
where states correspond to different states of the object, and transitions occur due to
method invocations on the object. To characterize different states, we use the values
of fields and the return values of so-called inspector methods. An inspector reveals
information about an object’s state to the outside world (see below).

Figure 4.1 shows an object behavior model for the JAVA Vector class1. The
model consists of three different states:

”start” is the initial state of the object right after it was created (and before the con-
structor was invoked).

”isEmpty():true” represents an empty Vector, i.e. the list does not contain ele-
ments.

1Vector is an array-based implementation of a list. It is part of the Java standard libraries.

33

34 CHAPTER 4. OBJECT BEHAVIOR MODELS

start

isEmpty():true

 <init>()

 !remove()

isEmpty():false

 add() remove(),clear(),
removeAll()

 add(), remove()

Figure 4.1: An object behavior model for the Vector class. The model relates method
calls to changes in the state of the Vector.

”isEmpty():false” correspondingly means that the Vector contains at least one ele-
ment.

After adding an element to an initially empty list, the Vector is no longer empty.
In the model, this is reflected by a transition from state isEmpty():true to state
isEmpty():false labeled with add(). The remaining methods of Vector such
as remove() or clear() change the Vector as we would expect from their names.
Except for one transition, all methods invoked on the object terminate normally. The
exception occurs if we invoke remove() on an empty Vector. In that case, the
implementation of Vector raises an exception since it is not possible to remove an
element from an empty list. In the model, this is represented by a self-loop in state
isEmpty():true labeled with !remove(). The bang (!) prefix is a convention
used to mark method invocations that raised exceptions.

The object behavior model for Vector captures both the behavior and the usage
of instances of Vector in a comprehensive way:

Temporal ordering The model maintains the temporal ordering of method invoca-
tions. For example, the first method that has to be invoked is the <init>()
method, which is reflected as a single transition from start to isEmpty():
true labeled with <init>().

Effects of method invocations The model captures the effects of a method invoca-

35

tion on the state of an object. For example, the first call to add() changes the
value of isEmpty() from true to false. In addition, the model also shows
that after a call to add(), the Vector is never empty. Such post-conditions
represent important information that can be helpful in detecting bugs.

Exceptional behavior Finally, the model explicitly represents exceptional behavior
as specially marked transitions (remove() in state isEmpty():true). This
allows to distinguish normal and exceptional calls to the same method, and the
different effects of such invocations.

Existing software execution models [23, 1, 83, 15, 109, 70, 56] also represent tem-
poral information using finite state automata. However, this is the first approach that
explicitly combines memory state and control-flow information. This is an important
advantage, as it allows to relate method invocations to changes to an object’s state. This
information is vital for understanding how a class works.

Another advantage is that our approach does not need inference algorithms such as
the k-tail method [11] to extract the automaton from the execution trace. Instead, we
observe the values of fields and inspectors at the beginning and the end of each method
invocation. Thus, we can transform the execution trace into a sequence of states and
transitions (see Chapter 5). Deducing a finite state machine from this information is
unambiguous and straight-forward.

In the example in Figure 4.1, the state of a Vector consists solely of the return
value of isEmpty(). However, Vector also contains other inspector methods and
fields. For example, one of these fields called size holds the number of entries present
in the Vector. If we were to include size in the state representation, the resulting
model would contain at least one state for each different size of the Vector. For a
medium-sized Vector that holds up to 1000 elements, the resulting model consists of
more than 1000 states. Clearly, such a model would not be helpful to understand how
instances of Vector should be used.

For the example in Figure 4.1, we manually chose to only use isEmpty() to rep-
resent the state of a Vector. An alternative way that produces the same model is to
use the size field, but only distinguish positive and negative values and zero. This
way, we abstract the concrete state of Vector to an abstract state. This abstraction is
what makes the model concise and meaningful. For Vector, our abstraction was in-
fluenced by a priori knowledge about the way Vectors work. However, if we want to
extract object behavior models for classes with unknown behavior, such a priori knowl-
edge is not available. To mine models for these classes, we need a general abstraction
method that reduces the size of the models but retains important properties. Finding a
good abstraction function is the most important problem we need to solve in order to
fully automatically mine meaningful and concise object behavior models.

36 CHAPTER 4. OBJECT BEHAVIOR MODELS

In the remainder of this chapter, we give a definition of object behavior models and
discuss our approach for state abstraction. Xie et al. [113] concurrently developed a
similar approach that also uses fields to characterize object states. However, their work
does not investigate abstraction and hence the resulting models are very large.

4.1 Identifiers
We start with a definition of field and method identifiers. Since we initially developed
our approach for JAVA, parts of the following definitions are JAVA specific. However,
the underlying concepts are generic and it should be easy to adjust them to any other
object-oriented language. We define method and field identifiers as follows:

Definition 12 (Method Identifier) A method identifier mid identifies a method. It is
defined as a tuple mid = (c,n,s) where c is the fully qualified class name, n is the
method name, and s is the method signature. c and n are defined according to the JAVA
virtual machine specification [68].

Definition 13 (Field Identifier) A field identifier fid identifies a field. It is defined as
a tuple fid = (c, f) where c is the fully qualified class name, and f is the name of the
field.

Example 3 (Field and Method Identifier) In the Vector example in Figure 4.1, the
identifier for method isEmpty() is (java/util/Vector, isEmpty, ()Z)2.
The identifier for field size is (java/util/Vector, size).

4.2 Inspectors
In JAVA, an instance of a class c consists of all accessible methods and fields defined in
c or any of its super types3. Methods invoked on an instance of c usually operate on c’s
fields. Hence, these fields are an essential part of the object’s state, which is why we
also use them to represent an object’s state in a behavior model. However, fields are not
the only way to access an object’s state. Many classes also provide state information to
clients using so-called inspector methods.

Definition 14 (Inspector) An inspector is a side-effect free method that takes no pa-
rameters and has a return value other than void.

2Java encodes primitive boolean values using the letter “Z”
3In Java subclasses cannot access fields or methods that are declared private.

4.3. VALUE ACCESS PATHS 37

Example 4 (Inspector) Method isEmpty() in the Vector example in Figure 4.1
is an inspector method.

In a number of cases, inspectors simply return the values of fields4. If the field is
also part of the state representation, including the inspector does not add new infor-
mation. However, in some cases an inspector returns information that is not present in
fields. For example, the isEmpty() method is an abstraction over the size field,
namely that size >= 0. This abstraction is important for clients of Vector, and
hence the developer decided to provide an inspector method for it. For object behavior
models we can leverage inspectors to access such abstractions.

4.3 Value Access Paths
Now that we have decided which entities to include in the model, the next question is
how to represent the value of a field or an inspector. For values of primitive type such
as integers, doubles or booleans, we can resort to the string representations provided by
the JAVA virtual machine. However, for object types (that is, fields that hold object ref-
erences or methods that return objects) we have two different options: First, we could
also use string representations as provided by the toString() methods. Unfortu-
nately, as some classes do not provide unique object descriptions in toString(),
this option cannot be used.

The second option would be to recursively include the state of referenced objects.
Thus, a Vector’s state would also include the state of all objects stored within. In that
case, including recursive state is not really helpful, as the state of objects in the list is
not relevant for understanding how Vector works. However, if the contained object
is an essential part of the containing object (for example if there is a part-of relationship
between objects), including recursive state provides valuable information. Hence, we
decided to provide the possibility to include recursive state in object behavior models.
To be able to identify fields of recursively included objects, we introduced the concept
of value access paths.

Definition 15 (Value access path (VAP)) For a given set of field identifiers F and a
set of method identifiers M, a value access path p of length n is a sequence

p =< e1,e2, . . . ,en >,∀ j,1≤ j ≤ n : e j ∈ F ∨ e j ∈M

of field and method identifiers that describes the path to obtain a value.
4 Such methods are commonly referred to as getter methods.

38 CHAPTER 4. OBJECT BEHAVIOR MODELS

start(): void
stop(): void
getEngine(): Engine
getSpeed(): int

manufacturer: String
Car

start(): void
stop(): void

manufacturer: String
isRunning: boolean

Engine

getRPM(): int

manufacturer: String
expiry: Date

Wheel
1...1

1...1 1...*

1...1

Figure 4.2: UML schema for a hypothetical car management application. A car consists
of one engine and several wheels.

Example 5 (Value Access Path) Figure 4.2 shows the UML diagram of a hypothetical
application that models cars. If we recursively extract the state for an instance of Car,
the value access path for the isRunning field of the engine retrieved via inspector
getEngine() would be

〈(Car,getEngine, ()LEngine;) ,(Engine, isRunning)〉

A value access path allows for arbitrary combinations of inspectors and fields. It
uniquely describes the steps to obtain the value at the end of the path. Value access
paths are relative to an object and always start with a reference to this.5

4.4 Object States
A state in an object behavior model is a collection of value access paths together with
the values. In the remainder of this chapter, we will use the letter D to refer to the set of
values a field or inspector may take (in other words, the domain of a field or inspector).
It consists of string representations for all possible values of primitive types in JAVA.
An object state is a function that maps value access paths to values:

5In Java, instance methods may access the associated object via the this reference. In other program-
ming languages, this is also called self or me.

4.5. OBJECT BEHAVIOR MODELS 39

Definition 16 (Object State) For a given set of field identifiers F and method identi-
fiers M, an object state is a function P→D that maps value access paths in P to values
in D.

Example 6 (Object State) For the Vector example, the object state after the con-
structor call is

{(〈(java/util/Vector, isEmpty, ()Z)〉 , true)}

Figure 4.3 shows a more complex example describing an instance of IMAPProtocol,
a class that implements communication with a mail server. Here, the object state right
after the constructor call is (〈(org/columba/ristretto/imap/IMAPProtocol,selectedMailbox)〉 ,null) ,

(〈(org/columba/ristretto/imap/IMAPProtocol,socket)〉 ,null) ,
(〈(org/columba/ristretto/imap/IMAPProtocol,state)〉 ,NOT CONNECTED)


It is possible to mix value access paths of different length in one object state. This is

necessary since object references may be null, and thus we may be unable to extract
all steps of a path.

4.5 Object Behavior Models

We are now ready to give a definition of object behavior models.

Definition 17 (Object Behavior Model) For a given set of method identifiers M and
field identifiers F, an object behavior model is a tuple (S,so,T) where S is a set of
object states with value access paths of M and F, s0 6∈ S is the starting state of the
model, and T is the set of transitions. A transition is a tuple (ss,st , I) where ss ∈ S∪ s0
is the source state, st ∈ S is the target state, and I ∈P(M) is the set of methods that
label the transition.

Example 7 (Object Behavior Model) A textual representation of the model visual-
ized in Figure 4.1 is available in Figure 4.4.

40 CHAPTER 4. OBJECT BEHAVIOR MODELS

start

selectedMailbox: null
socket:null

state:NOT_CONNECTED

 <init>()

 !close()

selectedMailbox:null
socket:java.net.Socket

state:NON_AUTHENTICATED

 openPort() logout()

 authReceive(),
authSend(),
capability()

selectedMailbox:null
socket:java.net.Socket

state:AUTHENTICATED

 authenticate(), login()

 logout()

 create(),
 delete(),
list(), ...

selectedMailbox:java.lang.String
socket:java.net.Socket

state:SELECTED

 select()

 logout()

 close()

 expunge(),
 fetchFlags(),

search(), ...

Figure 4.3: An object behavior model for the IMAPProtocol class. This class imple-
ments communication with an IMAP server and supports authentication and encryption.

4.5. OBJECT BEHAVIOR MODELS 41

s0 = start

S =
{

(〈(java/util/Vector, isEmpty, ()Z)〉 , false) ,
(〈(java/util/Vector, isEmpty, ()Z)〉 , true)

}

T =



 start,
(〈(java/util/Vector, isEmpty, ()Z)〉 , true) ,
{(java/util/Vector,< init >, ()V)}

 , (〈(java/util/Vector, isEmpty, ()Z)〉 , true) ,
(〈(java/util/Vector, isEmpty, ()Z)〉 , false)
{(java/util/Vector,add, (java/lang/Object;)V)}

 , (〈(java/util/Vector, isEmpty, ()Z)〉 , true) ,
(〈(java/util/Vector, isEmpty, ()Z)〉 , true) ,
{(java/util/Vector, !remove, (Ljava/lang/Object;)Z)

 ,
(〈(java/util/Vector, isEmpty, ()Z)〉 , false) ,
(〈(java/util/Vector, isEmpty, ()Z)〉 , false)
{(java/util/Vector,add, (Ljava/lang/Object;)V) ,
(java/util/Vector, remove, (Ljava/lang/Object;)Z)}

 ,


(〈(java/util/Vector, isEmpty, ()Z)〉 , false) ,
(〈(java/util/Vector, isEmpty, ()Z)〉 , true)
{(java/util/Vector, remove, (Ljava/lang/Object;)Z) ,
(java/util/Vector, removeAll, ()V) ,
(java/util/Vector,clear, ()V)}




Figure 4.4: A textual representation of the object behavior model visualized in Fig-
ure 4.1.

42 CHAPTER 4. OBJECT BEHAVIOR MODELS

4.6 Model Depth
As stated in the previous section, the state representation of an object o may also en-
compass fields of objects referenced by o. If state extraction is fully recursive, it may
happen that the state of a single object encompasses large parts or even the whole state
of the program. In most cases, such a model would be far too large to provide mean-
ingful information.

To prevent such cases, we limit the depth to which recursive state is included and
introduce a parameter called model depth.

Definition 18 (Model Depth) For an object behavior model m of object o, model depth
depth(m) denotes the maximum length of value access paths in m. The minimum model
depth of 1 includes only fields and inspector methods of o.

Example 8 (Model Depth) The examples in Figures 4.1 and 4.3 were extracted with
model depth 1. Figure 4.5 shows a model of depth 2 for the PersistenceMan-
ager class of the APACHE project (see below).

By changing the model depth, we can adjust the level of detail in a model. For
larger depths, the resulting models will contain more details. Which depth to choose
strongly depends on the application and the examined class. We therefore use a default
depth of one, but allow the user to specify a different depth value for each model.

One important aspect when mining a model for an object o is that for a depth
larger than one, the set of methods used as transition labels may contain methods
that are not part of o. This is best explained with an example: Figure 4.5 shows
a model of depth two for the PersistenceManager class that belongs to the
APACHE JDO project. This project is concerned with providing a framework to au-
tomatically store and load objects in relational databases. In this framework, the
PersistenceManager is responsible for managing how objects are stored in the
database. Internally, PersistenceManager holds a reference to a Transaction
object that synchronizes access to the database.

For a model depth of two, the state of PersistenceManager also encompasses
fields of its Transaction object. Whenever a method changes the state of the trans-
action, this change also affects the state of the PersistenceManager. In the ex-
ample, the model contains a transition for method tx.begin(), which is invoked
on the Transaction object.6 Thus, the model captures the interplay between the
PersistenceManager and the referenced Transaction, which is essentially a

6To be able to relate such transitions to the fields that hold the reference, we annotate them with the value
access path of the object on which the method was invoked (in this case, tx for the Transaction object).

4.7. STATE ABSTRACTION 43

closed: false
tx: != null

tx.active: false<init>()

closed: false
tx: != null

tx.active: truetx.begin()

closed: false
tx: != null

tx.active: false
closed: true
tx: = null

tx.commit()

getObjectById()

clear()

Figure 4.5: An object behavior model of depth two for class PersistenceManager
of the APACHE JDO project. The manager uses a Transaction object to synchro-
nize access to the database.

protocol that involves two objects of different types. The extent to which such protocols
are captured depends on the model depth, which can be controlled by the user.

4.7 State Abstraction
When extracting the state of an object, we store the values of fields or inspectors as
strings7. Unfortunately, using concrete values for numerical values has a strong impact
on the size of the generated models. For example, if a Vector model contains the
concrete value of variable size, the resulting model will have a different state for
each value of size. If the Vector grows to larger sizes, the model will become
unmanageable and therefore useless. This problem gets even worse if a state contains
several numerical variables.

To cope with this problem, we use a state abstraction function to map concrete
states to abstract states.

Definition 19 (Abstraction Function) An abstraction function fabs : (P→D)→ (P→
D′) abstracts the values of state (P→ D) (cp. Definition 16) to a new state (P→ D′).
Usually, |D′| � |D|, that is, the abstract state has a smaller range.

To abstract a model, the abstraction function is applied to each state. As a re-
sult, some of the states are equivalent and will be merged, thus resulting in a smaller
model. Obviously, this process entails a loss of information. A good abstraction func-
tion makes models small but retains all important information. Finding a good abstrac-
tion function is a problem in itself. Initial experiments with different functions showed

7For object references, we use a string representation of the object identifier (Section 5.1.5).

44 CHAPTER 4. OBJECT BEHAVIOR MODELS

that it is not possible to find a function that produces optimal models for all classes.
Thus, our goal was to find a function that produces good performance for most classes.

Essentially, our problem boils down to finding a pattern behind a possibly large set
of different values for a variable. Fortunately, there is already existing work that solves
the very same problem. The DAIKON tool (explained in Section 3.5) by Ernst et al.
[39] mines dynamic invariants from the execution of programs. Internally, DAIKON
traces all different values of a variable and tries to find abstract properties using a set
of predefined invariant templates. Invariants generated by DAIKON have been used in
many different approaches8 which gives rise to the belief that they can also be useful
for object behavior models. Essentially, our abstraction function (called DAIKON-INIT)
uses a subset of the invariant types implemented in DAIKON. Table 4.1 shows which
types of invariants we use: Boolean values remain unchanged, numerical values are
categorized as less than, equal to and larger than zero, and objects are either null or
not.

In some cases this classification is too coarse: Many classes that are internally
organized as finite state automata (typically, these are classes that implement protocols
or streams) maintain state information using an integer field. These classes are of
special interest as the corresponding models usually are a good characterization of
the implementation. Unfortunately, DAIKON-INIT per se treats all numerical values
the same and abstracts them as less than, equal to or larger than zero. We therefore
developed a new abstraction function called DAIKON-ABS that improves DAIKON-
INIT in two ways:

Limited value range fields If an integer field only gets assigned constant values, it
is very likely that these values are important and thus the field should not be
abstracted. To identify such fields, we run a conservative static analysis that
identifies most of them. The list of fields is then passed to DAIKON-ABS which
excludes them from abstraction. In the IMAPProtocol example (Figure 4.3),
the state variable is a limited value range field and is therefore not abstracted.

Enumerations Since version 1.5, JAVA supports type safe enumerations. Internally,
enumerations are implemented as an instance of the Enumeration class. In
a sense, enumerations are object fields with a limited value range and therefore
also should not be abstracted. Our static analysis recognizes enumerations and
excludes them from abstraction.

8For a summary, see http://groups.csail.mit.edu/pag/daikon/pubs/.

http://groups.csail.mit.edu/pag/daikon/pubs/

4.8. CONCLUSIONS 45

Example

Type Values Concrete Abstract

Objects x = null, x 6= null bar=#4711 bar 6= null
Numerical x < 0, x = 0, x > 0 foo=5.33 foo > 0
Boolean x, ¬x foobar=false foobar=false

Table 4.1: Abstractions used by DAIKON-INIT. Object references are either null or
non-null, numerical values are less than, equal to, or larger than zero and boolean
values remain unchanged.

4.8 Conclusions
In this chapter, we have presented a definition of object behavior models. Our models
are finite state automata where states represent different states of an object and method
invocations cause transitions between states. In contrast to existing software execution
models, our models include both memory state and control-flow information. As a
consequence, object behavior models express both the temporal ordering of events as
well as the effects of executing methods. This makes our approach a versatile model
for capturing runtime behavior of objects.

To be flexible, object behavior models allow using both values of fields and return
values of inspectors to represent an object’s state. Thus, we can derive models that
provide different views of an object: A model based on inspectors soley uses informa-
tion intentionally passed to clients in inspector methods. Thus, such models provide an
external view of the object and its behavior. On the other hand, a model based on fields
offers an internal view of the object. Different applications may prefer one type over
the other.

In object-oriented designs it often is the case that one object forms an essential
part of another object (part-of relationship). To be able to capture models of such
objects, we allow to recursively include the state of referenced objects. The depth of
the recursion is limited by the model depth parameter, which is specified by the user.
This parameter allows to extract models on different levels of granularity, depending
on the concrete application.

The crucial point about our models is the use of abstraction to reduce the number
of states. An abstraction function is always a trade off between the size of the model
and the information loss. The default abstraction uses the same categories of values as
existing approaches [39, 67] augmented with information about constants and enumer-
ations extracted from the source code.

46 CHAPTER 4. OBJECT BEHAVIOR MODELS

Chapter 5

Mining Object Behavior Models

Mining object behavior models is a dynamic analysis that requires a lot of runtime in-
formation. As a consequence, collecting the required information and calculating the
models is expensive both in terms of computation time and memory. We have imple-
mented a tool called ADABU 1 that mines object behavior models from the execution
of JAVA programs. We chose JAVA since it is a modern object-oriented language and
because there is a broad range of open-source JAVA projects. This chapter describes im-
portant concepts that make mining models feasible in practice and also presents lessons
learned along the way.

In essence, ADABU consists of two parts (see Figure 5.1): The tracer instruments
the byte code of JAVA programs such that all information relevant for mining models is
written to a trace file. The model miner processes the trace file to replay the execution
and mine object behavior models. Separating model mining from tracing has several
benefits: First, it allows to analyze a program run multiple times. This is especially im-
portant for multithreaded programs with non-deterministic behavior. Second, in order
to mine models for languages other than JAVA, we only need to implement a new tracer
for the target language and can reuse the model miner2.

The following two sections describe the individual parts of ADABU. In Section 5.1,
we present an overview of the tracer and explain several design decisions which provide
valuable insights for other approaches that use similar techniques. In Section 5.2, we
present the design of the model miner and highlight several aspects that are vital for
the performance of the miner.

1Adabu is the recursive acronym “ADABU Detects All Bad Usages.” It is also the Swahili word for “good
behavior”.

2Chapter B in the appendix contains a detailed description of the trace file format.

47

48 CHAPTER 5. MINING OBJECT BEHAVIOR MODELS

(b) Tracer

(a) Program
(c) Modified
Program

open

close
(e) Model Miner

(d) Trace (f) Models

Figure 5.1: Overview of ADABU. The tracer (b) takes as input a program (a) and
outputs a modified version (c). When executed, the modified version generates a trace
file (d), which is fed into the model miner (e) to mine object behavior models (f).

5.1 Tracing

5.1.1 Data Collection

The purpose of a tracer is to collect information about a program run in a trace file. The
first step when implementing a tracer is therefore to find a way to collect the required
information. In general, there are three different techniques that each have their own
advantages and disadvantages:

Debugging Interfaces Programs written in languages such as JAVA or C# are exe-
cuted within a virtual machine. Some virtual machines provide a debugging
interface (e.g. the JVMTI interface for JAVA [58]) that can be used to access the
state of the program. In principle, these interfaces can also be used to imple-
ment a tracer. However, there are two problems that make it difficult to apply
this approach in practice. First, a new release of a virtual machine often also
changes the debugging interface. As a consequence, a tracer implemented for
the old version may not be compatible with the new interface. The second prob-
lem is specific to JAVA: Besides the standard implementation provided by SUN,

5.1. TRACING 49

there is a number of third-party virtual machine implementations. These imple-
mentations often do not support the debugging interface, and therefore the tracer
cannot be used. Overall, relying on debugging interfaces limits the applicability
of the tracer and is therefore problematic.

Source Code Instrumentation An alternative approach is to implement the tracer by
adding additional statements to the source code of the program. The advantage
of source code instrumentation is that it is independent of the target execution
environment. Also, adding additional statements at the source level is only mod-
erately complicated which facilitates implementing the tracer. The downside of
this approach is that source code instrumentation, as the name suggests, requires
access to the source code of the program. Since almost all projects make use of
external libraries, it may be difficult if not infeasible to obtain the source code
for all parts of a program. Hence, source code instrumentation is also difficult to
apply in practice.

Binary Instrumentation The third option is to instrument binaries rather than source
code. For languages such as JAVA or C#, this means to instrument interme-
diate representations (called byte code for JAVA or intermediate language for
.NET). The main advantage of this approach is that it does not require the source
code and is therefore easier to apply in practice. However, since intermediate
languages are usually on a lower abstraction level than source code, binary in-
strumentation is more complex and thus error-prone than instrumenting source
code.

Overall, binary instrumentation is the approach that has the fewest prerequisites in
terms of the target platform and the required artifacts. We therefore chose this approach
as the basis for our tracer. To cope with the increased complexity of instrumenting bina-
ries, we have developed a number of best practices that will be presented in subsequent
sections.

5.1.2 Architecture

There are several frameworks that allow to access and manipulate JAVA byte code.
Most frameworks (e.g. BCEL [26], ASM [82]) provide direct access to byte code in-
structions. Other frameworks such as JAVASSIST [20] allow to specify modifications
to the byte code using specialized languages. These modifications are then compiled
and woven into the byte code. The advantage of having such a modification language
is that the user does not need to deal with raw byte code. However, byte code weaving

50 CHAPTER 5. MINING OBJECT BEHAVIOR MODELS

is complex and therefore these tools are rather fragile, which sometimes leads to incor-
rectly compiled code that is difficult to debug. Another problem is that the compiler
generates many superfluous instructions, which often causes the modified code to ex-
ceed internal limits of the virtual machine such as the maximum number of instructions
per method.

The aforementioned problems can be avoided by using a framework that provides
direct access to the byte code. One such framework is ASM [82], which is used by
many projects that analyze or manipulate byte code. ASM is designed according to the
visitor pattern [45]. Inside ASM, visitors are organized as a chain (Figure 5.2) where
each visitor processes the modifications generated by the previous visitor. This pat-
tern allows to separate independent parts of the instrumentation into individual classes,
which can easily be added or removed from the visitor chain. For example, if a user
is not interested in tracing array access, the corresponding visitor is removed from the
chain without affecting other parts of the instrumentation. The flexibility of this design
is the main reason we chose to use ASM as the technical basis for our tracer.

The next step after choosing the instrumentation framework is to decide when to
apply instrumentation. In JAVA, there are two options: Pre execution instrumentation,
as the name suggests, instruments classes prior to the execution of the program. On-
the-fly instrumentation uses the JAVA agent feature of the virtual machine to intercept
all attempts to load classes and modifies the byte code before the class is being re-
solved. Both approaches are feasible solutions. However, on-the-fly instrumentation
has the advantage that it allows to instrument all classes that are loaded. This is of
importance for applications that generate new classes at runtime. To be able to analyze
these applications, we have decided to implement ADABU using on-the-fly instrumen-
tation based on the JAVA agent mechanism (Figure 5.2). Unfortunately, this entails
other technical problems:

Preloaded Classes Classes such as List or InputStream are loaded before the
JAVA agent is activated. Hence, these classes will never be instrumented and
cannot be observed. To cope with this problem, JAVA offers a feature to ex-
plicitly trigger re-transformation of already loaded classes. Unfortunately, re-
transformation forbids to change the interface of a class or add new fields, which
further complicates instrumentation (see below).

Multiple Instrumentation A considerable number of projects use their own strategies
for class loading. Under certain circumstances it may happen that a class is
loaded twice. In that case, instrumented code may be added more than once,
which confuses the tracer and may result in incorrect byte code. To alleviate this
problem, ADABU uses a marker interface to designate instrumented classes and
only instruments classes that do not implement this interface.

5.1. TRACING 51

ASM

...

Agent Pipeline

Program

loadClass() System
ClassLoader

Instrumented Byte Code

Figure 5.2: Architecture of the tracing framework. The tracer intercepts all requests to
the class loader, transforms the original byte code with the agent pipeline and uses the
system class loader to resolve the modified byte code.

5.1.3 Principles

Tracing information for model mining requires a fairly complex instrumentation. This
complexity is mostly due to the variety of information (see Section 5.1.4) that needs
to be collected. Instrumentation is further complicated by technical requirements such
as independent treatment of different types of information and restrictions for re-trans-
formed classes (see Section 5.1.2). These constraints, together with general problems
when debugging instrumented byte code makes implementing a model mining tracer a
challenge.

To cope with the complexity, the implementation of our tracer follows two impor-
tant principles:

Minimize Injected Code The first principle is to use instrumentation only to collect
data. More complex operations such as serialization and synchronization are
handled in a special Tracer class, which is compiled JAVA code. As an ex-
ample, Figure 5.3 shows byte code that writes data to a double field (bold
instructions), and the instrumentation added by ADABU (plain instructions). The
first six added instructions collect the target object of the field write and the new
value for the field. This data is then passed to the fieldWritten method of
the Tracer class3, which creates a FIELDWRITE event and serializes it in a

3Tracer is a singleton [45]. To avoid having multiple instances, the class must be part of package
java.lang .

52 CHAPTER 5. MINING OBJECT BEHAVIOR MODELS

ALOAD 1
DCONST 1
DUP2 X1
POP2
DUP X2
DUP X2
POP
DUP2 X1
LDC 0
ICONST 0
INVOKESTATIC java/lang/adabu/Tracer.fieldWritten

(Ljava/lang/Object;DIZ)V
PUTFIELD TracingExample.foo : D

Figure 5.3: Byte code instructions added by ADABU to trace write access to a double
field. Instructions for the original field write are printed in bold face. Code added by
ADABU is printed with regular font face.

thread-safe way. This way, the complex parts of tracing are handled by compiled
JAVA code, which is much easier to debug.

No Local Variables Many tracing tasks require to temporally store data. In JAVA tem-
poral information can either be put on the stack or stored in artificially created
local variables. Using local variables for this purpose is much more complex, as
the tracer needs to take care about the scope of these variables. Also, stack opera-
tions are faster than accessing local variables. For these reasons, the tracer avoids
using local variables wherever possible and instead stores data on the stack. The
downside of this approach is that it requires more byte code instructions to im-
plement and sometimes complicates instrumentation. Figure 5.4 illustrates the
effect of each instruction added to trace a field write for a value consisting of two
words (Figure 5.3. Despite this slight increase in complexity, using the stack is
the best way to temporally store data.

Together, these two principles reduce the complexity of the instrumentation and
make the implementation more robust. We have successfully used ADABU to trace the
execution of large programs with more than 50000 lines of code.

5.1. TRACING 53

dup2_x1

word 2

word 1

objectref

...

word 2

word 1

objectref

...

word 2

word 1

objectref

...

word 2

word 1

pop2

objectref

...

word 2

word 1

dup_x2

objectref

objectref

...

word 2

word 1

dup_x2

objectref

objectref

...

word 2

word 1

pop

objectref

objectref

dup2_x1

word 1

objectref

word 2

...

word 1

objectref

word 2

Figure 5.4: Duplicating the information of a field write operation (see Figure 5.3)
requires a total of six byte code instructions. These instructions essentially duplicate
the first three words on the stack.

54 CHAPTER 5. MINING OBJECT BEHAVIOR MODELS

5.1.4 Traced Data

The tracer produces one trace file per execution. This file consists of a stream of events,
where each event captures an operation that is of interest to the tracer. Examples of
events are the end of a method execution, instantiation of a new object, or read access
to a field. The trace entry for every event contains all information associated with the
event. For example, a method-end event specifies the name of the method that has
ended, and the receiver object (for non-static methods). A complete specification of
the trace format and the traced data is available in the appendix at page 169.

Most other dynamic analysis tools use a different approach to trace data. For ex-
ample, the DAIKON tool [39] traces the values of variables and fields for every method
invocation. Thus, even if a field is only changed once, a trace file generated by DAIKON
stores the field value for every method invocation. In contrast, the event-based tracing
approach of ADABU will only trace one event for the write access to the field. For
extended executions, ADABU requires much less space to trace the same information
as DAIKON.

5.1.5 Object Identifiers

Almost all events traced by ADABU specify a target object. For example, a field read
event of a non-static field specifies the owner object of the field. Unfortunately, JAVA
does not provide access to the identifiers used in the virtual machine and we therefore
have to take care of object identification ourselves. As it turns out, obtaining unique
object identifiers for JAVA is a difficult problem.

A first idea to approach the problem is to add an instantiation counter to each object.
To implement this approach, we need to add a new field to every object, modify the con-
structor such that the identifier field is initialized, and provide a getter method for the
instantiation counter. Unfortunately, re-transformation of classes (see Section 5.1.2)
forbids to add fields, which is why this approach cannot be applied to all classes.

Another idea is to identify objects using hash codes as generated by the standard
hashCode() method provided by Object. The default hashCode() implemen-
tation uses the address of the object in memory which would be sufficient for our pur-
poses. Unfortunately, sub classes may override the default implementation and provide
hash codes that are not unique throughout the program run. To solve this problem, AD-
ABU uses the special method System.identityHashCode(Object) instead of
the standard hashCode() methods. This method generates a unique hash code that
ADABU uses to identify objects.

One catch with the above solution is that the generated hash code also uses the
location in memory. Since the virtual machine may reuse addresses of deleted objects

5.1. TRACING 55

it is possible (though highly unlikely) that the same hash code is used for two differ-
ent objects. To detect such collisions it is necessary to maintain a list of all garbage
collected objects. However, since such collisions are rather unlikely, ADABU does not
implement this feature right now.

5.1.6 Tracing Inspector Values
As explained in Section 4.2, the tracer should also trace values of inspectors as state
information. To implement this, the tracer processes an XML file that specifies all
inspector methods that are to be used. When instrumenting a class with at least one
inspector, the tracer injects additional calls to all inspector methods at the beginning
and the end of each method that is no inspector. The result of each call is then written
to the trace file using the appropriate event code (see Section B.2.7 on page 178).

5.1.7 Multithreading
Since most modern programs make use of multithreading (for example, every JAVA
program that uses a graphical user interface is automatically multithreaded), the tracer
should also be able to handle multithreaded programs. This requires two changes in
the tracer: First, information about reserved object identifiers (see Section 5.1.5) must
be thread-local, since several constructors may be active concurrently. Second, each
event needs to specify an identifier for the thread that triggered it. When analyzing the
trace file, the model miner uses this information to group events triggered by the same
thread.

5.1.8 Runtime Evaluation
Tracing induces a huge amount of runtime overhead, most of which is caused by I/O
operations when writing the trace data to the disk. Table 5.1 presents the results of an
experiment to quantify the runtime impact of the tracer. We have used ADABU to trace
the execution of several subjects in the SPECJVM2008 benchmark suite, as well as the
subjects in the IBUGS repository (see Chapter 6).

As explained in the previous chapter, ADABU supports specifying the set of classes
to instrument. If the subject class is known before a run, a user can restrict tracing
to this class, thus limiting the amount of tracing overhead. To measure the effect of
limiting the set of traced classes, we ran ADABU with two different configurations:
Tracing all classes and tracing only one class. For ASPECTJ and RHINO, we randomly
chose ten different classes, ran the tracer for each class and recorded execution times
and trace file sizes.

56 CHAPTER 5. MINING OBJECT BEHAVIOR MODELS

Tracing all classes Tracing one class

Runtime Overhead Trace File Overhead Trace File
Subject (Seconds) (Factor) (Gigabytes) (Factor) (Gigabytes)

compress 3.2 320 75.2 170 40.3
crypto.rsa 3.6 178 35.8 23 2.2
scimark.fft 1.1 418 23.2 416 23.2

AspectJ 0.8 10 0.2 1.3 0.1
Rhino 1.1 5 0.0 2.3 < 0.1

Table 5.1: Trace sizes and execution overhead for the compress, crypto, and scimark
benchmark of SPECJVM2008 (upper part) and the subjects in IBUGS (lower half).

The results of our experiments are summarized in Table 5.1. Column Runtime
lists the runtime of the unmodified program. Column Overhead gives the increase in
execution time when running the instrumented program. Column Trace File lists the
size of the generated trace file in gigabytes. Columns two and three specify overhead
and trace file size for tracing all classes, whereas columns four and five list median
values from tracing ten different randomly chosen classes4.

When using ADABU to trace all classes, we observe a slowdown of up to 400 times
(scimark.fft). In general, the overhead for benchmark programs is much higher
than for the two IBUGS subjects. This is at least partly due to the SPECJVM2008
programs being specifically chosen to measure the performance of a virtual machine.
The IBUGS subjects on the other hand also perform I/O operations and are less intensive
in terms of CPU usage. This difference in overhead indicates that, when used to trace
interactive programs, ADABU incurs much less overhead than tracing CPU intensive
programs.

When tracing only one class, ADABU incurs much less runtime overhead. For AS-
PECTJ, the slowdown is 30%, which is feasible in practice. If we know the set of
interesting classes beforehand, we can configure ADABU such that the slowdown in-
curred by tracing is acceptable. However, if we are interested in models with a depth
larger than one, it may be difficult to choose the set of interesting classes such that all
relevant objects are traced. To alleviate this problem, we can use static program anal-
ysis to conservatively approximate the set of interesting classes and configure ADABU
such that only those classes are traced.

4For the crypto.rsa benchmark there were less than ten classes. We traced all of them and also
provide median values.

5.2. MODEL MINING 57

5.2 Model Mining
After the tracer has finished recording the execution, the model miner processes the
generated trace file to mine object behavior models. The input to the model miner
consists of the following:

• The name of the trace file that is to be processed.

• A set of identifiers that denotes all objects for which the miner should generate
models. Alternatively, the user can also specify a regular expression describing
the class names of objects. In the remainder of this chapter, we refer to the set of
objects for which models are mined as the set of interesting objects.

• An integer parameter that specifies the level of depth (see Section 4.6) at which
models are mined.

Supplied with this input, the model miner processes the trace file to replay the
program run, builds and maintains a representation of the program state, and mines
behavior models by processing events associated with interesting objects.

5.2.1 Dynamic Heap Model
Most of the processing time in ADABU is spent on maintaining a heap model that repre-
sents the program state at runtime. In essence, the heap model consists of a set of state
objects. Each state object represents one object that was created during the program
run. The state object So for an object o is identified by the object identifier of o (see
Section 5.1.5). It consists of a mapping of names to value representations. To identify
fields, we use field identifiers as introduced in Section 4.1. Similarly, we use method
identifiers to identify inspector methods (see Section 4.4). For values of primitive type,
the mapping stores a string representation of the value. For non-primitive types (objects
or arrays5), So stores the identifier for the object referenced by the field. To allow for
fast access based on object identifiers, ADABU uses a hash map from object identifiers
to the corresponding state objects. Figure 5.5 shows an example heap model based on
the refactored design example in Fowler’s book [42].

To build and maintain the heap model, ADABU processes the following trace events
(see Table B.1 on page 179):

Object/Array Creation For each OBJECTCREATED or ARRAYCREATED event, AD-
ABU creates a new state object with initially empty field information.

5In the remainder of this section, we will omit discussion of arrays as they are treated almost identical to
objects.

58 CHAPTER 5. MINING OBJECT BEHAVIOR MODELS

name : "Foo"
rentals :

Customer
#4711

daysRented: 2
movie :

Rental
#4713

title : "Avatar"

Movie
#4715

size: 2
elements :

Vector
#4712

daysRented: 9
movie :

Rental
#4714

title : "300"

Movie
#4716

Figure 5.5: An example configuration of the dynamic heap. The Customer object
uses a Vector to store references to Rentals, which in turn reference the rented
Movie.

Update events Whenever a FIELDWRITE* or ARRAYWRITE* event is processed,
ADABU updates the state of the corresponding object with the new value.

Naturally, maintaining a heap model of program runs with many objects requires
a considerable amount of memory. One problem is that, in contrast to the virtual ma-
chine, the model miner does not know when it is allowed to delete states for objects. As
a consequence, the heap model retains states for objects long after they were deleted in
the run, which makes the memory problem even worse.

To improve on this problem, ADABU uses a simple analysis to identify objects that
do not survive the life-time of a method invocation. The basic idea of the analysis is as
follows: At the end of every method call m, ADABU deletes the states of objects that do
not escape the execution of m. We did not analyze exactly how much memory is saved
by this modification. However, with the modification turned on ADABU was able to
process traces that could not be analyzed before.

5.2.2 Model Generation

The implementation of model mining uses the dynamic heap model presented in the
previous section. With an up-to-date dynamic heap model, implementing model mining
is straightforward6. The most important tracing events processed are METHODSTART

6The presentation in this section omits the discussion of inspectors as they are treated the same way as
fields.

5.2. MODEL MINING 59

and METHODEND events. For every METHODSTART event, the model miner creates
the following data-structures and pushes them on a thread-local stack:

FIELDSWRITTEN The set of fields written during the invocation. Each entry con-
sists of an identifier for the field, the identifier for the object and the new value
of the field.

OBJECTSCREATED The set of objects created during the invocation. An entry in
this set consists of the identifier of the new object. This set is used to identify
temporary objects as explained in the previous section.

OLDVALUES For fields that were changed during the invocation, this set stores the
original values. Entries in this set have the same structure as the elements of
FIELDSWRITTEN.

For every METHODEND event of a method m invoked on object o, ADABU pops the
sets created at method start from the thread-local stack. If o is in the set of interesting
objects, ADABU determines the set of changed objects changed that were altered by
the invocation of m as follows:

• The set of changed objects changed is initialized to the set of object identifiers
for which an entry exists in FIELDSWRITTEN.

• After that, ADABU removes all objects from changed whose value did not change.
This is achieved by comparing the old value as store in OLDVALUES to the new
value.

• In the next step, ADABU determines the set of objects changed′ that reference
objects in changed. It then merges all objects in changed′ into changed. This
step is executed depth times (see Section 4.6) to find all objects for which the
changed fields may be part of a state in the model.

Example 9 (Changed Objects) We use the heap state presented in Figure 5.5 as an
example. Let us assume that the title of movie #4715 was changed from Avatar to
Avatar Directors Cut. For a model depth of two, the set of changed objects is
calculated as follows: In the first step, changed is initialized with object #4715, as this
object was changed directly. The first iteration of the analysis adds object #4713 as
it references #4715. The second iteration adds Vector #4712 for the same reason.
In the next step, no new objects are added to the set and the iteration stops with

changed = {#4715,#4713,#4712}

60 CHAPTER 5. MINING OBJECT BEHAVIOR MODELS

Once the set of changed objects is calculated, ADABU updates the models for all
interesting objects in changed. For a model n of object p that is currently in state s,
ADABU first creates a new state s′ that reflects all changes in FIELDSWRITTEN visible
to p. It then adds a new transition from s to s′ labeled with m to the model.

Model mining finishes as soon as the end of the trace file is reached. At this point,
ADABU invokes a user specified abstraction function (Section 4.7) to generate the final
models. In the end, the tool emits the mined models using standard formats such as
DOT [5] or GRAPHML [16].

5.2.3 Runtime Optimizations
Maintaining the dynamic heap model requires ADABU to process large amounts of
data. To make the tool scale to real-world programs, the model miner uses the following
concepts:

Hashing ADABU makes extensive use of hash maps to be able to quickly determine
information such as which objects are referenced by an object, and which objects
refer to a particular object.

Integer Hashsets While implementing ADABU, it became obvious that the standard
hash map implementation of JAVA uses too much memory. We therefore use
an optimized version that uses primitive integers as keys, which significantly
reduced the amount of memory used by ADABU.

Object Reuse Running a profiler on early versions of ADABU revealed that large parts
of the computing time are spent on creating objects (for example, hash maps). To
avoid this overhead, ADABU reuses objects to a large extent. Instead of creating
new hash maps, ADABU maintains a pool of hash maps to which instances are
returned when they are no longer needed. New instances of objects are created
only if the pool runs empty.

Overall, our experiences with ADABU are positive. We have used the tool to mine
models from the execution of large interactive programs. To allow other researchers to
benefit from our work, we have made ADABU available for download (see Chapter 9).

5.3 Dynamic Side-Effect Analysis
As explained in Section 5.1.6, ADABU needs to inject additional method calls in order
to mine models based on inspector values. A potential problem exists if the injected

5.3. DYNAMIC SIDE-EFFECT ANALYSIS 61

1 public void m(Object o) {
2 Vector v = n(new Vector());
3 v.add(2);
4 }
5

6 public Vector n(Vector v) {
7 v.add(1);
8 return new Vector();
9 }

Figure 5.6: Method n is impure because it modifies Vector v. Method m is pure
because all modified objects are created during the invocation of m.

calls have side effects, i.e. they change the state such that the control flow and/or the
output is altered. Models mined from such an execution are useless, as the side effects
may affect the outcome of the run and hence the mined models may be incorrect. To be
able to safely call an inspector method, we have to be sure that it is free of side effects.

Traditionally, methods that are free of side effects are referred to as pure methods,
whereas methods with side effects are called impure. Classifying methods as pure and
impure is called purity analysis. In some cases it is easy to establish whether a method
is pure. In the example in Figure 5.6 we immediately see that method n is impure
because it modifies variables v and w. Method m however is pure, because it only
modifies objects that are not visible externally. However, for complex methods manual
analysis is tedious and error-prone.

Since manual classification is difficult, researchers have developed a number of
automatic approaches to purity analysis. Most tools [76, 90, 101] use static program
analysis techniques to identify pure methods. Unfortunately, these analyses do not
scale well, which makes analysis of real-world programs difficult. The best static ap-
proach for JAVA by Sălcianu et al. [101] can only analyze projects that require JAVA
1.1, which prohibits analysis of most modern programs.

As static analysis does not handle the problem very well, we propose to use dy-
namic program analysis instead. In this section, we present a novel approach to purity
analysis based on the observation of side-effects at runtime. Our implementation called
JPURE uses ADABU to trace a program run, and analyzes the traces to classify all exe-
cuted methods as pure or impure. If necessary, the classification can be further refined
with data from other runs. To measure the degree of under approximation, we evaluate
the precision of our dynamic analysis by comparing the results to the state-of-the-art
static purity analysis. Our experiences when using output of JPURE with ADABU show
that despite the under approximation, a dynamic purity analysis also produces reliable

62 CHAPTER 5. MINING OBJECT BEHAVIOR MODELS

results.
The remainder of this section describes the definition of purity used by JPURE

(Section 5.3.1), describes the algorithm used to identify pure methods (Sections 5.3.2,
5.3.3, and 5.3.4), and evaluates the soundness of our analysis (Sections 5.3.6 and 5.3.7).

5.3.1 Pure Methods
As a first step, we need to define when a method is pure. Previous approaches have
used varying definitions of purity with different degrees of flexibility. For example, the
analysis of Catano et al. [19] uses a definition that forbids a pure method to make any
modifications to the heap. Many methods create and modify temporary objects that do
not survive the execution of the method. Changes to these objects cause the analysis
of Catano et al. to mark the method impure, although the changes never escape the
method. Hence, this definition is too strict to be useful in practice.

For our approach, we define purity as follows:

Definition 20 A method m is pure if it never modifies an object that existed prior to its
invocation.

This definition allows a pure method m to create and modify temporary objects
and invoke impure methods as long as the side-effects of these invocations only alter
objects created during the invocation of m. In the example in Figure 5.6, method m is
classified as pure despite a call to method n, which is classified as impure.

5.3.2 Analysis
The idea behind our approach is as follows: For each invocation of a method m, we
record identifiers of all objects created during that invocation. This information is used
to calculate a set of allocated objects for each method invocation. In addition, we cap-
ture all field write operations and trace the identifier of the object that was changed
by this operation (static field writes are recorded as changing a special object that rep-
resents all static variables). This information is used to calculate the set of modified
objects for each method invocation. At the end of each invocation, we compare these
two sets. Whenever the invocation of a method modifies an object which was not
created during this execution, we know that the invocation changed externally visible
state. Our analysis classifies a method m as pure if it was executed at least once and no
execution of m modifies externally visible state. If at least one execution of m modifies
externally visible state, m is classified as impure. The output of our analysis consists
of a set of pure and a set of impure methods.

5.3. DYNAMIC SIDE-EFFECT ANALYSIS 63

We have implemented our analysis for Java programs in a tool called JPURE. The
tool works in two phases: In the first phase, one or more executions of the program
to be analyzed is monitored (see Section 5.3.3) and trace data is written to a file. In
the second phase (explained in Section 5.3.4) the trace files are analyzed and the tool
classifies each executed method as pure or impure.

5.3.3 Tracing

JPURE relies on the tracing framework (Section 5.1) of ADABU to collect the required
information. Due to its architecture, ADABU can easily be configured to trace only
those events required by JPURE. The traced events include all method start, field write
and object creation events (see Table B.1 on page 179).

5.3.4 Algorithm

Algorithm 1 summarizes the key parts of the analysis. For each method invocation we
manage a set of objects created during the invocation (newObjects) and a set of objects
modified during the invocation (modifiedObjects). At the end of each invocation we
check for objects that were modified but not created during that invocation (lines 14–
15). If at least one such object is found, the method is marked as impure. Otherwise,
the method is marked as pure unless it was marked as impure in previous invocations.
The last step at the end of each invocation (lines 20 and 21) propagates the sets of new
and modified objects into the corresponding sets for the calling method.

For a given invocation of method m, Algorithm 1 computes method purity accord-
ing to the criterion described in Section 5.3.1. Side-effects due to field writes in m itself
are detected because we trace all field writes and instantiations of objects. Side-effects
that occur in methods called by m are detected because the analysis propagates the sets
of new and modified objects from all methods invoked by m. The algorithm also al-
lows for m to call an impure method n (cf. Figure 5.6), as long as all externally visible
side-effects of n modify only objects created during the invocation of m.

Our algorithm also handles field writes to transitively reachable objects correctly.
For example, suppose that a method m changes field o.x. f where o was not created
by m (and thus the side-effect is externally visible), and x currently points to object
l. If l was not created by m, l is not in the set of objects created by m and thus the
algorithm correctly classifies m as impure. If l was created by m, there must have been
a field write that set o.x = l before. Our algorithm classifies this field write as externally
visible side-effect since o was not created by m.

64 CHAPTER 5. MINING OBJECT BEHAVIOR MODELS

Algorithm 1 Compute purity information
Input: Trace File f
Output: List of impure and pure methods

1: procedure PURITY(File f)
2: /* Initialize Datastructures */
3: for all event e ∈ f do
4: if e == MET HOD START then
5: newObjects.push(new Set());
6: modifiedObjects.push(new Set());
7: else if e == OBJECT NEW then
8: newObjects.peek().add(objectId);
9: else if e == FIELD WRIT E then

10: modifiedObjects.peek().add(objectId);
11: else if e == MET HOD END then
12: Set mObjects = modifiedObjects.pop();
13: Set nObjects = newObjects.pop();
14: Set escapes = mObjects.minus(nObjects);
15: if escapes.isEmpty() then
16: /* mark method as pure unless it*/
17: /* was marked impure before*/
18: else
19: /* mark method as impure */
20: end if
21: modifiedObjects.peek().addAll(mObjects);
22: newObjects.peek().addAll(nObjects);
23: end if
24: end for
25: emit results;
26: end procedure

5.3. DYNAMIC SIDE-EFFECT ANALYSIS 65

5.3.5 Multiple Program Runs
JPURE allows a user to provide more than one run as input to the purity analysis. We
use this feature in the evaluation in Section 5.3.7 to analyze how much the soundness
and completeness of our analysis benefits from additional data. If multiple runs are
available, our tool analyzes them successively and updates the classification as follows:

• If a method m was not analyzed before, we add m to the set of classified methods.

• If m was analyzed before and the new classification is pure, the classification of
m remains unchanged.

• If m was analyzed before and the new classification is impure, the classification
is set to impure.

5.3.6 Soundness
Deciding whether or not a method has side-effects in general is undecidable. Thus,
no analysis can be both complete (classifies all methods) and sound (all classifications
are correct). Since our analysis is a dynamic technique, completeness depends on the
amount of code covered by the execution. Purity analysis is a binary classification, so
we distinguish two different types of soundness: An analysis is p-sound if all methods
classified as pure are indeed pure. Conversely, an analysis is i-sound if all methods
classified as impure are indeed impure. Our analysis is i-sound, because it classifies
only those methods as impure that were experimentally shown to have side-effects.
However, our technique is potentially not p-sound, since a method may contain code
blocks with side-effects that are not executed. The evaluation in Section 5.3.7 mea-
sures the degree to which our analysis is not p-sound. The type of soundness required
depends on the application that uses the results.

5.3.7 Evaluation
This section presents the evaluation of our tool JPURE. Our analysis uses the same
purity definition as Sălcianu et al. [101], who have implemented their approach in a
tool called PURITYKIT. We use the output of this tool as a ground truth for the purity
analysis. Our experiments investigate the following questions:

Soundness How unsound is JPURE, i.e. how many entities are classified incorrectly?

Multiple Runs How do completeness and soundness improve if more than one run of
a program is used?

66 CHAPTER 5. MINING OBJECT BEHAVIOR MODELS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600

nu
m

be
r

of
 m

et
ho

ds

number of test runs

Methods analyzed by PurityKit
Methods analyzed by JPure

Methods classified as pure by PurityKit
Methods classified as pure by JPure

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100 200 300 400 500 600

pe
rc

en
ta

ge
 o

f m
et

ho
ds

 c
or

re
ct

ly
 c

la
ss

ifi
ed

 a
s

im
pu

re

number of test runs

Figure 5.7: Purity results for ASPECTJ: Coverage increases from 29% at the beginning
to 65% with all runs (upper graph). The percentage of methods correctly classified as
pure increases as more runs are included (lower graph).

5.3. DYNAMIC SIDE-EFFECT ANALYSIS 67

Runtime Overhead and Analysis Time How big is the runtime overhead imposed by
collecting trace information and how long does it take to process the trace files?

Measuring Soundness

To measure the soundness of the purity analysis, we calculate the precision values for
correct classifications into pure and impure methods (similar to [3]):

imp-prec = ii
ii+ip pure-prec = pp

pp+pi

ii is the number of methods correctly classified as impure, ip is the number of im-
pure methods incorrectly classified as pure, pp is the number of methods correctly
classified as pure and pi is the number of pure methods incorrectly classified as im-
pure. imp-prec measures the percentage of methods correctly classified as impure, and
pure-prec measures the percentage of methods correctly classified as pure. Ideally, both
precision values should be 1.0.

For all experiments with the purity analysis, pi was always equal to zero and thus
pure-prec = 1. This is because all entities classified as impure by our analysis were
experimentally shown to be impure (cf. Section 5.3.1). On the other hand, our analysis
misclassifies impure methods as pure if side-effects are statically possible but never
occur at runtime. In the remainder of the discussion, we therefore only use imp-prec to
measure soundness.

Evaluation Subjects

The following subjects were used in our experiments:

JOLDEN [13] is a suite of ten computationally intensive benchmarks which we in-
cluded because Sălcianu also studies them [101] . We did not include the power
benchmark in our evaluation since our tool ran out of memory when performing
the analysis. power creates a large number of temporary objects and our tool
tracks data for all of them, even after they are deleted, which eventually exhausts
main memory. One way to improve on this would be to trace deletion of objects.

ASPECTJ [31] is a large program with approximately 75 kLOC which we used as the
main subject to evaluate soundness and completeness of our tool. We study ver-
sion #29934 of ASPECTJ as provided by the IBUGS [31] repository. We analyzed
all 630 test runs available in the regression test suite that comes with the program.
In order for PURITYKIT to be able to fully analyze ASPECTJ, we changed one
line in the main class to directly instantiate a type rather than using reflection to
do so.

68 CHAPTER 5. MINING OBJECT BEHAVIOR MODELS

ECLIPSE [38] is a large IDE for JAVA programs which we included to show how
our tool performs on large interactive programs. We collected data from a run
where we created a new class, typed in the body of a main method, compiled
and executed the program and closed the workbench. Section 5.3.7 describes the
runtime impact of our tool on the execution time.

The following sections discuss the results for the purity analysis and the runtime
overhead of our method.

Results

We used the JOLDEN programs and ASPECTJ as subjects for our evaluation. The pre-
cision values for JOLDEN were slightly better than those for ASPECTJ, but coverage
was much higher. We focus on ASPECTJ because it is a far more realistic subject than
the JOLDEN programs. As mentioned in Section 5.3.5, our tool can analyze data from
more than one run. We take advantage of this feature to perform a cumulative analysis
of all tests in the test suite of ASPECTJ.

The results for the purity analysis are depicted in Figure 5.7. The upper graph
compares the number of methods analyzed by PURITYKIT and JPURE. When run on
ASPECTJ, PURITYKIT classifies a total of 6464 methods. The coverage values for
JPURE range from 29% (one run) to 65% (all runs), meaning that JPURE classifies
roughly two thirds of the methods classified by PURITYKIT. The precision evaluation
uses only methods classified by both tools.

The lower graph in Figure 5.7 shows the effect of including more runs on the pre-
cision of the analysis. With data from one run, JPURE achieves a precision of 0.61. If
all runs are included in the analysis, precision is 0.65, which means that our analysis
incorrectly classifies 35% of the methods statically shown to be impure as pure. We
investigated a sample of these methods. In many cases, the statements that are respon-
sible for the side effects are either part of an if-else construct or belong to a method
that is the possible target of a dynamically bound call. We also investigated how many
times the classification of a method changes from pure to impure when adding data
from another run. We found 171 methods where this was the case, which is a small
number compared to the total number of classified methods (4231).

To summarize, 35% of the methods classified as impure by the static analysis show
no side-effects at runtime. Using more than one run has a positive effect on the preci-
sion of our analysis, but the increase is not very strong (0.61 vs. 0.65).

5.3. DYNAMIC SIDE-EFFECT ANALYSIS 69

Program Overhead Analysis Time
(factor) (seconds)

bh 39.1 832.22
em3d 10.2 33.12
bisort 625.2 412.92
health 60.2 155.29
mst 28.8 602.12
perimeter 41.1 533.92
treeadd 8.1 389.72
tsp 3.2 158.53
voronoi 93.1 22.25

ASPECTJ 4.3 86.00
ECLIPSE 5.2 472.91
COLUMBA 3.6 182.17

Table 5.2: Runtime overhead and analysis time for JOLDEN benchmark programs
(upper part) and interactive programs (lower part).

Runtime Overhead and Analysis Time

Table 5.2 lists the results of our overhead evaluation. All experiments were conducted
on an AMD64 machine with 2.1 Ghz and 2 GB of RAM. To capture the runtime over-
head we divided execution times (as measured by the UNIX time tool) of a traced
run by the execution time of an unmodified run. The resulting values are given in col-
umn Overhead. Column Purity Analysis lists the number of seconds it took to run the
analysis. The values for ASPECTJ are mean values for all 630 runs of the test suite.

Runtime overhead for the JOLDEN benchmark (except for tsp) is generally much
higher than for the other subjects (except for tsp). We attribute this to the fact that
the benchmarks are purely memory-based and do not perform I/O-operations. The
overhead for the non-benchmark programs ranges from 260 to 420%. Analysis times
range from several seconds (treeadd) up to 20 minutes (bh).

To summarize, our tool induces a considerable amount of overhead for the purely
memory-based benchmark programs, whereas the overhead for programs that perform
I/O is acceptable.

70 CHAPTER 5. MINING OBJECT BEHAVIOR MODELS

Threats to Validity

Our evaluation only includes results for 10 programs, 9 of which are small benchmark
programs. Therefore, we cannot claim that our results generalize to arbitrary programs.
The main reason why we had to limit the scope of our study was that it is difficult to
find subjects that can be analyzed by PURITYKIT.

Another threat to validity is the use of PURITYKIT as a ground truth. If the results
of PURITYKIT were at least partly invalid, this would affect the correctness of our pre-
cision results. However, we manually verified a sample of the results and found no
misclassifications. Besides that, [3] reports very high precision values for the muta-
bility analysis of PURITYKIT, which gives us reason to believe that the purity analysis
achieves similar precision.

5.3.8 Related Work

Side-effect analysis originated more than 30 years ago in the area of compiler construc-
tion, where it is used for optimization techniques. Early work by Banning [7] identi-
fied the problem of side-effect analysis. Cooper et al. [24] present a flow-insensitive
side-effect analysis linear in the size of the call multigraph. These approaches were
among the first to identify the core problems and the need for inter procedural analysis.
Emerging techniques such as object-oriented languages further complicated the anal-
ysis. More recent techniques focus on the analysis of Java programs. Milanova et al.
[76] use context sensitive points-to information to analyze each method invocation in
the context of the object the method is invoked on.

Rountev [90] proposes a static side-effect analysis that can be parametrized by dif-
ferent types of class analysis. The paper compares results achieved with RTA to those
for a context sensitive pointer analysis and finds roughly equivalent precision. Their
purity criterion used is roughly equivalent to our criterion. However, the technique has
difficulties with programs that use reflection, which holds for many modern programs
such as ECLIPSE [38].

Xu et al. [116] describe a dynamic purity analysis. Their work explores several
purity criteria ranging from strong to weak, whose definitions are strongly influenced
by the proposed application, memoization. In contrast to their work, our analysis ex-
plores a well-established purity criterion. They also didn’t evaluate the precision of
their approach.

Sălcianu et al. [101] have implemented a static purity and parameter mutability
analysis in a tool called PURITYKIT. The approach is based on a combined pointer and
escape analysis and is the first to allow pure methods to modify objects created during
an invocation. The main weakness of their tool is that it cannot analyze programs which

5.4. CONCLUSIONS 71

require JDK 1.2 or above, while our tool has successfully analyzed modern programs
with graphical user interfaces such as ECLIPSE [38].

5.4 Conclusions
We have presented key features of ADABU, a tool that mines object behavior models
from JAVA programs. The tracing part of ADABU uses low-level code instrumentation
to trace data for model mining because it is the easiest method to apply in practice. To
cope with the complexity of a low-level target language, we divide the instrumentation
into small parts that are organized as a chain of independent visitors. By limiting
modifications to the stack wherever possible, we avoid hitting boundaries of the virtual
machine. When tracing all classes of a program, the slowdown caused by tracing events
for all classes is up to 400 times. If static analysis permits to limit the set of interesting
classes, this overhead can be significantly reduced.

The model miner of ADABU builds and maintains a dynamic heap model that rep-
resents the program state. For every method invoked on an interesting object, the tool
records the set of fields changed during the invocation. The heap model is then used
to determine the set of objects for which the changes would be visible in the behavior
model. If an interesting object is affected, the behavior model is updated with a new
transition.

This chapter also introduced JPURE, a dynamic purity analysis that classifies a
method as pure if it never modifies an object that existed prior to its invocation. The
tool builds on the tracer of ADABU to collect the required information. To measure
the precision of JPURE, we have analyzed 630 runs of ASPECTJ and compared the
classification of JPURE to the output of PURITYKIT, a static purity analysis tool. In
our experiments, 35% of the methods classified as impure by PURITYKIT never have
side-effects, suggesting that there is a huge gap between static and dynamic purity. We
have used the classification of JPURE as input to the ADABU model miner. Using this
input, ADABU has successfully mined inspector based models from large interactive
programs such as ECLIPSE and ASPECTJ. This shows that although the results of
JPURE are unsound, the tool is still useful in practice.

In terms of lessons learned, the most important result from over three years of ana-
lyzing JAVA programs is that keeping the instrumentation part as simple as possible is
vital to the success of any instrumentation-based dynamic analysis. In hindsight, using
ASM as the basis of our work was a good choice. Its design enforces to split the whole
instrumentation into several independent parts which facilitates implementation of the
tracer.

72 CHAPTER 5. MINING OBJECT BEHAVIOR MODELS

Chapter 6

Mining Bug Benchmarks

The previous chapters presented the state of the art in software execution models and in-
troduced object behavior models as a new type of models. In this chapter, we are inter-
ested in finding realistic subjects for the evaluation of our fix generation tool PACHIKA
presented in Chapter 8.

In general, the scientific process to acquire new knowledge consists of two steps:
First, a researcher devises a hypothesis. Second, this hypothesis is evaluated and the
outcome is to either accept or reject the hypothesis. An evaluation can be made by
proofing the hypothesis or by performing an experimental investigation. Since many
problems related to bugs are undecidable in general, we will use experiments to validate
hypotheses with different subjects and bugs. To avoid researcher bias, those subjects
and bugs should not be developed by ourselves, but rather stem from external resources.

To yield reliable results, an evaluation should use realistic subjects and bugs. Un-
fortunately, existing repositories of bugs such as the Software-Artifact Infrastructure
Repository (SIR) [37] provide mostly small subjects with artificially seeded bugs. An
evaluation based on subjects from this repository would be flawed, because the results
can hardly be generalized to realistic programs.

To avoid this problem, we have developed an approach to mine bug benchmarks
from projects whose development history is recorded in a version archive. This chapter
introduces our approach called IBUGS, presents existing subjects in the repository and
analyzes the quality of the data. Parts of this chapter were published at the Automated
Software Engineering Conference 2007 [31].

73

74 CHAPTER 6. MINING BUG BENCHMARKS

6.1 Motivation
A significant percentage of empirical studies focusing on testing concerns regression
testing and are simulation studies. Many of them are based on (very) small programs

and artificially seeded faults. [...] Furthermore, in most cases, the releases are not
real software releases with real changes, and therefore, besides a handful of studies, it

is unclear what kind of external validity can be expected from these results.
– Lionel Briand, Keynote ESEM 07 [17]

In the recent past, researchers have proposed a number of tools for automatic bug
localization [117, 51, 66, 22, 67, 69, 121, 29]. Given a program and a description of
the failure, a bug localization tool pinpoints a set of statements most likely to contain
the bug that caused the failure. Although all approaches try to solve the same problem,
many papers use different data sets to evaluate the accuracy of their approach. This
makes it difficult for researchers to compare new approaches with existing techniques.

The Software-Artifact Infrastructure Repository (SIR) [37] aims at providing a set
of subject programs with known bugs that can be used as benchmarks for bug de-
tection tools. Subjects from the SIR have already been used in a number of evalua-
tions [117, 51, 66, 22, 67, 69, 121, 29]. Despite the success of the repository, there
are two issues with the current set of subjects. First, most of the programs are rather
small and contain only few known bugs. Second, for the majority of subjects the set of
bugs was artificially seeded into the code. In general it is unclear whether results for
subjects in the SIR can be transferred to real projects with real bugs.

One reason why the SIR contains only few subjects with real bugs is that collecting
such data manually is a tedious task. To alleviate this problem, we have developed
a technique that automatically extracts benchmarks with real bugs from a project’s
history as available in software repositories and bug databases. The approach searches
log messages of code changes for references to bugs in the bug database. For example, a
log message “Fixed bug 45298” indicates that the change contains a fix for bug 45298.
We provide faulty versions for bugs by extracting snapshots of the program right before
the fix was committed. For each version we try to build the project and execute the test
suite. Syntactical analysis of the fixes allows us to provide a categorization of bugs and
to identify tests that are associated with bugs.

We have applied our approach to two projects: ASPECTJ is a compiler for an aspect-
oriented extension of JAVA with more than 5 years of history. RHINO is a JAVASCRIPT
interpreter used by MOZILLA. We assembled data from both projects in a repository
called IBUGS and made it publicly available for other researchers.

Since our approach uses heuristics and relies on partially incomplete data such as
comments, it may happen that we incorrectly classify changes or parts of changes as

6.2. RELATED WORK 75

fixes. Such misclassifications may spoil the results of an evaluation based on the bugs
in our repository. To evaluate the extent to which such misclassifciations occur, we use
DELTA DEBUGGING [118] to minimize fixes for all bugs with executable test cases.
Our evaluation shows that identifying fixes via commit messages causes a significant
amount of noise.

In the remainder of this chapter we discuss related work (Section 6.2), explain
our approach and practical experiences (Section 6.3), and present characteristics of
subjects in the IBUGS repository (Section 6.4). Section 6.5 presents the results of
our minimization experiment. Section 6.6 discusses results by other researchers that
compared the ASPECTJ subject to other bug repositories in terms of possible bias.
Section 6.7 ends the chapter with concluding remarks.

6.2 Related Work
We discuss the properties of existing benchmark suites, present a selection of bug lo-
calization approaches published in the recent past and what subjects were used for
evaluation (see also Table 6.1), and summarize related work about bug categorization.

6.2.1 Existing Benchmark Suites
PEST. The National Institute of Standards and Technologies provides a small suite
of programs for evaluating software testing tools and techniques (PEST). The current
version contains two artificial C programs with each less than 20 seeded bugs. In
contrast to the PEST suite, we aim at providing a set of real programs with bugs that
actually occurred in the program.

BugBench. Lu et al. [71] describe a benchmark suite with 17 C programs ranging
from 2000 up to one million lines of code. The paper describes 19 bugs the authors
localized in those projects, with more than two thirds being memory related bugs that
can never occur in modern languages like JAVA or C#. We could not further investigate
the benchmark since we could not find a released version.

Software-Artifact Infrastructure Repository (SIR). The publicly available Sub-
ject Infrastructure Repository to date provides 6 JAVA and 13 C-programs, including
the well-known Siemens test suite [89, 86]. Each program comes in several different
versions together with a set of known bugs and a test suite. Subjects from the repository
have already been used in a number of evaluations. A drawback of the current subjects
in the repository is that the average project in the repository is only eleven kLOC in
size while most real projects are much larger. Another problem is that almost all sub-
jects only have artificially seeded bugs which often represent only a small portion of

76 CHAPTER 6. MINING BUG BENCHMARKS

the bugs that occur in real projects. Using our technique to mine bugs from source code
repositories, we can provide subjects for the SIR with a large number of realistic bugs.

Marmoset. The group around Bill Pugh collected bugs made by students during
programming projects. Their MARMOSET project contains several hundred projects
including test cases [97]. However, most student projects are small and not always
representative for industrial development processes. In contrast to MARMOSET, our
IBUGS project focuses on large open-source projects with industrial alike development
processes.

6.2.2 Defect Localization Tools

Yang et al. [117] dynamically infer temporal properties (API rules) for method invo-
cations from a set of training runs. The approach handles imperfect traces by allowing
for a certain number of violations to a candidate rule. Violations of the rules in testing
runs may point to bugs. Hangal et al. [51] try to automatically deduce likely invariants
from a set of passing runs. Invariants are used to flag deviating behavior right before
the program crashes in a failing run. Li and Zhou [66] mines programming rules from
a program’s code. Violations of these rules are flagged as possible bug locations. The
previously described approaches provide an ad hoc evaluation with subjects that are
sometimes not available to the public (like the Windows Kernel). Most of them also
report only bugs they were able to detect, but omit information about bugs they missed.
This makes it difficult for researchers to reproduce work by others and to assess the
performance of their own approaches.

Several researcher improved on the lack of reproducibility by additionally testing
their bug localization tools on publicly available benchmarks such as Gregg Rother-
mel’s SIR. Cleve and Zeller [22] establish cause-effect chains for failures by applying
DELTA DEBUGGING several times during a program run. Suspected bug locations are
pin-pointed whenever the variable relevant for the failure changes. Liblit et al. [67] pro-
poses a statistical approach that collects information about predicate evaluation from a
large number of runs. Predicates that correlate with failure of the program are likely to
be relevant for a bug. The SOBER tool by Liu et al. [69] calculates evaluation patterns
for predicates from program executions. If a predicate has deviating evaluation patterns
in passing and failing runs, it is considered bug relevant. Zhang et al. [121] automat-
ically identify a (set of) predicate crucial for a failure. The suspected bug location is
the dynamic slice of the crucial predicate(s). The AMPLE tool by Dallmeier et al. [29]
captures the behavior of objects as call-sequence sets. Classes are ranked according to
the degree of deviation between passing and failing runs.

6.2. RELATED WORK 77

Approach Language Evaluation
Type

Subjects

SOBER C Benchmark +
Ad hoc

Siemens Test Suite, BC

AMPLE Java Benchmark +
Ad hoc

JAVA Subject from Siemens
Test Suite, four Bugs in AS-
PECTJ

Liblit05 C Benchmark +
Ad hoc

Siemens Test Suite

Cause Transitions C Benchmark Siemens Test Suite
Predicate Switching C Benchmark Siemens Test Suite
Perracotta Java, C Ad hoc JBOSS Transaction Module,

Windows Kernel
PR-Miner C Ad hoc Large C projects (Linux

Kernel)
Diduce Java Ad hoc Java SSE, MailManage,

Joeq

Table 6.1: Overview of evaluation methods for bug localization tools. Several eval-
uations use only ad hoc examples to evaluate their approach. Most papers that use a
benchmark rely on subjects provided by the SIR repository [37].

6.2.3 Bug Classification

Several researchers investigated the phenomenon of bugs in the past. Ko and My-
ers proposed a methodology that describes the causes of software errors in terms of
chains of cognitive breakdowns [62]. In their paper, they also summarized other stud-
ies that classify bugs. Defect classification has been also addressed by several other re-
searchers: Williams and Hollingsworth manually inspected the bugs from the Apache
web server and found that logic errors and missing checks for null pointers and return
values were the most dominant bug categories [110, 111]. Xie and Engler demonstrated
that many redundancies in source code are indicators for bugs [115]. Since such redun-
dancies are easily caught by static analysis, this lead to an advent of static bug finding
tools, such as FINDBUGS [54], JLINT [61], and PMD [55] (for a comparison we refer to
Rutar et al. [91]). Typically, such tools take rules, and search for their violations. Re-
cently, automatic bug classification techniques using natural language emerged: Anvik
et al. used such techniques to assign bugs to developers [2] and Li et al. investigated
whether bugs have changed nowadays [65].

78 CHAPTER 6. MINING BUG BENCHMARKS

6.3 Bug Extraction from History
Our goal is to exploit the history of a project to build a repository with realistic bugs
that can be used to benchmark bug localization tools. We classify each bug by the
characteristics of its fix, for example the size and the syntactical elements that were
changed. For each bug we provide a compilable version with and without the bug as
well as a means to run tests on the program.

The following steps are necessary to prepare a subject for the IBUGS repository.
The sequence in which the steps are performed can vary, but some steps have to be
performed before others (versions need to be extracted before they can be built):

1. Recognize fixes and bugs.

2. Extract versions from history.

3. Build and run tests.

4. Recognize tests associated with bugs.

5. Annotate bugs with meta information (size, syntactical properties).

6. Assemble IBUGS repository.

We first discuss the prerequisites for our approach and then present each step in
detail. The number of bug candidates that we analyzed at the various stages are sum-
marized in Table 6.2.

ASPECTJ: To illustrate how our approach works in practice, we describe our
experiences with preparing the ASPECTJ compiler project as a subject. Paragraphs that
are concerned with ASPECTJ are marked in a similar fashion as this paragraph.

6.3.1 Prerequisites
In order to be suitable for the IBUGS repository, a project needs to meet the following
prerequisites:

Source repository (required). The project must provide access to a system like CVS
or SVN where the project history is stored. We use the repository to identify
changes that fix a bug.

Bug tracker (optional). The availability of a bug tracking system like Bugzilla or Jira
helps eliminate false positives in the detection of changes that fix a bug.

Test infrastructure (optional). If the project has a test infrastructure we can use it to
provide runs of the program. If there is no test suite available, the subject can
still be used to evaluate static bug detection tools.

6.3. BUG EXTRACTION FROM HISTORY 79

Number

Candidates
– retrieved from CVS and BUGZILLA 489
– after removing false positives 485
– that change source code 418
– for which pre-fix and post-fix versions compile 406
– for which test suites compile 369

ASPECTJ dataset
– bugs 369
– bugs with associated test cases 223

Table 6.2: Breakdown of the analyzed bug candidates for ASPECTJ. Many snapshots
extracted from the version archive cannot be compiled.

Our experience with open-source projects shows that all successful projects meet
these requirements. Organizations like the APACHE and ECLIPSE foundations use a
standard infrastructure with source repositories and bug trackers for all of their projects.

ASPECTJ: The project builds a compiler that extends the JAVA language with
aspect-oriented features. It provides access to a CVS repository with over five years of
history and a bug tracking system with more than 1000 entries. With over 75000 lines
of code excluding test code, it is among the larger open source projects.

6.3.2 Fix Identification
The first step in the IBUGS approach is to identify changes that correct bugs, in par-
ticular, bugs that were reported to bug databases such as Bugzilla. Typically, develop-
ers annotate every change with a message to describe the reason for that change. As
sketched in Figure 6.1, we automatically search these messages for references to bug
reports such as “Fixed 42233” or “bug #23444”.1 Basically every number is a poten-
tial reference to a bug report, however such references have a low trust at first. We
increase the trust level when the message contains keywords such as “fixed” or “bug”
or matches patterns like “# and a number”. Since changes may span across several
files, we combine all changes made by the same author, with the same messages and
the same time stamp (with a fuzziness of 200 seconds) into a transaction [125]. Fi-
nally, every change with a reference to a bug report is assumed to be a fix and serves as

1The format of references to bug reports is project specific. It depends especially on the bug tracking
system that is used.

80 CHAPTER 6. MINING BUG BENCHMARKS

Changes Bug Report

Figure 6.1: Bug reports are linked to changes in the version archives by analyzing
commit messages. Keywords include bug identifiers and words like “Fix” or “bug”.

a candidate for our bug dataset. Our approach for mapping code changes to bug reports
is described in detail by Śliwerski et al. [95] and is similar to the approaches used by
Fischer et al. [41] and by Čubranić et al. [25].

ASPECTJ: We were able to identify 890 transactions that fixed a bug. We re-
moved all bugs that took more than one change to be fixed, since we cannot be sure
which change was really necessary to fix the bug. For similar reasons we did not con-
sider changes that fix more than one bug. Altogether we found 489 bugs that were
fixed only once in a transaction that fixed only one bug. A manual investigation of log
messages revealed that four of them were actually false positives (the number in the
log message accidentally matched a bug id) and had to be removed.

6.3.3 Extraction

For each bug we extract two versions of the program (see Figure 6.2): The pre-fix
version represents the state of the program right before the bug was fixed, while the
post-fix version also includes the fix. We then compare these two versions and remove
all fixes that do not change the program code. This is necessary because some fixes do
not affect the functionality of the program (like for example a misspelled dialog title in
a resource file).

ASPECTJ: Altogether we found 67 bugs that did not change the source of the
program and removed them from the IBUGS repository.

6.3. BUG EXTRACTION FROM HISTORY 81

Identify fixes

Changes Bug report

time
Fix

pre-fix
version

post-fix
version

Figure 6.2: For each bug in the repository, we extract the pre-fix version right before
the fix was committed. The post-fix version of a bug in addition contains the fix for the
bug.

6.3.4 Test Execution

In the next step we prepare the pre- and post-fix versions of all bugs for execution
(see also Figure 6.3). First we try to build each version. If the build process goes
beyond a simple compile, most projects provide a build file. We identify the build
file by examining the project and use it to run a build. Depending on the project, this
may already include building and running a unit test suite. If this is not the case, we
manually trigger the test suite and collect information about which tests were run and
the outcome (pass or fail) of each test. After this step we remove all versions that fail
to build.

ASPECTJ: The project provides a build file with separate targets for building and
running the program and its test suite. We first tried to build the program and found
twelve versions that had compiler errors. We removed those versions and tried to build
the test suite for all remaining versions.

Building and running the test suite for all versions required a lot more effort than
building the project. This is due to some inconsistencies in the test system and the fact
that the test process changed several times over the history of the project. This caused
(amongst others) the following problems:

• For some versions the tests cannot be built without having all modules in an
Eclipse workspace.

82 CHAPTER 6. MINING BUG BENCHMARKS

pre-fix
version

post-fix
version

build

build

test

test

Compare
program + tests

Compare
test outcomes

Figure 6.3: For each bug, we run the test suite on the pre-fix and post-fix versions and
compare the output to identify failing tests.

• In some cases the program built fine but the tests had compiler errors.

• The names of build targets and output files changed several times.

We analyzed the changes in the test system over time to fix as many problems as
possible. For 37 bugs we could not build the test suite and therefore removed them.
The remaining 369 bugs were included in the IBUGS repository.

6.3.5 Associated Tests

Many dynamic bug localization tools [29, 22, 121] require a run that reproduces the
failure and a passing run. While the project’s test suite provides us with passing runs,
it almost never contains failing runs for a previously unknown bug. This is because
otherwise the bug would have been caught already by running the test suite and we
assume that developers run the tests before releasing the project.

To solve this problem we analyze the fixes for each bug and look for new tests that
are committed together with a fix. The fact that a test is committed together with a fix
is a strong indication that the test is related to the bug. Not all of these tests actually
fail when executed since sometimes developers commit more than one test to check
interesting cases that were discovered when fixing the bug. Bugs for which we can’t

6.3. BUG EXTRACTION FROM HISTORY 83

find an associated test are not removed from the IBUGS repository, as they may still be
useful for static bug localization tools.

The method to identify tests committed with fixes depends on the type of tests that
are used in the project. However there is only a small number of testing frameworks
used in practice and we can cover a lot of projects with techniques for the most popular
ones.

ASPECTJ: The project uses two different types of tests. Unit tests are imple-
mented using the JUNIT [44] framework, a popular testing framework for JAVA. In-
tegration tests for the compiler (referred to as harness tests) are described in XML
files. Our approach for identifying new JUNIT tests is straightforward: We examine
all classes that were changed during the transaction that fixed the bug. A new test is
found if a new subclass of TestCase was committed or a new test was added to an
existing TestCase. New harness tests are found by analyzing the differences in the
test description files. Altogether we found 223 bugs for which the fixing change added
or touched at least one test case.

6.3.6 Meta Information
Some bugs may not meet the assumptions and prerequisites of a specific bug local-
ization tool. For instance a tool may pinpoint to exactly one code location. In this
case, bugs that span across several files would never be recognized completely by the
tool and should be treated separately in the evaluation. In order to provide an efficient
selection mechanism for bugs we annotate them with meta information about the size
and syntactical properties of the fixes. When computing meta information, we ignore
changes to test files and classes, since they are not part of the actual correction.

For each bug, we list the following size properties of the corresponding fix:

• files-churned: the number of program files changed

• java-files-churned: the number of JAVA files changed

• classes-churned: the number of classes changed

• methods-churned: the number of methods changed

For computing the size of a fix in terms of lines, we parse the so-called hunks
returned by the GNU diff command. A hunk corresponds to a region changed between
two versions. If the region is present in both versions, the hunk is called a modification,
otherwise it is an addition (region is only present in the post-fix version) or deletion
(region is only present in the pre-fix version). We use the line ranges of a region to
compute the size of a hunk. Since for modification hunks the size may differ between
pre-fix and post-fix region, we take the maximum in this case. In order to get the actual

84 CHAPTER 6. MINING BUG BENCHMARKS

size of a fix, lines-churned, we aggregate the sizes of the hunks; we additionally break
down the size to additions, deletions, and modifications.

• hunks: the number of hunks in a fix.

• lines-added: the total number of lines added.

• lines-deleted: the total number of lines deleted.

• lines-modified: the total number of lines modified.

• lines-churned: the total number of lines changed, i.e., the sum of lines-added,
lines-deleted, and lines-modified.

From the bug report we extract priority and severity of a bug and include them
as properties in our dataset. The priority of a bug describes it importance and ranges
typically from P1 (most important) to P5 (least important). In contrast the severity
describes the impact and is one of the following: blocker, critical, major, minor, trivial,
or enhancement. A severe bug may be have low priority when only few users are
affected by a bug. However, in most cases bugs with high severity have also a high
priority.

In addition to the above properties, we annotate bugs that produce exceptions with
tags. We obtain this information by parsing the short description of a bug for keywords:
null pointer exceptions typically are indicated by the keywords “NPE” or “Null”, while
other exceptions are indicated by “Exception”.

In addition to size properties, we provide syntactic properties of changes. This
supports the retrieval of bugs that were fixed in a certain way, say by changing a (single)
method call or expression.

In order to express how a fix changed the program, we use the APFEL tool [122].
APFEL builds the abstract syntax trees of the pre-fix and post-fix version, flattens the
trees into token sets and computes the difference between these sets (see Figure 6.4).2

APFEL supports different types of tokens for method calls, expressions, keywords,
operators, exceptions handling, and variable usage. The type of the token is encoded
in a single capital letter (see Table 6.3).

We use the differences computed by APFEL to create two fingerprints of a change
at different levels of detail: The concise fingerprint summarizes the most essential syn-
tactic changes such as method calls, expressions, keywords, and exception handling. In
contrast the full fingerprint additionally records changes in variable names and contains
more detailed information about the affected tokens.

2Note that APFEL is insensitive to the order of tokens because it relies on sets. This means that certain
types of changes are missed such as swapping two lines.

6.3. BUG EXTRACTION FROM HISTORY 85

pre-fix
version

post-fix
version

abstract
syntax trees

A

B

A'

B'

A

A'
B'

B

tokensets

changescompare

Figure 6.4: APFEL compares pre-fix and post-fix versions by converting the abstract
syntax tree into a token set.

Token type Description

Z–expression Expressions that are used in casts, conditional statements,
exception handling, loops, and variable declarations.

K–keyword Keyword such as for, if, else, new, etc.
M–method-name Method calls.
H–exception-name Catch blocks for exceptions.
V–variable-name Names of variables.
T–variable-type Types of variables.
Y–literal Literals such as numbers or strings
O–operator-name Operators such as +, −, &&, etc.

Table 6.3: APFEL distinguishes eight different types of tokens.

86 CHAPTER 6. MINING BUG BENCHMARKS

• The concise fingerprint shows whether a bug (more precisely, its fix) is related
to keywords (presence of the “K” character), method calls (“M”), exception han-
dling (“H”), or expressions (“Z”). In contrast to the full fingerprint, the concise
fingerprint omits variable usage, operators, and literals, i.e., it is a sub sequence
of “KMHZ”.

• The full fingerprint additionally shows variable usage (“V” and “T”), operators
(“O”), and literals (“Y”). Furthermore, it specializes keywords (null, true, false,
etc.), expression (if, while, for, cast, etc.) and operators (+, −, &&, etc.).

Figure 6.5 shows an example for a fix of a bug that caused a null pointer exception
(NPE). The differences computed by APFEL show that a new if statement was inserted:
several keywords (if, null, else, and return) and the operator !- were added exactly
once; APFEL additionally reports the new usage of the variable declaration, its type
MethodDeclaration, and the condition of the if -statement. For the concise fingerprint,
we omit the variable, literal, and operator tokens and the names of the other tokens.
This results in the fingerprint “KZ”, telling us that keyword(s) and expression(s) were
changed. In contrast, the full fingerprint contains all tokens, but omits names, except
for keywords and operators. In the example of Figure 6.5 it is “K-else K-if K-null
K-return O-!= T V Z-if”.

We included fingerprints in our dataset to support researchers when retrieving a
set of bugs that match certain syntactic properties. Say, a researcher is interested in
bugs that are related to null pointer checks. In order to come up with a set of initial
candidates, she can query for bugs containing “K-null” in their fingerprint.

ASPECTJ: Fingerprints for all bugs in the IBUGS repository are provided in the
description file repository.xml.

6.3.7 Repository
The IBUGS repository may contain several hundreds of versions for a program. For a
typical project the size of a checkout from the source repository can contain 50 MB
or more of data. This yields a size of several gigabytes for the IBUGS repository,
which makes distribution difficult. We therefore create a new Subversion repository
that stores the code for all versions. This greatly reduces the amount of space required
to store the versions for the fixes included in the IBUGS repository. Meta information
about the fixes in the IBUGS repository is stored in an XML file. For each bug we give
information about the test suite, a pointer to the tests that were committed with the fix
(if any), and the diffs for all files that were changed in the fix.

ASPECTJ: Snapshots of the project are approximately 60 MB in size. Although
we have more than 700 versions (two for each bug) in the IBUGS repository, the result-

6.4. SUBJECTS 87

1 TypeX onType = rp.onType;
2 if (onType == null) {
3 - Member member = EclipseFactory.
4 - makeResolvedMember(
5 - declaration .binding);
6 - onType = member.getDeclaringType();
7 + if (declaration.binding != null) {
8 + Member member = EclipseFactory.
9 + makeResolvedMember(

10 declaration .binding);
11 + onType=member.getDeclaringType();
12 + } else {
13 + return null;
14 + }
15 }
16 ResolvedMember[] members = onType.
17 getDeclaredPointcuts(world);

Tokens changes computed by
APFEL:
K-else (+1) K-if (+1)
K-null (+1) K-return (+1)
O-!= (+1)
T-MethodDeclaration (+1)
V-declaration (+1)
Z-if-declaration.binding!=null (+1)

Concise fingerprint:
KZ

Full fingerprint:
K-else K-if K-null K-return
O-!= T V Z-if

Figure 6.5: Fingerprints for Bug 87376 “NPE when unresolved type of a bound var in
a pointcut expression (EclipseFactory.java:224)”.

ing file size is only 260 MB. Figure A.6 on page 167 shows an excerpt of the description
file repository.xml.

6.4 Subjects
We have applied our approach to two different projects: ASPECTJ, a compiler for an
aspect-oriented extension of JAVA, and RHINO, an interpreter for JAVASCRIPT written
in JAVA. This section presents characteristics of both subjects and compares them in
terms of the structure and the size of fixes.

6.4.1 Characteristics
The ASPECTJ compiler [59] consists of 75 kLOC and its test suite contains more than
1000 test cases. RHINO [78] is an interpreter for JAVASCRIPT that was incubated in
1999 by the MOZILLA foundation. With 49 kLOC, RHINO is the smaller of the two
subjects. However, its test suite is a tad larger (1248 compared to 1178). Table 6.4
provides statistics about the development history of both projects.

Both ASPECTJ and RHINO are non-interactive programs that are controlled by the
command-line. This makes it easy to write test cases, which accounts for the large
number of tests in both projects. In general, the ASPECTJ developers put a stronger

88 CHAPTER 6. MINING BUG BENCHMARKS

ASPECTJ RHINO

Size of code in latest revision (kLOC) 75 49
Number of commits to CVS repository 7947 2138
Number of tests in latest revision 1178 1248
Number of developers 13 17

Number of bugs in IBUGS repository 369 32
Number of bugs with associated tests 223 29
Size of repository (MB) 260 7
First bug report in IBUGS repository 2002-07-03 2001-05-03
Last bug report in IBUGS repository 2006-10-20 2003-12-07

Table 6.4: Statistics of the development history of ASPECTJ and RHINO. For AS-
PECTJ, IBUGS is able to link more bugs to transitions than for RHINO.

emphasis on meaningful commit messages. As a result, our approach links more bugs
to changes in the source code, which is why the final number of bugs in ASPECTJ is
much higher than for RHINO. For ASPECTJ, we identified 369 bug reports that changed
program code. For 223 of these bugs, we also found associated test cases. RHINO has
32 bugs, out of which 29 offer an associated test case.

6.4.2 Locality
Figure 6.6 compares the locality of fixes for both projects. The histograms show the
number of bugs that were fixed in one, two, three, four, five, or more than five Java
files (left bars), classes (middle bars), and methods (right bars), respectively. In both
projects, the majority of bugs was corrected in exactly one method. This suggests that
most bugs are local, spanning across only few methods. This is in line with our analysis
of the ECLIPSE bug database presented in Chapter 2.

6.4.3 Size
Figure 6.7 shows the distribution of churned lines of code 3. There are many small
fixes for ASPECTJ: 44.4% of all fixes churned ten lines or less; almost ten percent of
all fixes are one-line fixes, i.e., churned exactly one line. Only few fixes deleted code
(about one third), most fixes modifies existing code (e.g., wrong expressions) or added

3The number of churned lines is the number of added lines plus the number of deleted lines plus the
number of changed lines.

6.4. SUBJECTS 89

 0

 50

 100

 150

 200

1 2 3 4 5 > 5

java-files
classes

methods

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5 >5

java-files
classes

methods

Figure 6.6: Histogram for touched files, classes and methods for fixes in ASPECTJ
(top) and RHINO (bottom). The majority of fixes in both projects touches only one
method.

90 CHAPTER 6. MINING BUG BENCHMARKS

0%

25%

50%

75%

100%

0 1 5 10 50 100 250 750

churned

added

modified

deleted

0%

25%

50%

75%

100%

0 1 5 10 50 100 250 750 2200

churned

added

modified

deleted

Figure 6.7: Cumulative distribution of deleted, modified, added and churned lines in
ASPECTJ (top) and RHINO (bottom). Most fixes churn only few lines.

new code (e.g., null pointer checks). Overall, the percentages of small fixes that we
observed are consistent with the ones observed by Purushothaman and Perry [84].

For the bugs in RHINO, the fixes are generally larger: Only 20% of the bugs are
fixed with changes to a most five lines, compared to almost 28% in ASPECTJ. The
largest fix in RHINO touches over 2000 lines, compared to only 750 in ASPECTJ. One
conclusion we could draw from these figures is that fixes in RHINO are more complex
than fixes in ASPECTJ. However, it may also be that in RHINO changes classified as
fixes are not minimal, i.e. they also include changes not necessary to fix the bug at
hand. Section 6.5 examines this question in detail.

6.4. SUBJECTS 91

Fixes in ASPECTJ Fixes in RHINO

Fingerprint Small All Small All Examples in Figure A.3

empty 6 33 1 2 Bug 132130
HK 0 2 0 0
HKM 1 4 0 0
HKMZ 0 32 0 3
K 5 10 0 1 Bug 151182
KM 7 24 0 0 Bug 43194
KMZ 13 192 7 18 Bug 67774
KZ 20 31 1 3 Bug 123695
M 12 18 2 2 Bug 80916
MZ 10 16 1 2 Bug 42539
Z 5 7 1 1 Bug 69011, 161217

Total 79 369

Table 6.5: Number of bugs per fingerprint in ASPECTJ and RHINO. Simple fingerprints
are most dominant for small fixes.

6.4.4 Syntactical Properties

In Table 6.5 we show the distribution of concise fingerprints for small fixes (i.e., five
lines or less churned within one method) and all fixes of both data sets. The most dom-
inant fingerprint is “KMZ” indicating that most fixes are of complex nature. Several
fixes change only literals and variable names and therefore have an empty fingerprint.
Exception handling (fingerprint with sub string “H”) is exclusive to larger fixes, likely,
because adding the skeleton of try/catch already takes four lines.

Simple fingerprints are most dominant for small fixes: Twelve fixes changed only
method calls (“M”), five fixes changed only keywords (“K”), and five fixes changed
only expressions. The fingerprint “KZ” typically points to the addition of null pointer
checks, that consist of a keyword (either if or null and an expression that checks for
null).

We inspected all small fixes and observed mainly three categories: (1) fixes that
change expressions, mostly checks for null pointers (presence of “Z” in the finger-
print), (2) fixes that add or change method calls (presence of “M” and absence of “Z”),
and (3) other fixes (for instance empty fingerprint). For examples of fingerprints and
characteristic fixes, we refer to Figure A.3 on page 164.

92 CHAPTER 6. MINING BUG BENCHMARKS

6.5 Minimizing Fixes with Delta Debugging

Due to the heuristic used to link changes to bug reports in IBUGS, it may happen that
we incorrectly classify changes as part of a fix:

Misleading Log Messages When parsing log messages, we look for keywords such
as “fixed” or “bug”, as well as numerical identifiers that are used in the bug
database. Since a comprehensive semantical analysis is not possible, we may
classify a log message as describing a fix although this is not the case. One
example of such a log message would be “This is a failed attempt to fix bug
#4711”.

Over sized Change Sets In theory, commits should be task-based, meaning that a sin-
gle commit should only contain changes related to a single task. In practice,
however, we encounter many commits that contain changes from several tasks.
Thus, a commit correctly classified as fix may contain changes not required to
fix the bug.

Incorrectly classified changes jeopardize the validity of IBUGS as a benchmark. If
the repository contains too many irrelevant changes, the value of an evaluation based
on IBUGS would be questionable. To provide a meaningful benchmark, we need to
know what percentage of the changes in IBUGS are irrelevant.

One way to identify such irrelevant changes is to perform a manual investigation of
the source code. This approach is problematic as it involves a lot of human effort and
does not scale well. Additionally, some bugs require expert knowledge of the system
under study to decide if a change is really necessary. Thus, manual investigation is
infeasible for a meaningful evaluation.

Our idea to approach this problem is to use a minimization algorithm called DELTA
DEBUGGING [120]. To minimize fixes, we assume that a change that constitutes a
fix can be split into several parts (for example lines or hunks). DELTA DEBUGGING
uses repeated evaluations of the failing test case to identify relevant parts of the fix. To
this end, the algorithm systematically applies subsets of the fix and tests each subset
whether it is sufficient to fix the bug.

In the remainder of this section, we introduce the minimization problem and de-
scribe DELTA DEBUGGING (Section 6.5.1), and present the results of minimizing a
subset of the bugs in ASPECTJ and RHINO (Section 6.5.2).

6.5. MINIMIZING FIXES WITH DELTA DEBUGGING 93

6.5.1 Delta Debugging

We suspect that for some bugs, not all changes of the committed fix are actually relevant
to fix the failing test. Hence, we are interested in finding the minimal set of changes that
are necessary to fix the failing test. This is an instance of the so-called minimization
problem. To define the minimization problem, we first give basic definitions following
the terminology introduced by Zeller et al. [120]:

Definition 21 (Circumstances, Outcome, Test Function) Let C be the finite set of
circumstances that are to be minimized. P(C) is the power-set of C that consists of all
subsets of C. A test function P(C)→ {4,8, } maps an element of the power set to
one of the possible outcomes pass (4), fail (8) and unresolved (). A set F ∈P(C)
for which a test function evaluates to 8 is called a failure-causing set of circumstances
with respect to the test function.

The minimization problem is then defined as finding the minimal set Fmin ∈P(C)
such that test(Fmin) = 8 and for all G ∈P(C), |G| < |Fmin| → test(G) 6= 8. Fmin is
of interest since it denotes the minimal set of circumstances that together cause the
test function to fail. Unfortunately, finding a minimal set of circumstances is a hard
problem that requires to test all elements of P(C). Thus, an algorithm that computes
a minimal set has exponential runtime4, and is therefore not applicable to problems as
they occur in practice (the largest fix investigated in our experiments touches 490 lines).

To circumvent this problem, Zeller and Hildebrand [120] propose to relax the min-
imization criterion to find k-minimal subsets instead of calculating a minimal subset.
The k-minimization problem is to find a set T such that

T ⊂C

test(T) = 8

∀T ′ ⊂ T,1≤ |T ′| ≤ k : test(T −T ′) 6= 8

For a given k, k-minimality of a set T means that removing k or less elements from
T will cause the outcome of the test function to change to 4 or . However, there may
exist T ′′ ⊂C with |T ′′|> k such that test(T −T ′′) = 8.

Zeller and Hildebrand [120] propose an algorithm called DELTA DEBUGGING that
calculates 1-minimal subsets with good average performance. The basic idea of the al-
gorithm is that relevant circumstances are typically not distributed randomly, but rather

4For a proof see [80].

94 CHAPTER 6. MINING BUG BENCHMARKS

form contiguous blocks. The algorithm exploits this fact by considering large contigu-
ous blocks of circumstances in each iteration. DELTA DEBUGGING is best described
by the following definition (taken from Zeller’s paper [120]):

Definition 22 (DELTA DEBUGGING) C denotes a set of circumstances for which the
test function yields fail test(C) = 8. P(C,k) denotes any partitioning of C into k equal
parts. The DELTA DEBUGGING algorithm ddmin(C) = ddmin(C,2) is defined as

ddmin(C,k) =



ddmin(C j,2) if test(C j) = 8 for some
C j ∈ P(C,k)

ddmin(C−C j,max(k−1,2)) if test(C−C j) = 8
for some C j ∈ P(C,k)

ddmin(C,min(|C|,2k)) if k < |C|
C otherwise

DELTA DEBUGGING works by continually partitioning the current set of circum-
stances and testing each set. For each partition C j that fails the test function, DELTA
DEBUGGING continues to examine this subset (case 1). If no partition fails, it will con-
sider the complement of each partition (case 2). Again, if no set fails the test function,
DELTA DEBUGGING will increase the granularity for the partitioning (case 3). The
algorithm terminates if no further elements can be removed from the set (case 4).

For a given set C and a test function, DELTA DEBUGGING computes a 1-minimal
set of C 5. The worst-case runtime is O(n2) where n = |C|. However, according to
Neuhaus [80], DELTA DEBUGGING executes much faster in practice. It has been suc-
cessfully applied in different areas of computer science including software engineer-
ing [120, 22, 100] and security [81].

6.5.2 Minimizing Fixes
In the context of minimizing fixes, we define the set of circumstances and the test
function as follows:

Circumstances Every bug is fixed by a single commit to the version archive. To min-
imize the commit, it is necessary to further split it into a set of changes that
each add, remove, or change a single line. This set of changes forms the set of
circumstances for minimizing fixes.

Test Function The test function evaluates whether a given subset of changes is a fix
for the bug at hand. To automate the test function, we rely on the existence

5A proof is available in [120].

6.5. MINIMIZING FIXES WITH DELTA DEBUGGING 95

of a regression test suite that contains at least one failing test to reproduce the
problem, and one or more passing tests. To fix a bug, a set of changes Cfix has to
meet the following conditions:

1. Applying Cfix alters the outcome of the failing test from fail to pass.

2. Applying Cfix does not change the outcome of any of the passing tests.

The first condition tests that Cfix actually fixes the problem, whereas the second
condition ensures that the fix does not break any other tests in the test suite.

Experimental Setup

To perform the experiments, we use a publicly available implementation of DELTA
DEBUGGING called DDCHANGE [18]. We use all bugs of ASPECTJ and RHINO that
provide an associated test case that fails in the pre-fix version and passes in the post-
fix version. This is to ensure that the test case is actually related to the bug, and the
change applied actually fixes the problem. Altogether we found 15 bugs in RHINO,
and 33 bugs in ASPECTJ.

In order to minimize a problem, DDCHANGE requires a test function that evaluates
a set of changes. In our setting, the test function (1) applies the set of changes, (2)
tries to compile the modified program, and (3) executes the test suite to determine the
test outcome. Depending on the results of steps 2 and 3, the test function produces the
following result:

Unresolved () The modified program cannot be compiled.

Fail (8) The program compiles and all tests (including the failing test) pass. This
is somewhat counter-intuitive, as DELTA DEBUGGING was initially designed to
minimize failure inducing input and therefore is interested in sets of changes that
cause the test to fail. However, in our setting we look for changes that cause the
failing test to pass and hence swap the meaning of pass and fail.

Pass (4) The program compiles but at least one test in the test suite fails.

As explained above, including the whole test suite is important to make sure that the
minimized set of changes not only fixes the bug, but also does not break other aspects
of the program. To study the importance of considering all tests in the test function, we
repeat our experiments twice: In the first run, we consider only the failing test, whereas
in the second run we also include the remaining tests of the test suite.

96 CHAPTER 6. MINING BUG BENCHMARKS

Results

The results of our experiments with RHINO are summarized in Table 6.6. Tables 6.7 and
6.8 show results for ASPECTJ. Column Bug Id lists the bug identifier for each bug in-
cluded in the study. Column Size of Fix gives the size of each fix in terms of the number
of churned6 lines. Since some fixes also change comments, we also give the fraction of
non-comment lines churned in column three. Columns four and five list the minimiza-
tion results in terms of the fraction of relevant lines when only considering the failing
run (column four) and for the whole test suite (column five).

To aggregate the results, we provide average (�) and median (˜) values in the last
two rows of each table. Since average values can be misleading if the data is not nor-
mally distributed, we first check whether the data is normally distributed. To that end,
we compare each row against a normal distribution using a Kolmogorov-Smirnov test
[14]. Parameters for the normal distribution are estimated using the maximum likeli-
hood method. The results of the Kolmogorov-Smirnov test reveal that the data is not
normally distributed, which tells us that the average values should not be used. In the
remainder of this section we will therefore only use median values when interpreting
data.

Based on the values in Tables 6.6 and 6.7 we make the following observations:

Size of Fixes The median size of a fix is roughly equivalent for both projects (11 lines
for ASPECTJ compared to 14 lines for RHINO). Considering the size distribution
of all bugs presented in Figure 6.7, we can conclude that bugs included in our
evaluation are slightly larger than the normal bug in the repository. An interesting
observation is the big gap between average and median sizes. For RHINO, a few
bugs with very large fixes are enough to tilt the average towards a misleadingly
high number. This highlights the importance of using median values to analyze
the data.

Comments In terms of comments, we observe that fixes for RHINO typically contain
much fewer comments than fixes for ASPECTJ. As comments are important
for the maintenance of a project, we conclude that the ASPECTJ team is more
concerned with project quality than the RHINO developers. This is in line with
observations made in Section 6.4.

Minimization Our minimization tool is able to identify irrelevant lines in 88% of all
bugs in ASPECTJ, and 80% of the bugs in RHINO. Thus we can conclude that the
majority of commits classified as bug fixes contain changes that are irrelevant for

6Churned lines consists of added, deleted and changed lines.

6.5. MINIMIZING FIXES WITH DELTA DEBUGGING 97

Minimization Results

Size of Fix Fraction of Non- Failing
Bug Id (Lines) Comment Lines Test Only All Tests

#114491 10 1.00 0.90 0.90
#114493 3 1.00 0.33 0.33
#137181 66 0.94 0.64 0.86
#157509 310 0.90 0.05 0.63
#159334 58 1.00 0.31 0.36
#177314 10 0.90 0.20 0.50
#179068 173 0.91 0.03 0.50
#181654 23 0.96 0.78 0.96
#181834 14 0.93 0.07 0.36
#193555 115 0.97 0.01 0.01
#194364 5 1.00 0.60 0.80
#203402 3 1.00 0.33 1.00
#203841 490 0.97 0.52 0.65
#210682 8 1.00 0.75 0.75
#220584 4 1.00 1.00 1.00

� 88 0.96 0.43 0.64

˜ 14 0.97 0.33 0.65

Table 6.6: Minimization results for RHINO. For example, the fix for bug #177314
touches 10 lines, out of which 1 is a comment. Minimizing with the failing run only
removes 7 more lines, whereas when considering the whole test suite, only 4 lines can
be removed. Overall, if minimization uses only the failing test, DELTA DEBUGGING
considers the majority of lines irrelevant for fixing the bug.

98 CHAPTER 6. MINING BUG BENCHMARKS

Minimization Results

Size of Fix Fraction of Non- Failing
Bug Id (Lines) Comment Lines Test Only All Tests

#34925 79 0.89 0.48 0.48
#36803 7 0.43 0.14 0.14
#37739 4 0.75 0.75 0.75
#39993 178 0.80 0.49 0.49
#42993 63 0.97 0.02 0.02
#43033 5 1.00 0.80 0.80
#47754 7 0.86 0.29 0.29
#49457 11 1.00 0.64 0.64
#49638 6 1.00 1.00 1.00
#51320 43 0.91 0.67 0.67
#51322 6 0.83 0.67 0.67
#53981 8 0.25 0.12 0.12
#53999 4 1.00 0.50 0.50
#54421 27 1.00 0.59 0.59
#55341 1 1.00 1.00 1.00
#60015 5 0.80 0.60 0.60

Table 6.7: Minimization results for ASPECTJ (1/2). The remaining results can be
found in Table 6.8.

6.5. MINIMIZING FIXES WITH DELTA DEBUGGING 99

Minimization Results

Size of Fix Fraction of Non- Failing
Bug Id (Lines) Comment Lines Test Only All Tests

#61536 15 0.93 0.60 0.60
#62642 18 0.94 0.22 0.22
#64069 23 0.83 0.35 0.35
#64331 23 0.96 0.57 0.61
#65319 41 0.88 0.59 0.61
#67774 4 0.75 0.50 0.50
#68991 17 1.00 1.00 1.00
#69459 11 1.00 0.82 0.82
#70619 10 0.80 0.90 0.90
#71377 55 0.82 0.55 0.55
#72157 7 0.86 0.71 0.71
#72528 74 0.73 0.22 0.32
#72531 20 0.85 0.60 0.60
#76096 12 0.75 0.50 0.50
#80249 86 0.81 0.29 0.29
#87376 6 1.00 0.83 0.83

#173602 2 1.00 0.50 0.50

� 26 0.86 0.56 0.56

˜ 11 0.88 0.59 0.60

Table 6.8: Minimization results for ASPECTJ (2/2). The median bug has 44% of
irrelevant lines.

100 CHAPTER 6. MINING BUG BENCHMARKS

fixing the bug. To measure the extent of the problem, we compare the fraction of
lines deemed relevant for the fix to the fraction of non-comment lines (columns
three and five in Tables 6.6 and 6.7): For both projects, DELTA DEBUGGING
identifies roughly one third of the changed lines as irrelevant which is a consid-
erable fraction. The discussion at the end of this section presents ideas how to
reduce the amount of noise.

Test Function To evaluate the effect of including all tests in the test function, we com-
pare median values from columns four and five. For RHINO, using only the fail-
ing test causes roughly one third of the median minimized fix more lines to be
removed than when using all tests. We conclude that for RHINO it is very impor-
tant to use the whole test suite in the test function. Otherwise, DELTA DEBUG-
GING identifies lines as irrelevant that are actually relevant for the correctness of
the fix. In comparison, for for ASPECTJ the results are almost identical, indicat-
ing that the regression tests provided by the developers are of high quality. This
confirms our previous observations that the ASPECTJ team puts more emphasis
on project maintenance and test quality.

To validate the results of the minimization, we investigated a sample of the bugs
included in the study. We chose bugs for which including all tests made a strong dif-
ference, and bugs that showed a large overall minimization. Since understanding the
effects of a fix requires a lot of human effort, we restricted ourselves to a sample size
of four bugs split evenly over both projects:

ASPECTJ #42993 & #80249 For both bugs, DELTA DEBUGGING is able to signifi-
cantly reduce the number of lines. The fix for bug #42993 contains large blocks
of changes that seem to deal with optimizations made by the compiler. These
optimizations seem to have no influence on the remaining tests and therefore are
deemed irrelevant. For bug #80249 the commit contains a number of changes
that implement a new feature that is unrelated to the bug. These lines are re-
moved by DELTA DEBUGGING.

RHINO #157509 & #203402 The fix for bug #157509 is concerned with parsing a
number of special characters. The failing test only contains one of those charac-
ters. Hence, DELTA DEBUGGING removes the code for the remaining characters,
when using only the failing run. However, other tests in the test suite contain
more of the special characters and therefore DELTA DEBUGGING removes much
fewer lines. In the case of bug #203402, one line of the fix replaces the values of
variables with constants (see Figure 6.8). This line is identified as irrelevant by
DELTA DEBUGGING as the failing run has the same values as the constants for

6.5. MINIMIZING FIXES WITH DELTA DEBUGGING 101

1 < generateCodeFromNode(child, node, trueLabel, falseLabel);
2 < generateCodeFromNode(child.getNext(),
3 < node, trueLabel, falseLabel);
4 ---
5 > generateCodeFromNode(child, node, -1, -1);
6 > generateCodeFromNode(child.getNext(), node, -1, -1);

Figure 6.8: The fix for bug 203402. If DELTA DEBUGGING only relies on the failing
run, the first line is deemed irrelevant since the failing run has−1 for both trueLabel
and falseLabel.

the variables. Thus, the failing run actually is too imprecise to fully capture the
effects of the bug.

Overall, our manual investigation revealed no misclassified lines, which indicates
that our implementation is correct and produces reliable results. In the next section, we
discuss general threats to the validity of our results.

Threats to Validity

As any empirical evaluation, the results of our experiments are subject to threats to
validity:

Threats to external validity concern our ability to generalize our results. The scope
of our study is limited as it only includes 45 bugs of two different projects. Also,
the way we selected bugs introduces a bias towards projects that use version
archives, bug repositories and automated tests. Thus, we cannot claim that our
results are generalizable to all projects.

Threats to internal validity concern our ability to draw conclusions about the con-
nections between our independent and dependent variables. DDCHANGE, the
implementation of DELTA DEBUGGING used in our experiments has been used
in several different projects. Thus, we believe that it is sufficiently mature to be
useful. However, it may still be the case that our implementation contains errors
that affect the correctness of our results. To counter this threat, we have manually
investigated a subset of the bugs and found no obvious errors.

Threats to construct validity concern the adequacy of our measures for capturing de-
pendent variables. In our experiments, the sole dependent variable captured is

102 CHAPTER 6. MINING BUG BENCHMARKS

the number of lines affected by the minimized fix. We believe that this is an ad-
equate measure to capture the size of a fix. More fine-grained processing would
allow to minimize a fix on lower levels of abstraction, for example on byte code
level. However, we believe that using single lines as granularity is the best op-
tion, as many lines in a program represent logical entities (for example method
calls, boolean queries) that should not be split further.

Conclusions

The results of our experiment show that for the investigated sample roughly 30% of the
changed lines are not required to fix the bug. Due to the nature of our minimization
technique, our sample is biased towards bugs with associated test cases. However, we
make no requirements regarding the structure or the location of a fix. This gives us
reason to believe that the ratio of irrelevant lines in our experiments is comparable to
other bugs in the repository, and possibly also in other projects.

Overall, the ratio of irrelevant lines is considerable. The root cause is the imperfect
heuristic to identify bug fixes, which is also used in other approaches [124]. The main
conclusion of our results is that this technique should be used carefully and the results
need to be analyzed carefully. For IBUGS, we have put our results online and advise
researchers to only use the minimized fixes.

In the future, we need more reliable approaches to identify fixes in version archives.
Possible ways to approach this problem include the following:

Manual Investigation One way to remove irrelevant lines is to manually minimize
each potential fix. However, for large repositories and fixes, this clearly is too
much effort.

Minimization Another option is to rely on minimization techniques as proposed in
this section. However, since minimization requires an oracle, this approach al-
ways produces samples biased towards bugs with automated tests.

Explicit Linking The best solution would be to improve the development process such
that linking no longer needs to rely on heuristics. For example, the JAZZ platform
[43] provides means to explicitly link a bug report to a transaction in the version
archive. However, it may still be the case that a developer misuses this feature,
thereby creating spurious links that again introduce irrelevant changes.

The next section presents work by other researchers that compare IBUGS to similar
bug data sets and investigate whether the sample of bugs contained in the repository is
biased or not.

6.6. BIASED DATA SETS 103

6.6 Biased Data Sets

IBUGS only includes a subset of all bugs that occurred in the history of each subject.
This is due to several requirements a bug has to fulfill to qualify for the repository.
For example, many bugs cannot be linked to transactions at all. Also, some bugs are
not included because the source code of the revision cannot be compiled. As a conse-
quence, the set of bugs in IBUGS is only a sample of all bugs. Hence, this sample may
be biased, i.e. the bugs in the sample differ significantly from the remaining bugs. In
that case, the results of an evaluation performed on the sample are not generalizable to
all bugs in the subject. To judge the quality of IBUGS as a benchmark, we would like
to know whether the sample of bugs for the subjects is biased or not.

Other researchers recognized the problem of biased samples in bug data sets. In
recent work, Bird et al. [12] investigate the bias of several bug data sets mined from
history, among them the ASPECTJ dataset. The results of their study give important
insights on the quality of the ASPECTJ dataset, which is why we present a summary of
their findings in the following sections.

6.6.1 Bug Features

To evaluate whether a bug benchmark is biased, Bird et al. compare the set of bugs
included in a benchmark to all bugs available for the program. To be able to compare
bugs, Bird et al. introduce a set of bug features that measure different aspects of both
the development process and the bug itself. These features are then used to compare
the sample of each subject against the whole set of bugs.

The whole set of bugs available for a subject s is denoted as B. The set of bugs
included in the dataset for a subject is denoted as Bi. Obviously, Bi is a subset of B.
The question is whether Bi is a representative subset of the bugs in B. To investigate
this, Bird et al. compare the distribution of several bug features in B and Bi. If Bi is
a representative sample of B, there should be no statistically significant differences in
the two distributions.

For the bugs in B∩Bi, the fix is unknown. The selection of bug features therefore
has to be restricted to features that are known for all bugs. In their work, Bird et al.
examine the following features:

Severity is a feature that classifies the importance of a bug. Developers assign a sever-
ity level as soon as a bug is confirmed. Typical values for severity levels are
blocker, minor and trivial. Bird et al. argue that the severity level is
an important bug feature because developers are more interested in fixing severe

104 CHAPTER 6. MINING BUG BENCHMARKS

Hypotheses

Subject Total Bugs Linked Bugs Severity Experience Verified

ECLIPSE-B 24 119 10 017 X X X
ECLIPSE-Z 113 877 34 919 X X X
APACHE 1383 686 X X z
NETBEANS 68 299 37 498 N/A X X
OPENOFFICE 33 924 2754 N/A X X
GNOME 117 021 45 527 X X z
ASPECTJ 1121 343 z z z

Table 6.9: Subjects used in the bias evaluation presented by Bird et al. [12]. The
right side shows evaluation results for different hypotheses. Each entry lists whether a
hypothesis for a subject was accepted (X) or rejected (z).

bugs. Hence, the sample set Bi should contain the same proportion of severe
bugs as found in B.

Experience measures a developer’s background in fixing bugs. Bird et al. approximate
experience of a developer d at time t as the number of bugs d fixed prior to t.

Verification is a binomial variable indicating whether or not a bug is verified after it
has been resolved. This feature captures the process a bug goes through. Severe
bugs generally receive more attention and hence are more likely to be verified.

To gather the data required to measure these features, Bird et al. use publicly avail-
able bug databases for all benchmark subjects included in the study. In their study,
Bird et al. examine two variants of the ECLIPSE dataset [124], the ASPECTJ subject of
IBUGS, and four additional projects for which they use their own tool to identify fixes.
The left part of Table 6.9 shows the total number of bugs and the number of linked bugs
for all projects. In this setting ASPECTJ is the smallest subject in terms of the number
of bugs.

6.6.2 Results
To evaluate whether the bugs in Bi differ from those in B, Bird et al. formulate the
following three hypotheses based on the bug features introduced above:

Severity There is a difference in the distribution of severity levels between B and Bi.

6.7. CONCLUSIONS 105

Experience Bugs in Bi are fixed by more experienced people than those who fix bugs
in B.

Verified Bugs in Bi are more likely to have been verified than the population of B.

For every subject, Bird et al. test each of the three hypotheses. In order for a subject
to be unbiased, all three hypotheses need to be rejected. The results of the evaluation
are summarized in columns “Severity”, “Experience” and “Verified” of Table 6.9. Each
entry lists whether a hypothesis for a subject was accepted (X) or rejected (z). In
two cases (marked as N/A), the subjects did not provide severity data and hence the
hypotheses could not be evaluated.

The results show that for ASPECTJ, all three hypotheses were rejected. This means
that there is no statistically significant difference between bugs in B and Bi in terms of
severity, experience of developers and verification status. In contrast, all of the other
five subjects showed a strong bias for at least two of the investigated features. Bird et
al. summarize:

The conclusion from this in-depth analysis is that there is no bias in the
IBUGS ASPECTJ data set with regard to the bug features examined. This
is an encouraging result, in that it gives us a concrete data set that lacks
bias (along the dimensions we tested).

6.7 Conclusions
The version history of a project collects all past successes and failures. In this section
we presented IBUGS, an approach that leverages the history of a project to automati-
cally extract benchmarks for bug localization tools. We have applied our approach to
two different projects and mined a total of over 380 bugs. In contrast to similar repos-
itories, IBUGS also identifies tests associated with a fix, and provides an infrastructure
to execute the test suite in each revision. Thus, IBUGS is useful for both static and
dynamic approaches that want to perform an evaluation using realistic bug data.

IBUGS makes several assumptions about the structure of commits and log messages
and uses heuristics to identify fixes. Due to these assumptions, IBUGS sometimes in-
correctly classifies changes (or parts of a commit) as fixes. To investigate the extent
of this issue, we have implemented a minimization algorithm that relies on associated
tests and the test suite to identify irrelevant changes. In our experiments, roughly one
third of the lines changed by 48 fixes in two projects are irrelevant, which is a consid-
erable amount of noise. In the absence of a more reliable technique to identify fixes,

106 CHAPTER 6. MINING BUG BENCHMARKS

we recommend using minimized fixes obtained by running DELTA DEBUGGING on a
subset of the bugs in IBUGS.

Despite this problem we believe that IBUGS can be of great value to the research
community. The bugs collected by IBUGS are real bugs as they occur in real projects.
Also, work by other researchers [12] shows that the ASPECTJ subject is the only dataset
that contains an unbiased sample of bugs. Therefore, results obtained by using IBUGS
are more likely to transfer to real projects than results obtained from other repositories
such as SIR [37] or the ECLIPSE PROMISE dataset [124].

To allow other researchers to benefit from our work, the dataset is publicly avail-
able. In addition, we also provide a fully-fledged infrastructure for reconstructing,
building, and testing the versions with and without bugs (see the step-by-step guide in
Figure A.1 on page 162).

The IBUGS dataset is a first step towards the “huge collection of software bugs” that
was demanded by Spacco et al. [96] at the Bugs workshop at PLDI 2005. The history
of open source projects offer a huge number of bugs which wait to be discovered by
researchers.

Chapter 7

Mining Models for Typestate
Verification

In the last decade, we have witnessed a tremendous increase in the amount and the
quality of available open source software. There are hundreds of thousands 1 of open-
source projects, many of which offer well-tested libraries. Such projects are of interest
to project managers, since they can help a project avoid reinventing the wheel. The
downside of using third-party libraries is that it often requires a considerable amount
of effort to learn the correct usage. Some classes have a rather complex interface, which
makes them easy to misuse.

To avoid bugs due to incorrect usage of classes, researchers have devised a num-
ber of different techniques. One well-known approach is called typestate verification,
which statically verifies that the usage of a class C can not raise an exception at runtime.
To verify a class C, the typestate verifier requires a typestate automaton for C, which
relates transitions in the state of C to method calls. In particular, a typestate automa-
ton contains special transitions for method invocations that raise exceptions. Recent
approaches for typestate verification [40] are able to analyze projects with up to four
thousand methods in minutes. In a few years, typestate verification will be fast enough
to be built into modern IDEs.

Unfortunately, almost no projects provide typestate automata (or any other form
of machine-readable specification). However, many of them have executable usage
examples, for instance in the form of a regression test suite or example programs. In
this chapter, we investigate the usage of object behavior models as input to a static

1To date, Sourceforge.net (the biggest open-source project hoster) hosts over 230000 projects.

107

108 CHAPTER 7. MINING MODELS FOR TYPESTATE VERIFICATION

(a) Java Program (b) Initial Execution (c) Initial Model (d) Additional Executions (e) Enriched Model

open

close

open

close

close

open open

↯
Figure 7.1: TAUTOKO overview. TAUTOKO takes an executable JAVA program (a)
and observes its execution (b) to extract an initial typestate model (c). It then generates
additional executions (test cases) to cover missing model transitions (d). The additional
observed behavior results in an enriched specification (e).

typestate verifier. If mined from a regression test suite, object behavior models can
make previously hidden usage rules explicit and provide them in a format suitable for a
typestate verifier. Since both approaches are based on finite state automata, converting
object behavior models into typestate automata is straightforward.

Unfortunately, in practice, most regression test suites do not provide enough cover-
age to produce meaningful and complete automata. The reason is that most developers
only test core functionality with positive usage examples. Only few test suites also
provide tests for negative examples that trigger exceptions, and they usually do not ex-
plore all statically possible ways to use a class. However, to mine typestate automata it
is vital to have good coverage and tests that trigger exceptions. Otherwise, the verifier
may produce too many false positives and miss calls that cause exceptions.

To solve this problem, we propose to use test case generation to explore new be-
havior and enrich existing specifications. We have implemented our approach in a
tool called TAUTOKO 2, which builds upon the ADABU tool presented in the previ-
ous section. Our approach is as follows (see Figure 7.1): First, we use ADABU to
mine object behavior models from the execution of regression test suites. The initially
mined model contains only observed transitions (Section 7.2). To enrich the specifica-
tion, our TAUTOKO tool generates test cases to cover all possible transitions between
all observed states, and thus extracts additional transitions from their executions (Sec-
tion 7.3). These transitions can either end in legal states, thus indicating additional legal
interaction; or they can raise an exception, thus indicating illegal interaction. Discov-
ering such illegal interactions is the biggest advantage of our approach, as exceptional
behavior is rarely covered by conventional executions or tests.

To assess the benefits of enriched specifications, we put them to use in static type-
state verification. The success of typestate verification depends on the completeness

2“Tautoko” is the Mãori word for “enhance, enrich”.

7.1. TYPESTATE ANALYSIS 109

of the given model: The more transitions are known as illegal, the more bugs can be
reported; and the more transitions are known as legal, the more likely it is that addi-
tional transitions can be treated as illegal. We expect that our enriched specifications
are much closer to completeness than the initially mined specifications; and therefore,
the static verifier should be much more accurate in its reports.

This hypothesis is confirmed by an experiment (Section 7.4): On a sample of
800 bugs seeded into six Java subjects, we show that our static typestate verifier fed
with enriched models reports significantly more true positives, and significantly less
false positives than when being fed with the initial models.3

To show that object behavior models can actually help developers to avoid misusing
classes, we have developed a plugin for ECLIPSE that runs typestate analysis whenever
the developer saves a new version of a file.

In the remainder of this chapter, we introduce the typestate miner (Section 7.2),
explain our technique for test case generation (Section 7.3), present the results of our
evaluation (Section 7.4), discuss related work (Section 7.5) and conclude with a sum-
mary and ideas for future work (Section 7.6).

Parts of this chapter are accepted for publication at the 2010 International Sympo-
sium on Software Testing and Analysis [27].

7.1 Typestate Analysis
The term typestate was introduced by Strom et al. [99]. In object-oriented languages,
the type of an object encompasses the set of all methods that can be invoked on the
object. In contrast, the typestate enables only a subset of all operations based on the
current state of the object. Transitions between states occur by invoking enabled meth-
ods, possibly enabling a different set of methods. Whenever a disabled method is
invoked, an error occurs and the typestate switches to an error state.

A typestate automaton (or simply typestate) is a finite state automaton which en-
codes the typestate sequence of a class. As an example, consider Figure 7.2, showing
the typestate for the SMTPProtocol class from the ristretto [35] library. After ini-
tialization, an SMTPProtocol object is in its initial state 0; calling openPort()
brings it into state 1; and calling quit() from this state brings it back into the initial
state 0.

As explained above, invoking a method m that is disabled according to the type-
state automaton causes a transition labeled with m to a special state ex. In our ex-
ample, this is the case if quit() is invoked from the initial state 0, which raises a

3In the remainder of this chapter, we will use the terms “specification” and “model” interchangeably.

110 CHAPTER 7. MINING MODELS FOR TYPESTATE VERIFICATION

start

0

 <init>()

ex

 quit()

1

 openPort() quit()

Figure 7.2: Typestate for SMTPProtocol. The failing call to quit() shows as a
transition to ex.

NullPointerException. A static typestate verifier can take this very specifica-
tion and check a client for conformance; if it is possible to invoke quit() while still
being in the initial state 0, the verifier will flag an error.

7.2 Mining Typestate Automata
How can we mine typestate automata from program executions? When comparing
them to object behavior models, we immediately see that they are closely related. Both
types of models are finite state automata where transitions are labeled with the names
of methods. The only differences between them are the way states are identified, and
the representation of exceptions:

States In typestate automata, states do not have a label; in object behavior models,
they are labeled with the values of fields and inspector methods.

Exceptions Typestates represent failing method calls by transitions to a special state
ex. In object behavior models, information about exceptions is stored as meta
data in the transition labels.

In a sense, a typestate automaton is simply an object behavior model with unla-
beled states. Hence, an algorithm to convert behavior models into typestate automata
is straightforward and essentially consists of the following three steps:

7.3. ENRICHING TYPESTATE AUTOMATA 111

1. The automaton is initialized with two states labeled start and ex.

2. Each state s of the behavior model is assigned a unique number n, and a corre-
sponding state labeled n is added to the typestate.

3. For each invocation of a method m between two states si and s j, a new transition
labeled with m is added to the typestate: If the invocation raised an exception,
the transition is added from si to ex, otherwise it is added from si to s j.

With this conversion algorithm, we can use ADABU to mine object behavior mod-
els, and afterwards convert them to typestate automata.

7.3 Enriching Typestate Automata
To yield precise results and few false positives during verification, a typestate needs to
be complete, i.e. it needs to contain all relevant states and transitions for all methods
in all states. When we first began our work, we ran TAUTOKO on a set of projects and
mined typestates from the test suite executions for a set of interesting classes. Unfor-
tunately, for the investigated classes, we found that most typestates only contained a
fraction of all transitions. In particular, most typestates were missing transitions for
failing methods, which renders mined typestates useless for typestate verification.

We believe that the lack of observed failures is an issue that is common to many
projects—and thus affects every approach for dynamic specification mining:

• Most bugs due to wrong usage of a class raise exceptions and are therefore easy
to detect and fix. Thus, a specification miner will seldom record misuse and
exceptions when tracing normal application executions.

• Unfortunately, we observed the same problem of missing exceptions when trac-
ing test suites. Most developers do not test for exceptions. One explanation
for this is that triggering an exception often only covers a few lines, and hence
developers concentrate on tests for normal behavior.

• To generate a complete model, lots of tests are required. Usually, developers do
not have enough time to write so many tests. Also, developers tend to skip tests
which they consider to be too obvious or are convinced that they should work.

One way to approach this problem is to use test case generation to create new tests
that execute previously unknown states and transitions. The general idea of combining
specification mining with test case generation was first described by Xie and Notkin

112 CHAPTER 7. MINING MODELS FOR TYPESTATE VERIFICATION

1 data(),authSend(),mail(),
rcpt(),authReceive(),helo()

0

 quit() 2

 auth()

 openPort()

 quit()

start

<init>()

Figure 7.3: Initial model of the SMTPProtocol class.

[114]. In this work, we extend the original idea to generate tests specifically targeted
at enriching typestate automata. There is a huge variety of test generation strategies,
ranging from complex static analyzes such as symbolic execution [104] to simple ran-
dom testing techniques [21, 75]. In this work, we use a test generation strategy that
generates new tests by mutating an existing test suite.

Our technique works as follows: In the first step, TAUTOKO executes the test suite
and mines a model for the class under test (CUT). This model is called the initial model.
After that, it attempts to generate mutations to the test suite such that all methods
are executed in all states of the initial model. TAUTOKO then applies each mutant in
isolation and mines new models from the execution of the modified test suite. Finally,
the initial model and all new models are combined into the model for the CUT.

To demonstrate the effect of TAUTOKO, consider Figure 7.3 which shows the initial
model of class SMTPProtocol mined from an execution of the project’s test suite. In
contrast, Figure 7.4 shows the enriched model generated by TAUTOKO after evaluating
all mutations. Not only does the enriched model contain several additional transitions,
but it now also explicitly lists the exceptional behavior in its ex state. We will use these
models to illustrate the techniques presented in this section.

Mutant generation starts by statically determining the set of methods that belong
to the CUT or one of its super types. For every such method m, TAUTOKO tries to
generate mutations such that m is invoked in all states of the initial model. To invoke
method m in state s, TAUTOKO will either add an invocation of m, or suppress one
or more existing method invocations. The choice of adding or deleting invocations

7.3. ENRICHING TYPESTATE AUTOMATA 113

1
 data(),authSend(),

 getHostName(),getService(),
 mail(),getState(),rcpt(),authReceive(),

 reset(),helo()

0

 dropConnection(),
 quit()2

 auth()

ex

 startTLS()

 openPort()

 dropConnection(),getHostName(),
 getService(),getState()

 noop(),startTLS(),authSend(),
 auth(),quit(),

 authReceive(),reset(),
 helo()

 dropConnection(),
 quit()

 getHostName(),
 getService(),

 getState()
start

<init>()

Figure 7.4: Enriched model of the SMTPProtocol class. Compare with the initial
model in Figure 7.3.

depends on the number and types of the parameters m expects.
If m only requires a reference to the receiver object, TAUTOKO simply adds a new

call to m right after a method call that caused a transition to s in the initial model. For
example, in Figure 7.3, to invoke method dropConnection() in state 1, TAUTOKO
adds a call to dropConnection() right after the call to openPort() that causes
the transition to state 1.

A problem arises if m expects parameters beyond the receiver object. In this case,
we need to provide values for the parameters in order to call m. Our approach is to reuse
existing invocations of m. If the initial model contains an invocation of m in another
state t, TAUTOKO suppresses method calls such that the call occurs in state s instead.
For example, to call method authSend(byte[]) in state 0, we can suppress the
invocation of openPort() that causes the transition from state 0 to 1.

The advantage of this approach is that it is simple to implement and works also for
complex parameters that are difficult to generate. However, our approach is unable to
handle methods with parameters that are never invoked by the program. To call such

114 CHAPTER 7. MINING MODELS FOR TYPESTATE VERIFICATION

Subject Type Description

javamail SMTPTransport Sending mails via SMTP.
javax.security LoginModule User authentication.
ristretto SMTPProtocol Sending mails via SMTP.
signature Signature Handling of digital signatures.
socket Socket Network communication.
zip ZipOutputStream File compression with zip algorithm.

Table 7.1: Subjects used in the case studies. The first three subjects are publicly
available libraries, whereas the remaining classes are part of the JAVA standard API.

methods, we would need more generic test generation schemes [75, 103]. Still, our
evaluation results show that even with this simple approach, enriched specifications
already contain much more information and are likely to be much more useful in any
verification setting.

Algorithm 2 shows pseudo code for the procedure to enrich a typestate for class
c. Input to the algorithm consists of the test suite, the initial typestate and the set of
methods that can be called on c. The main loop of the algorithm (lines 3-23) iterates
over all states s of the initial typestate. For every method m that expects parameters
other than the receiver (lines 7-14), TAUTOKO finds all invocations of m in the initial
typestate (line 8), tries to find a path that leads to s, and creates a mutated test that
suppresses all method calls along the path (line 12). If the sole parameter to m is the
receiver (lines 16-20), TAUTOKO finds all transitions after which the object is in state
s (line 16) and generates a new test that invokes m right after the call that caused the
transition (line 18). The final loop (lines 25-28) executes all tests, mines new typestates
from each execution, and merges the new typestate into the current version. After the
loop has finished, the procedure returns the enriched typestate.

7.4 Experimental Evaluation

In this section, we investigate how well TAUTOKO works in practice. Our goal is to
compare the usefulness of enriched models versus initial models as well as manually
generated complete models, and thus investigate the benefits and potential drawbacks
of our approach.

7.4. EXPERIMENTAL EVALUATION 115

Algorithm 2 Enrich Typestate Automaton
Input: Test Suite T = (t1, . . . , tn)
Input: Initial typestate Minit = (Vinit,Einit)
Input: Methods to investigate M
Output: Enriched Typestate Mfinal = (Vfinal,Efinal)

1: procedure ENRICH(T,Minit)
2: T ′ = {}
3: for all s ∈Vinit \{start} do
4: Ms←{Methods invoked in s}
5: for all m ∈ {M \Ms} do
6: if hasParameters(m) then
7: Sm←{s ∈Vinit | ∃(s,s′,n) ∈ Einit : m = n}
8: for all u ∈ Sm do
9: p← getPath(u,s)

10: if length(p) < ∞ then
11: T ′.add(suppressAllCalls(T, p))
12: end if
13: end for
14: else
15: Ts←{(s,s′,n) ∈ Einit}
16: for all t ∈ Ts do
17: T ′.add(addCall(T, t,m))
18: end for
19: end if
20: end for
21: end for
22: Mfinal←Minit
23: for all t ∈ T ′ do
24: Mnew← run(t)
25: Mfinal←merge(Mnew,Mfinal)
26: end for
27: end procedure

116 CHAPTER 7. MINING MODELS FOR TYPESTATE VERIFICATION

7.4.1 Subjects

To evaluate the effectiveness of TAUTOKO, we have applied it to six different JAVA
subjects listed in Table 7.1. Altogether, we chose 6 different classes for which we
generated and evaluated typestate automata. Three classes (upper half in Table 7.1) are
part of publicly available libraries, whereas the remaining classes are part of the JAVA
standard API. In terms of domain, we can divide the subjects into security (javax.
security and signature) related and I/O (javamail, ristretto, socket
and zip) related.

We chose our subjects by investigating a subset of open-source projects from big
hosting sites such as Sourceforge and java.net, as well as classes from the JAVA
standard API. We included subjects that met the following criteria:

1. The API documentation of the class explicitly or implicitly mentions restrictions
on the order of method invocation. In other words, we made sure that our subjects
are complex enough to yield interesting specifications.

2. As a source for test runs, we solely rely on executions as provided by the de-
velopers of the subject class. This is to avoid introducing additional bias with
self-constructed test-cases. For the first three subjects in Table 7.1, we use sam-
ple executions and regression test suites provided by the respective projects. We
made sure that these runs cover all essential methods of the subject class. For
the JAVA standard classes in our evaluation, we use conformance tests of the
APACHE HARMONY project. This project aims at providing an open-source al-
ternative to the JAVA standard classes, and therefore has a sophisticated test suite
to ensure compliance with the original implementation by SUN.

3. To conduct the evaluation using the static typestate verifier, we needed an addi-
tional application for each subject that uses the subject class in its implementa-
tion. To find such applications, we searched the web using koders.com and
google code search engines. To qualify for our evaluation, a project had to
offer a minimum level of maturity and provide a test run that executes the subject
class (See Section 7.4.4 for a rationale).

We are aware that our selection process creates a bias towards complex classes
and well-tested projects. However, the purpose of this evaluation is not to evaluate
the usage of mined specifications in general. Instead, we study how our approach for
enriching mined specifications improves quality and applicability of the specifications.
Section 7.4.5 provides a detailed discussion of threats to the validity of our results.

7.4. EXPERIMENTAL EVALUATION 117

Original model Enriched model

Transitions Transitions

Subject Mutations States Regular Fail States Regular Fail

javamail 61 6 5 0 13 48 2
javax.security 9 6 5 0 6 14 6
ristretto 55 5 11 0 5 33 9

signature 23 5 30 8 5 39 13
socket 540 11 35 2 17 251 55
zip 145 11 24 5 14 62 18

Table 7.2: Results of the quantitative evaluation. Column “Fail” gives the number of
transitions that raise an exception. Overall, enriched models have more transitions, and
many more exceptional transitions.

7.4.2 Quantitative Evaluation

In this section, we provide a quantitative evaluation of our technique for enriching
mined specifications. For every subject, we mine an initial model (see Section 7.2) from
the execution of the test suite. Afterward, we use TAUTOKO to mutate the test suite and
mine an enriched model. To quantify the difference between the two versions, we count
the number of states and the number of transitions. A transition in this context means a
method call. Since we are mostly interested in exceptional behavior, we also measure
the number of exceptional transitions. The results of the quantitative evaluation are
summarized in Table 7.2.

For SMTPProtocol, we also provided the initial model in Figure 7.3 and the en-
riched version in Figure 7.44. Both versions have the same number of states. However,
the enriched version has about three times as many transitions. Also, the initial model
has no exceptional transitions, compared to 9 transitions in the enriched version.

Applied to all subjects, TAUTOKO discovers new states for three out of six subjects,
and significantly increases the number of transitions for all of them. None of the initial
models for the first three subjects has exceptional transitions, hinting at a low quality
of the test suite. This is a general trend we observed in many projects, as discussed
earlier. For each of those subjects, TAUTOKO discovers new transitions that trigger
exceptions. Initial models for the JAVA API classes already contain transitions to the
error state. Obviously, the conformance tests of the HARMONY project also test for

4Models for the remaining subjects are available online at the website given in Section 7.6.

118 CHAPTER 7. MINING MODELS FOR TYPESTATE VERIFICATION

Transitions

Subject States Regular Fail

ristretto 7 86 29
signature 5 48 12
zip 6 31 9

Table 7.3: Manually specified typestate models.

expected negative behavior. For the API subjects, TAUTOKO significantly increases
the number of both exceptional and normal transitions. The largest relative increase is
observed for socket, with a total of 55 exceptional transitions compared to only 2 in
the initial model.

Overall, applying TAUTOKO leads to larger models with significantly more transi-
tions. In the next section, we investigate if TAUTOKO also improves the quality of the
mined specifications.

7.4.3 Qualitative Evaluation

In this section, we take a look at how well the initial and enriched models reflect the
complete model of the class. To this end, we compared the mined models with complete
usage models. Since there are no models available for our subjects, we had to manually
create them. To create the models, we investigated the source code to build a mental
model that was translated into a typestate. In a few cases it was difficult to reliably
judge if a method could be called in a certain state. To clarify those cases, we wrote
small test cases that resolved the issue.

One problem with manual model generation is how to deal with unchecked excep-
tions. In JAVA, many instructions may cause null pointer dereferences or illegal array
accesses. Including transitions for all those exceptions would introduce a high degree
of non-determinism, which essentially renders the model useless. We therefore only
include transitions for checked exceptions.

Manually creating models involves a lot of human effort (which, of course, is why
we wanted to build TAUTOKO in the first place). We therefore restricted our eval-
uation to only three subjects, namely SMTPProtocol, ZipOutputStream and
Signature. In total, we spent over 10 hours on creating the specifications, where
most of the time was spent on SMTPProtocol, which is also the most complex. Un-
fortunately, the models are too large to depict them in this thesis. However, they are
available for download at the address given in Chapter 9. Table 7.3 lists structural

7.4. EXPERIMENTAL EVALUATION 119

details of the manually mined models.
To investigate whether TAUTOKO also improves the quality of the mined specifica-

tions, we compared initial and enriched models against the complete model:

ristretto The complete model has two more states than the initial and the enriched
models. The two additional states are related to sending mails, which requires
a call to initiate the mail, followed by several calls to set receivers, and a final
call to send the mail. No state-based specification miner can detect this protocol,
since relevant state information is transmitted to the server and is not kept locally.
Apart from this, all states and transitions of the initial model are also reflected in
the complete model.

The enriched model adds twenty valid transitions and nine exceptional transi-
tions. Two exceptional transitions are invalid according to the complete model.
They are caused by limitations of the mock server, which is used in the test suite
of SMTPProtocol. This shows a limitation of our completion technique: TAU-
TOKO may break the boundaries of the test suite and generate invalid transitions.

signature The initial and the enriched models have the same number of states. All
transitions in the initial model are in accordance with the complete model. TAU-
TOKO adds nine additional transitions, five out of which are exceptional tran-
sitions. All transitions are also reflected in the complete model. In total, the
enriched model misses six transitions. This is due to the way TAUTOKO injects
and suppresses method calls, which prevents some methods from being called in
certain states.

zip The complete model has much fewer states than both the initial and the enriched
model. This occurs because states in the model miner also include values for
fields that are irrelevant for the usage of the object, such as fields comment or
method. The initial model essentially contains the structure of the complete
model twice, once with method set and once without. The enriched model con-
tains additional states with comments. Despite the blow-up, the mined mod-
els are still useful since they capture all exceptional transitions of the complete
model.

In summary, we found that the specification miner in combination with TAUTOKO
generates valid specifications compared to manually deduced models. Like any test
case generation technique, TAUTOKO cannot guarantee to cover all possible transitions;
and this limitation also holds for the present subjects. Section 7.6 presents ideas for
future work to improve coverage. In one case, TAUTOKO generates transitions that do

120 CHAPTER 7. MINING MODELS FOR TYPESTATE VERIFICATION

not match the complete model. This is due to restrictions which are inherent to the
general technique of enriching models by manipulating an existing test suite.

7.4.4 Usefulness

Results of the previous sections show that applying TAUTOKO yields better specifica-
tions. However, we would also like to know if this improvement matters in practice.
To investigate this, we ran a static typestate verifier on a set of randomly generated
bugs and compared the results for initial and enriched models. For ristretto,
signature and zip, we also included complete models from the previous section.
The evaluation setting is summarized in Figure 7.5 and detailed in the following sec-
tions.

Experimental setting

Our experiment assumes the following situation: A developer starts building an appli-
cation and uses classes from a library l for the first time. To help the developer avoid
bugs due to incorrect usage of those classes, the IDE supports lightweight typestate
verification. Whenever the developer changes a method that uses classes of l for which
a specification is available, the IDE launches the typestate verifier. The verifier then
analyzes all changed methods and looks for incorrect usage of classes; if it finds a vio-
lation, it is presented to the user. Obviously, we would like to catch as many bugs (true
positives) and report as few false alarms (false positives) as possible.

To simulate the above situation in a controlled experiment, we take the following
steps:

1. For each subject used in the evaluation so far, we find an application that uses
the subject. We also require the application to provide a test suite or other means
to execute the program.

2. We use our mutation tool to simulate changes a developer might make to the
application. To this end, we generate mutants that randomly inject or suppress
method calls to instances of the subject class in the application.

3. For each mutated version, we execute the test suite of the application to classify
mutants. Mutants that raise an exception at runtime are bugs that we would like
a typestate verifier to detect. Mutants that do not raise an exception use the class
correctly, and therefore the verifier should not report a warning.

7.4. EXPERIMENTAL EVALUATION 121

(a) Class Client (c) Initial Model (d) Enriched Model

↯

open

close

open

close

close

open open

(e) Second Client (f) Mutated Client

(h) Error
Reports

(g) JFTA
 Static Typestate Verifier

(b) Tautoko
 Spec
 Miner

+

Figure 7.5: Evaluation overview. We take the client (a) of a class and use TAUTOKO (b)
to mine both the initial model (c) and the enriched model (d). We then take a second
client (e) of the same class and seed in a bug (f). The JFTA (see Section 7.4.4) static
typestate verifier (g) then produces error reports (h) for the mutated client using both
the initial model and the enriched model. Were available, we also include complete
models (see Section 7.4.3). We compare the error reports in terms of true positives and
false positives.

122 CHAPTER 7. MINING MODELS FOR TYPESTATE VERIFICATION

Subject Test Source # Tests Application

javamail Regression test suite 6 JVerify Binary Verifier
javax.security Regression test suite 5 Apache Jackrabbit
ristretto Regression test suite 5 Fin J2EE calendar server

signature Harmony compliance tests 16 opensc project
socket Harmony compliance tests 5 CRSMail Server
zip Harmony compliance tests 9 Huf 3.0

Table 7.4: Details about where tests came from and which applications were tested.

4. Finally, we run the verifier for each mutated version to analyze all methods
touched by the mutant and remember all reported violations. We use the gen-
erated mutants to measure how often the verifier points to a method invocation
that actually triggers an exception (true positive), and how often the verifier re-
ports a violation although the program runs without producing an error (false
positive).

The purpose of this experiment is to measure the effect of using enriched specifi-
cations as generated by TAUTOKO over using initial specifications produced by the test
suite. We therefore repeat step 4 with initial models generated by the test suite and
enriched models generated by TAUTOKO. For three subjects, we also include results
for the complete models created for the qualitative evaluation of Section 7.4.3.

We ran our evaluation for the same set of subjects used for the previous experi-
ments. Table 7.4 lists the test sources for generating models, as well as the names of
all applications used in the evaluation.

The JFTA Static Typestate Verifier

Unfortunately, existing typestate verifiers are either not released [40], or require ad-
ditional input [10]. We have therefore implemented our own typestate verifier called
JFTA. JFTA is a partially inter-procedural, flow- and context-sensitive typestate verifier
for JAVA classes. Input to JFTA consists of the program’s byte code, a set of typestate
automata, and a set of methods which are to be analyzed. In contrast to other tools
such as Plural [10], JFTA does not require the programmer to provide annotations of
the program code.

The core part of JFTA consists of a conservative dataflow analysis algorithm. Alias-
ing information is calculated using a demand-driven points-to analysis [98]. As the

7.4. EXPERIMENTAL EVALUATION 123

Initial model Enriched model Complete model

Subject Bugs Flagged Actual Flagged Actual Flagged Actual

javamail 5 0 0 4 3 n/a n/a
javax.security 3 0 0 2 1 n/a n/a
ristretto 28 0 0 25 15 21 19

signature 12 6 4 12 10 12 10
socket 49 2 2 48 47 n/a n/a
zip 23 19 14 19 18 22 19

Table 7.5: Enriched models show more true positives.

primary focus of JFTA is to execute quickly, the implementation uses several heuristics
that trade precision for speed:

• When analyzing a method, JFTA only follows method calls up to a certain (con-
figurable) depth. Thus, the analysis may miss method calls which potentially
causes false positives or negatives.

• Information of different paths through a method is merged together. Thus, the
analysis is path insensitive, which may cause false positives.

• Whenever the analysis is unable to determine the state of an object, it simply
assumes that the object can be in any possible state. This may again generate
false positives.

Due to the above heuristics, our approach is less precise than other tools such as the
approach presented by Fink et al. [40]. However, in our setting we are interested in the
effect of using enriched specifications rather than in absolute precision; and our results
thus are likely to generalize to all sorts of typestate verifiers. This is further discussed
in Section 7.4.5.

Results: True Positives

Table 7.5 summarizes the results for all changes that trigger exceptions. The six
columns list results using initial, enriched and complete models where available. Col-
umn Flagged lists the number of bugs for which the verifier flags a violation. Actual
gives the number of cases where the reported method call exactly matches the call that
raises the exception. For all numbers of reported errors, higher values are better.

124 CHAPTER 7. MINING MODELS FOR TYPESTATE VERIFICATION

The results show that, when using enriched models, the verifier pinpoints more vi-
olations than with the initial versions. For the first three subjects, initial models cannot
point to bugs since they do not contain exceptional transitions. For the remaining three
subjects, initial models also detect violations. For signature and socket, enriched
models detect considerably more violations. For zip, both versions report violations
for the same number of changes. However, enriched models more frequently point to
the method call that raises the exception.

Better performance of enriched models in finding violations comes as no big sur-
prise, as they include many more exceptional transitions than initial models. Still, the
increase is considerable and the difference is statistically significant according to a
paired-t-test with p=0.05.

For zip and signature, complete models yield slightly better results than en-
riched models. Thus for those two cases, models enriched by TAUTOKO are almost as
good as manually created specifications. However, for ristretto complete models
find 4 more bugs (19 compared to 15). This is due to the nature of the typestate miner,
which relies on the values of fields to capture an object’s state (see Section 7.4.3).
Even when using complete models, the verifier does not catch all bugs. This is due to
technical limitations of JFTA, such as the limited call stack depth.

subsubsectionResults: False Positives
Apart from finding errors, we would also like to have as few false positives as pos-

sible. To investigate the false positive rate of initial and enriched models, we repeated
the above experiment with changes that did not cause exceptions.5 For those changes,
the verifier should not output violations.

The results of this experiment are shown in Table 7.6. The columns “Initial” and
“Enriched” list the number of false positives for all types of models. For javamail
and signature, we observe significantly fewer false positives. For the remaining
subjects, the difference is smaller, but enriched models generally produce fewer false
positives. A paired-t-test yields a p-value of 0.0124, which tells us that enriched models
produce statistically significantly fewer false positives than initial models.

Using complete models again yields the biggest improvement for ristretto
with only seven false positives remaining. For the other two subjects, using manually
created models provides no benefits over using enriched models from TAUTOKO.

7.4.5 Threats to Validity
As any empirical study, the results of our experiments are subject to threats to validity.
We distinguish between threats to internal, external, and construct validity:

5We used coverage analysis to make sure that each change is actually covered.

7.4. EXPERIMENTAL EVALUATION 125

Models

Subject Changes Initial Enriched Complete

javamail 28 26 2 n/a
javax.security 4 4 2 n/a
ristretto 53 53 47 7

signature 29 12 0 0
socket 460 300 283 n/a
zip 30 26 18 15

Table 7.6: Enriched models show fewer false positives.

Threats to external validity concern our ability to generalize the results of our study.
We cannot claim that the results of our experimental evaluation are generaliz-
able. Our sample size is small; in total we investigate six subjects in twelve dif-
ferent applications. Also, our choice of subjects is biased towards more complex
classes of projects with executable regression test suites. Less complex classes
tend to generate only trivial models, and therefore TAUTOKO is unlikely to en-
rich them. However, applying TAUTOKO on such classes would not cause any
harm, since the enriched model always contains the initial model. In practice,
though, only specifications for classes that are complex enough to be misused
should be distributed.

Threats to internal validity concern our ability to draw conclusions about the connec-
tions between our independent and dependent variables. Our process of manu-
ally creating complete models in Section 7.4.3 may be subject to errors or bias.
When creating the models, we may have unintentionally left out states or tran-
sitions, which may influence our results. We therefore have used test cases to
distinguish ambiguities wherever necessary. In addition, we make the models
available at our website so that other researchers can investigate them (see Sec-
tion 7.6).

Threats to construct validity concern the adequacy of our measures for capturing de-
pendent variables. The last experiment uses our typestate verifier to compare
models in terms of their ability to detect errors. A potential problem exists be-
cause the typestate verifier may miss violations due to over approximations or
technical limitations. We may therefore be unable to measure the number of cor-
rectly identified violations for a specification. However, our evaluation uses the
same set of changes for both types of models. If over-approximations prevent the

126 CHAPTER 7. MINING MODELS FOR TYPESTATE VERIFICATION

verifier from detecting a violation, it will do so for both types. As our evaluation
focuses on the increase (or decrease for false positives), we believe that this is
no real threat for the results of this experiment.

7.5 Related Work
The idea of combining test case generation with specification mining was conceived
by Xie and Notkin [114]. They present a generic feedback loop framework where
specifications are fed into a test case generator, the generated tests are used to refine
the specifications, and the refined specifications are again given as input to the test case
generator. We extend this work by providing an implementation of the framework for
typestate mining, as well as an evaluation of how useful enriched specifications are for
a real-world application.

TAUTOKO uses techniques from several different areas of software engineering.
The following sections summarize related work in the fields of test case generation,
typestate verification, and specification mining.

7.5.1 Test Case Generation
There is a large body of work on test case generation, which is why we will limit the
discussion to only a few representative approaches. If available, we cite surveys that
provide more details in specific areas.

Several approaches use simple randomized algorithms to generate tests. Ciupa et
al. [21] apply random testing to several industrial sized applications. Their work uses
the AUTOTEST approach, which relies on invariants as test oracles. Milicevic et al. [77]
present KORAT, which also leverages preconditions but works for JAVA programs. In
contrast to random techniques, TAUTOKO specifically generates test cases to enrich a
given initial model.

Another area in test case generation are search-based techniques. The majority of
these approaches systematically analyze control-flow. Symbolic execution [60] sim-
ulates execution of the program using symbolic values rather than concrete ones and
relies on constraint solvers to derive test data. Recently (e.g. [72]), combinations of
concrete and symbolic execution were proposed to overcome limitations of symbolic
execution in terms of scalability. A survey of existing search-based approaches can
be found in [73]. In contrast to these approaches, TAUTOKO mutates the program to
explore new behavior, thus changing the control flow rather than analyzing it.

TAUTOKO is an instance of a model-based test generation tool. Such tools re-
quire the presence of a model that describes the intended system behavior. This model

7.5. RELATED WORK 127

is then used to derive tests or input data. They come in very different forms, e.g. as
finite state machines, or algebraic specifications. A survey on existing model-based ap-
proaches can be found in [53]. One example of a model-based testing tool is SPECEX-
PLORER [104], which is developed by Microsoft Research. SPECEXPLORER explores
specifications written in SPEC# [8] model-checking techniques and provides test cases
for explored behavior.

The idea of mutating the test suite to generate test cases was inspired by work of
Tonella et al. [103]. They propose evolutionary testing: using genetic algorithms, an
initially generated test suite is mutated to satisfy a given coverage criterion. In contrast
to evolutionary testing, TAUTOKO uses a model to guide test case generation. To our
knowledge, we are the first that use test generation techniques to improve the quality
of mined specifications.

In the area of web application testing, Mesbah et al. [74] extract state machines
that describe the user interface of AJAX applications. Their tool called ATUSA de-
rives sequences of operations that are executed to explore the application and trigger
bugs. In contrast, our approach explores JAVA classes and generates new tests to enrich
specifications.

Gupta and Heidepriem [50] explore a new structural coverage criterion based on
dynamic invariants. They use DAIKON [39] to mine an initial set of likely invariants.
Based on this set, Gupta and Heidepriem generate a new test suite that tries to cover as
many invariants as possible. This test suite can be used to remove spurious invariants
from the initial set. In contrast, TAUTOKO mines typestate automata and uses mutation
to generate new tests.

7.5.2 Typestate Verification
The term typestate was introduced in 1986 by Strom et al. [99]. Initially, typestates
were used to distinguish uninitialized and valid pointers. This information was used to
detect potential null pointer dereferences and memory leaks in PASCAL programs.

Since then, several approaches have been developed for different platforms such as
.NET [32] or JAVA [46] with varying levels of precision. A promising sound typestate
verifier for JAVA was presented by Fink et al. [40]. The tool uses a staged approach with
a total of four stages: early stages use imprecise and fast techniques to filter instances
that need not be considered in later (more precise and thus expensive) stages. The last
stage is only required for objects referenced by more than one method or objects stored
in collections. Fink et al. report analysis times ranging from one to ten minutes for
projects with up to 200 classes. In contrast to their approach, JFTA is less precise due
to its lack of flow-sensitivity. We would expect that using the tool by Fink et al. would
further reduce the number of false positives in our evaluation.

128 CHAPTER 7. MINING MODELS FOR TYPESTATE VERIFICATION

7.5.3 Specification Mining

The large body of work on mining specifications can be grouped into dynamic and
static approaches. The first technique by Cook and Wolf [23] considers the general
problem of extracting a finite state machine based model from an event trace. They
reduce the problem to the well-known grammar inference problem [48] and discuss
algorithmic, statistical and hybrid approaches. Later, Larus et al. [1] proposed min-
ing specifications for automatic verification. Their approach learns probabilistic finite
state automata for C programs. Following the assumption that common behavior is
correct behavior, Larus et al. use the inferred automata to search for anomalies in other
executions of the program.

Among the first approaches that specifically mine models for classes is the work by
Whaley et al. [108]. Their technique mines models with anonymous states and slices
models by grouping methods that access the same fields. Lorenzoli et al. [70] mine
so-called extended finite state machines with anonymous states. To compress models,
the gk-tail algorithm merges states that have the same k-future.

In terms of static techniques, there is also a huge number of different approaches.
Wasylkowski et al. [105] mine object usage models that describe the usage of an object
in a program. They apply concept analysis to find code locations where rules derived
from usage models are violated. Ramanathan et al. [85] use an inter-procedural path-
sensitive analysis to infer preconditions for method invocations. Shoham et al. [94]
discover that static mining of automata based specifications requires precise aliasing
information to produce reliable results.

In the area of web services, Bertolino et al. [9] mine behavior protocols that de-
scribe the usage of a web service. The approach uses a sequence of synthesis and
testing stages that uses heuristics to refine an initially mined automaton. In contrast,
TAUTOKO mines typestate automata for JAVA programs.

7.6 Conclusions

Dynamic specification mining is a promising technique, but its effectiveness entirely
depends on the observed executions. If not enough tests are available, the resulting
specification may be too incomplete to be useful. By systematically generating test
cases, our TAUTOKO prototype explores previously unobserved aspects of the exe-
cution space. The resulting enriched specifications cover more general behavior and
much more exceptional behavior.

An evaluation with six different subjects shows that TAUTOKO is able to enrich
specifications with new transitions in all cases. With enriched specifications, a type-

7.6. CONCLUSIONS 129

Figure 7.6: A screenshot of the ECLIPSE integration for JFTA.

state verifier produces significantly more true positives, and significantly fewer false
positives. Generally, we expect test case generation to be applicable to all techniques
of dynamic specification mining, generally improving the effectiveness of mined spec-
ifications.

Our initial motivation for starting this work was to help developers avoid misusing
third party libraries. With the help of TAUTOKO, we can now mine useful specifications
for such libraries. To further support developers, we have built an integration of our
typestate verifier into ECLIPSE. If the plugin is turned on, ECLIPSE will trigger the
typestate verifier whenever a user saves a new version of his project. If the verifier
detects a violation, it will mark the appropriate location in the source code as shown in
Figure 7.6.

130 CHAPTER 7. MINING MODELS FOR TYPESTATE VERIFICATION

Chapter 8

Generating Fixes from Object
Behavior Anomalies

Recent years have seen considerable advances in automated debugging: sophisticated
program analysis guides the programmer along dependencies [63], statistical debug-
ging highlights execution features that correlate with failures [57, 67, 36], and exper-
imental techniques automatically isolate failure causes in the input [120] or program
changes [22]. All these techniques narrow down the set of possible bug locations,
presenting the programmer with a list of likely locations.

Even with automated bug localization, the programmer must still assess these lo-
cations to choose where and how to fix the program. The goal of the work presented
in this chapter is to automate this final step as well, effectively automating the entire
debugging process for a significant subset of programming errors.

The following example, simple but addressing a real-life application illustrates the
approach. The APACHE MINA project provides a framework for building network
applications. The project’s bug database contains an entry for bug 293, complaining
that test VmPipeBindTest crashes with an assertion error. To debug the failure, we
first want to know how the failing run differs from passing runs; we are searching for
anomalies that correlate with the failure.

Our approach to finding anomalies is to compare object behavior models from pass-
ing and failing runs. Figure 8.1 shows a combined model for the MINA BaseIo-
Acceptor class; the solid transitions occur in the passing runs. In the passing run,
clients call setLocalAddress(), then setHandler() to set up the attributes; a
sequence of alternating bind() and unbind() calls then alters the object state.

131

132 CHAPTER 8. GENERATING FIXES FROM OBJECT BEHAVIOR ANOMALIES

¬bound
handler ≠ null

localAddress ≠ null

¬bound
handler = null

localAddress ≠ null

¬bound
handler = null

localAddress = null

bound
handler ≠ null

localAddress ≠ null

setHandler()

bind() unbind()

<init>()

setLocalAddress()

¬bound
handler ≠ null

localAddress = null

setHandler()

setLocalAddress()

unbind(),
getLocalAddress()
setLocalAddress()

bind()

setLocalAddress()

Object state

Transition in
passing runs
Transition in
failing run

Figure 8.1: A combined model of passing and failing runs for the MINA
BaseIoAcceptor class. In the failing run, unbind() is invoked when the ac-
ceptor is not bound.

133

(a) Java Program (b) Failing and Passing Runs (c) Models

✔

✘

(d) Model Differences

X X

(e) Fix Candidates (f) Validated Fix

> bind()

In Socket.java,
line 356:> bind()

In Socket.java,
line 356:

< unbind()

In Dir.java,
line 356:

> bind()

In Socket.java,
line 356:

Figure 8.2: How PACHIKA works. PACHIKA takes a JAVA program (a) and out of
its passing and failing runs (b), it mines object behavior models (c). From differences
(d) between the models, it derives fix candidates (e), which it then validates against
automated quality assurance (e.g., a regression test suite). Only validated fixes remain
(f).

The failing run follows different transitions, shown by dashed lines in the figure.
Besides a different method call order when setting up the object, the client now calls
unbind() multiple times in a row—even when the bound attribute is already false.
This behavior occurs only in the failing run. But is it also the cause of the failure?
To investigate this, we systematically generate patches based on differences in models
mined from passing and failing runs. The generated patches alter the failing run to
match the behavior from the passing runs. If a patch fixes the failure and does not
break the regression test suite, we consider it valid.

In the example, there are several ways to change the behavior from failing to pass-
ing: we can (a) make the call to unbind() conditional such that it only occurs when
bound is true (as in the passing run), or (b) insert a bind() call to reach the correct
state in which unbind() can be called. All of these fix candidates would be valid at
this level of abstraction—but would they also work for the concrete program?

We have built a tool called PACHIKA1 that extracts the above models from passing
and failing runs of programs (currently in JAVA), compares the models to determine
anomalies, and automatically generates possible fixes. PACHIKA validates the fixes
against the original failing run, ensuring that the fix indeed solves the problem at hand;
it also runs the program’s regression test suite to minimize the risk of introducing new
problems. Only fixes that pass this validation will eventually be presented to the pro-
grammer.

In the MINA example, PACHIKA finds that the fix candidate (a) introduces an al-
ternate failure in the failing run, while candidate (b)—inserting an additional bind()
call—passes all the tests; this candidate is the fix PACHIKA suggests to the program-
mer. Incidentally, this is also how the real MINA bug was eventually fixed as indicated
by the project’s history.

1“Pachika” is the Swahili word for “fix”, “insert”.

134 CHAPTER 8. GENERATING FIXES FROM OBJECT BEHAVIOR ANOMALIES

The rest of this chapter presents the details of the above approach, and we evalu-
ate its performance on real-life programs with real-life bugs. We make the following
contributions:

• We present a technique to automatically derive fix candidates from anomalies in
program executions (Section 8.3). To our knowledge, this is the first time that
fixes are directly generated from mined specifications.

• We present a method for validating these fix candidates using the failing run as
well as automated quality assurance (Section 8.4), eventually suggesting the best
fix.

• We evaluate the effectiveness and the efficiency of the approach on the IBUGS
collection of real-life bugs (Section 8.5).

The remainder of this chapter is organized along the individual stages of PACHIKA
(Figure 8.2). In the first step, PACHIKA uses the tracer of ADABU (Section 5.1) to
trace the execution of a failing and one or more passing runs. After that, the tool
analyzes the traces to identify relevant objects and uses ADABU to mine models for
these objects (Section 8.1). The tool then searches the models from the failing run
and identifies method invocations that violate preconditions as specified by the models
of the passing run (Section 8.2). PACHIKA then derives fix candidates from model
differences (Section 8.3). These fix candidates are validated against the test suite to find
the best fix (Section 8.4). Throughout these sections, we will use the MINA example as
well as another real-life example taken from the APACHE JDO project to illustrate our
approach.

After evaluating effectiveness and efficiency of PACHIKA (Section 8.5), we discuss
the general applicability to real-life bugs (Section 8.6). We close with related work
(Section 8.7), and conclusion and consequences (Section 8.8).

Parts of this chapter were published at the Automated Software Engineering Con-
ference 2009 [30].

8.1 Mining Models
PACHIKA uses ADABU (Chapter 5) to mine models from passing and failing runs. For
the experiments in this chapter, we use the default abstraction function as defined in
Section 4.7. In Section 8.1, we introduced another parameter for model mining called
model depth. This parameter specifies the number of indirections on the heap ADABU
follows when extracting the state of objects. Obviously, increasing the depth of models

8.1. MINING MODELS 135

yields more detailed models. In the context of PACHIKA, an increase in model depth
leads to more deviations being flagged, and thus more fix candidates being generated.

For the MINA example, a model depth of one is actually sufficient to generate a
good fix for the bug: PACHIKA detects an incorrect value of bound and synthesizes a
fix from the passing model. In another real-life example taken from the bug database of
the APACHE JDO project, it is necessary to use a model depth of two. In this example,
a PersistenceManager class manages objects stored in a database. Internally,
PersistenceManager uses a Transaction object to synchronize access to the
database. The Transaction object is available to clients via a getter method. For
consistency reasons, access to persistent objects requires an active Transaction. In
the failing run, a client requests an object by calling getObjectById() when the
Transaction is inactive. In all passing runs, this is handled correctly.

Figure 8.3 shows a simplified version2 of the passing and failing model for the
PersistenceManager. The state encompasses the transaction tx, as well as the
Transaction object’s active flag if the Transaction is not null. Transitions
in the state of the PersistenceManager now also occur if a method changes
the state of the Transaction. This model captures the interplay between calls
to getObjectById(), tx.begin() and tx.commit(), which essentially is
a protocol that involves two objects. With model depth two, PACHIKA is able to cap-
ture this protocol as it includes the state of the Transaction into the state of the
PersistenceManager.

To study the effect of the model depth parameter on the results of PACHIKA, we
repeat our experiments with model depth one and two.

8.1.1 Mining Preconditions

Every method has a (potentially empty) set of preconditions that need to be satisfied in
order to invoke the method successfully. For example, the unbind() method in the
MINA example has the precondition that bound needs to be true. To find anomalies,
PACHIKA, mines such preconditions from passing run models and looks for transitions
in failing run models that violate these preconditions. In some languages, such as
Eiffel, Spec# and JML, programmers would be able to provide preconditions explicitly.
In this chapter we are working with plain JAVA programs where preconditions have to
be inferred. Section 10 discusses this idea further.

A first approach to mining preconditions from models would be to search for com-
mon properties of attributes in states in which a method is invoked. This approach has

2The actual models mined for this example are too large to present here but can be viewed at the project’s
web page (Section 8.8).

136 CHAPTER 8. GENERATING FIXES FROM OBJECT BEHAVIOR ANOMALIES

¬closed
tx ≠ null

¬tx.active

<init>()

¬closed
tx ≠ null
tx.active

tx.begin()

Object state
Transition in
passing runs
Transition in
failing run

¬closed
tx ≠ null

¬tx.active
closed

tx = null

tx.commit()

getObjectById()

clear

getObjectById()

Figure 8.3: A deep model of PersistenceManager for the passing and failing
runs of bug JDO 28. In the failing run, the second invocation of getObjectById()
violates the precondition that tx.active is true.

two disadvantages. First, it limits preconditions to the state of the object the method
is invoked on. Second, a method typically does not read all attributes of the state;
PACHIKA would thus generate spurious preconditions.

To solve these problems, PACHIKA traces the set of fields that are read by a method
invocation and generates preconditions only for those fields. For example, in the case of
unbind(), PACHIKA detects that the method only reads fields bound and handler,
and therefore only looks for preconditions that affect those two fields. If a method
reads a field that is part of a parameter, the field will also be included in the set and thus
PACHIKA also detects preconditions for fields of parameters.

In practice, identifying the set of relevant fields is more complex than only tracing
field reads for every method invocation:

• Many methods create and use temporary objects. Field reads on such objects
cannot yield preconditions since those objects did not exist when the method
was invoked. We therefore only include field reads on objects that existed prior
to the invocation.

• Many programs make extensive use of getter and setter methods. To retrieve the
value of a field, a method invokes a getter rather than accessing the field directly.

8.2. DETECTING VIOLATIONS 137

To deal with this, PACHIKA propagates a field access to the calling method if the
accessed object is also visible in the caller.

When generating models, PACHIKA annotates each method invocation in the model
with the set of fields read. This information is then used in the next step to detect
violations.

8.2 Detecting Violations
The basic technique for detecting anomalies is to compare models of passing and fail-
ing runs. From the passing models, PACHIKA learns preconditions for a method invo-
cation and checks the failing model for violations of these preconditions.

Even a very short run of an object-oriented program creates a large number of
objects. In MINA, for example, the failing run lasts only 0.3 seconds but generates
over 18000 objects. Analysing all these models, while possible in principle, would
take too much time in practice. We need to find a heuristic that reduces the search
space by only considering a subset of all objects. A good heuristic selects all objects
whose behavior is relevant for the failure, and only few objects that are irrelevant.

One way to approach this is to identify suspicious points in the execution of the
program and include all objects that are accessible at those points. The challenge is
how to identify such suspicious program points. Depending on the type of the bug at
hand, PACHIKA follows two different strategies:

Crashing Bugs For crashing bugs (i.e. bugs that terminate with an exception), our
approach includes all objects accessible from methods that were active when
the program crashed. The assumption behind this approach is that for crashing
bugs, the failure typically occurs close to the infection of the program state.
This assumption does not hold for all bugs. In our experience, however, many
crashing bugs are fixed in one of the methods that are active when the program
crashes. We therefore believe that this heuristic will include the relevant objects
in the majority of cases.

Non-crashing Bugs If the program does not crash, but simply produces incorrect out-
put, locating suspicious program points is more difficult. In the current version,
PACHIKA uses a JAVA implementation of the TARANTULA [57] fault localization
approach to automatically identify suspicious methods. In essence, TARANTULA
ranks source code lines based on deviations in the coverage of passing and failing
runs. The ranking method puts those lines that were executed often in failing,

138 CHAPTER 8. GENERATING FIXES FROM OBJECT BEHAVIOR ANOMALIES

but seldom or never in passing runs to the top. PACHIKA leverages this rank-
ing to sort all methods executed in the failing run by the maximum rank of all
lines in the method. It then investigates a configurable percentage of the highest
ranked methods, and looks for anomalies in objects accessible when one of these
methods is active.

For each suspicious method, PACHIKA extracts models for all objects that are
reachable through the parameters of the methods on the stack. This approach was
inspired by work of Artzi et al. [4], who use a similar technique to reproduce crashes.
Unlike that approach, however, PACHIKA does not include all transitively reachable
objects, but only follows references up to a certain depth (see Section 8.1).

Once PACHIKA has mined models for all relevant objects from the failing run, the
next problem is to choose passing models against which to compare the failing models.
PACHIKA currently takes the following approach:

• First, PACHIKA searches the passing run for invocations of the same methods
as for the failing run. For every such invocation, PACHIKA extracts objects ac-
cessible from the method and compares models for objects that were accessible
through the same path in the passing and failing runs. For example, if a method
m has a first parameter that is of complex type, PACHIKA compares passing and
failing models for the first parameter.

• If no method invocation is found in the passing run, PACHIKA identifies the set
of classes for which models were mined from the failing run. It then extracts
models for all instances of those classes from the passing run and then compares
models for the corresponding classes.

• If there are no suitable models in the failing run, PACHIKA is unable to detect
any violations and therefore exits without generating a fix.

If PACHIKA is able to find comparable models, it will search the models of the
passing run for preconditions of method invocations. For every method m that is part
of the model, PACHIKA examines all invocations of m and extracts the values for all
fields accessed by m (see Section 8.1.1). PACHIKA then mines the values for each field
and tries to derive simple preconditions such as a field having the same value before all
invocations of a method. The tool currently has its own engine to detect preconditions.
If necessary, however, it could use DAIKON’s [39] invariant detection engine to mine
more complex preconditions.

The final step for detecting violations is to check all method invocations from the
failing model to see whether they violate any of the preconditions mined from the

8.3. GENERATING FIXES 139

passing model. If a method invocation violates at least one precondition, PACHIKA re-
members the violated preconditions, as well as the state in which the violating method
was invoked.

For the MINA example, PACHIKA finds three relevant objects. The passing run
does not include an invocation of the crashing method, and therefore PACHIKA com-
pares models based on classes. PACHIKA only finds one model with violations, shown
in Figure 8.1. The violation is that unbind() in the passing run is only being
called when bound is true. Note that PACHIKA does not extract preconditions for
setLocalAddress() and setHandler(), as those methods do not read fields.

For the JDO example, PACHIKA mines three models from the failing run and com-
pares them based on their classes. Altogether, there are 4 violations, one of which is
that getObjectById() requires tx.active to be true.

8.3 Generating Fixes

For each invocation of a method m that violates at least one precondition, PACHIKA
generates fix candidates based on the passing and failing models. In general, there are
two possibilities to fix a violation based on models. The first is to satisfy the precondi-
tions of m by inserting calls that make the necessary changes to the state. The second
strategy is to avoid the violation by deleting the violating call to m3.

8.3.1 Inserting Calls

In order to satisfy the preconditions of a method m, PACHIKA searches the failing and
passing models for states that satisfy the preconditions and searches for a path to any
of them. For example, the violating method call in MINA happens in a state where
bound is false. The precondition from the passing run requires bound to be true.
PACHIKA finds one state that satisfies this condition and two possible paths from the
violating state to the correct state:

1. The first path is to invoke setLocalAddress() first and then bind(). This
path is not considered because setLocal Address() requires an argument,
and PACHIKA cannot synthesize arguments.4

3In Chapter 7, we use similar techniques to explore new edges in a model.
4Generally, PACHIKA is limited to methods that do not take arguments. We are aware that this is a severe

restriction. However, synthesizing arguments for method invocations is a problem in itself and is therefore
left for future work.

140 CHAPTER 8. GENERATING FIXES FROM OBJECT BEHAVIOR ANOMALIES

2. The second path is to invoke only bind(). This is a fix candidate as produced
by PACHIKA.

Every feasible path is translated into code which injects calls to all methods on the
path right before the violating method call.

8.3.2 Deleting Calls
The second strategy is to avoid the violation by deleting the method call if at least one
precondition is violated. Depending on where the fix is to be applied, we can remove
the call at either the caller or the callee site. To remove callee invocations, PACHIKA
generates an if-block that checks the precondition at the beginning of the method, and
adds a return instruction as the content of the if-block. At the caller site, PACHIKA
also creates an if-block that suppresses the call if the precondition is violated. If the
removed method has a return type other than void, we try default values such as true,
false or null.

For MINA, PACHIKA generates a fix candidate consisting of an if-block around the
call to unbind() such that the method is only invoked if bound is true.

8.4 Choosing the Best Fix
We refer to the non-validated fixes generated by PACHIKA as the set of fix candidates.
Each fix candidate is applied in isolation and evaluated in two steps. First, we execute
the failing test. If the fix changes the outcome to passing, we call it a potential fix. For
each potential fix, we subject it to the program’s automated quality assurance—in our
case, all tests of the program’s regression test suite. If the fix does not alter the outcome
of any one test, we refer to it as a validated fix. Only validated fixes will be presented
to the programmer as proposed fixes for the failure.

In the case of MINA, PACHIKA generates two candidate fixes, out of which one is
successfully validated against the test suite. The fix is to add a call to bind() which
ensures that the precondition for unbind() is satisfied. For JDO, PACHIKA generates
8 fix candidates, of which only one is a potential fix that is validated successfully
against the test suite. The fix is to insert a call to tx.begin() right before the second
call to getObjectById().

Both fixes are semantically equivalent to the fixes that were applied by the devel-
opers, and thus can be considered to be valid fixes for the failures.

The notion of “best fix” raises the question whether PACHIKA can produce “bad”
fixes, too. If a suggested fix passes all tests but is considered incorrect, the test suite

8.5. EXPERIMENTAL EVALUATION 141

should be improved—very much like, in mutation testing [33], an undetected mutation
implies a weakness in the test suite. As soon as the test suite (or generally, automated
quality assurance) is set up to catch the invalid fix, PACHIKA will filter it out.

8.5 Experimental Evaluation

In the previous sections, we have seen how PACHIKA was able to generate successful
fixes for two bugs as they occurred in real-life. The two examples were found by
analyzing the bug databases of MINA and JDO, manually inspecting the bug reports,
extracting the faulty version from the source repository, building and running the test
suites. This is a lot of manual effort and is not feasible for a larger study.

To evaluate the effectiveness of our approach, we ran PACHIKA on the two subjects
provided by the IBUGS repository [31]. IBUGS contains programs together with test
runs and bugs as they actually occurred in the history of the project. For a subset of the
bugs, IBUGS also provides test cases that reproduce the problem, which we refer to as
failing tests. In our experiments, we use the projects’ regression test suites as passing
runs.

8.5.1 Subjects

Table 8.1 summarizes information about the subjects used in the IBUGS study. Col-
umn “Crashing Bugs” gives the number of bugs that caused the program to crash. We
included all these bugs in our study. For each bug in the repository, IBUGS contains
a snapshot of the project right before and right after the bug was fixed. Thus, the size
of the project and the number of tests varies from bug to bug. Columns “Size” and
“Number of Tests” therefore list only the values for the latest bug included in the study.

8.5.2 Experimental Setup

Currently, PACHIKA requires only one configuration parameter: the model depth used
when mining models with ADABU (cf. Section 8.1). As explained above, the model
depth influences the set of bugs PACHIKA is able to detect. To study the impact of
increasing model depth, we ran PACHIKA twice, once with model depth one and once
with model depth two. In our experience, increasing the model depth beyond two
generates models that are too detailed to be useful. Also, the time required to run
the experiments increases significantly for model depth values beyond two. Thus, a
maximum depth of two is a reasonable compromise between speed and the range of

142 CHAPTER 8. GENERATING FIXES FROM OBJECT BEHAVIOR ANOMALIES

Program Crashing Size Number of
Bugs (LOC) Tests

MINA 1 14,773 89
JDO 1 64,017 437

ASPECTJ 18 75,123 1,178
RHINO 8 37,902 1,499

Table 8.1: Subjects used in the evaluation. The first two rows show characteristics of
the examples used. The last two rows give details on the subjects used in the evaluation.
Size was measured using David A. Wheeler’s sloccount.

violations that PACHIKA can detect and possibly fix. The general problem of choosing
the right depth is further discussed in Section 8.5.6.

8.5.3 Running the Experiments
To conduct the experiments, we perform the following steps:

1. First, we collect all bugs in the repository for which there is at least one test
case that reproduces the failure and group them into crashing and non-crashing
bugs. This yields 18 crashing and 16 non-crashing bugs for ASPECTJ, as well as
12 crashing and 7 non-crashing bugs for RHINO.

2. PACHIKA traces the failing run and identifies the set of interesting objects. The
approach used to identify interesting objects depends on the type of the bug
(crashing vs. non-crashing, see Section 8.2). For each such object, a model is
mined from the failing run. The remaining steps are performed for each passing
test in the test suite.

3. PACHIKA traces the passing run and searches the trace for executions of the
crashing method. If at least one invocation is found, models for all visible objects
are mined just like for the failing run. If no invocation is found, PACHIKA mines
models for all classes for which at least one model was extracted from the failing
run (cf. Section 8.2).

4. If the previous step yields at least one model, PACHIKA compares models to
generate candidate fixes for all active methods as described in Section 8.3. Each
candidate fix is first checked against the failing test and then against the test suite
(cf. Section 8.4).

8.5. EXPERIMENTAL EVALUATION 143

Tracing Overhead Trace File Size Model Mining
Subject (factor) (MB) (s)

MINA 29 42 34
JDO 16 356 212
ASPECTJ 9 223 110
RHINO 26 11 8

Table 8.2: Tracing overhead and execution times for all subjects.

8.5.4 Performance

Our experiments were performed on a 2 GHz AMD machine with a maximum of 2
Gigabytes of memory. Table 8.2 lists information about overhead and execution times.
For MINA and JDO, results are averages over all runs in the test suite. For ASPECTJ
and RHINO, we give averages for the latest version used in the experiments. Tracing
overhead is expressed as the factor by which execution time increases when tracing is
turned on. The third column gives the execution time the model miner takes to extract
models for depth one (cf. Section 8.1).

Table 8.2 does not list times PACHIKA takes to generate fixes, since these are neg-
ligible compared to the other steps. The time needed to validate a candidate fix is
equivalent to the execution time of the test suite for almost all candidates. In some
cases, a fix candidate causes the program to loop endlessly. In that case, we terminate
the run after a timeout of two minutes and consider the test as failed.

As is to be expected, tracing incurs a huge amount of runtime overhead. Since both
ASPECTJ and RHINO contain over 1000 tests, tracing and mining the test suite was
the most time-consuming part in our experiments. For example, tracing and mining all
1038 runs in the test suite of bug #87376 takes a little less than two days. Unfortunately
this needs to be done for each investigated bug, since each bug is fixed in a different
version of the code base.

In practice, however, tracing and mining the test suite only needs to happen once
for each released version of a program. As soon as a new version is released to the
public, we can trace the test suite, mine models for all objects in the traces, and store
them for reuse. For every bug report filed for the new version, we can reuse the cached
models.

144 CHAPTER 8. GENERATING FIXES FROM OBJECT BEHAVIOR ANOMALIES

public void resolve(ClassScope upperScope) {
> // Fix from source repository
> if (binding == null) ignoreFurtherInvestigation = true;
> // Fix generated by PACHIKA
> if (binding == null) {
> return;
> }

if (munger == null) ignoreFurtherInvestigation = true;
if (ignoreFurtherInvestigation) return;

...
}

}

Figure 8.4: The proposed fix for bug #173602 is to not execute method resolve()
if the precondition for binding is violated.

8.5.5 Results

The results for crashing and non-crashing bugs of ASPECTJ are summarized in Tables
8.3 and 8.4. Table 8.5 lists results for all bugs in RHINO. For each investigated bug,
we give the number of candidate, potential, and validated fixes (cf. Section 8.4) for
model depth one (columns two to five) and two (columns six to nine).

For ASPECTJ, PACHIKA generates fix candidates for 31 out of 34 bugs. For a
total of nine bugs, there is at least one potential fix, out of which four are successfully
validated against the test suite. For RHINO, PACHIKA is able to generate fixes for
15 out of 19 bugs, of which seven have at least one fix candidate. A validated fix is
found for only one bug. In the next sections, we take a closer look at all cases in which
PACHIKA is able to generate a validated fix. After that, we compare our results for
different subjects and model depth values, as well as crashing vs. non-crashing bugs.

Checking for a null reference

Bug #173602 in ASPECTJ manifests itself as a NullPointerException in method
resolve() in class InterTypeMethodDeclaration. PACHIKA detects one
violation for the invocation of resolve(), namely that binding must not be null.
The delete method call strategy generates the fix as shown in Figure 8.4. The actual fix
applied by the developers also amounts to a conditional return which additionally sets
the ignoreFurtherInvestigation flag. This flag is later used by ASPECTJ to
stop processing the declaration object. However, not setting the flag in this situation
does not cause any problems, since none of the tests in the test suite later fails.

8.5. EXPERIMENTAL EVALUATION 145

Depth 1 Depth 2

Candidates Fixes Candidates Fixes

Bug In
se

rt

D
el

et
e

Po
te

nt
ia

l

V
al

id
at

ed

In
se

rt

D
el

et
e

Po
te

nt
ia

l

V
al

id
at

ed

#34925 0 0 0 0 20 32 0 0
#36803 1 0 0 0 81 79 26 0
#39993 0 6 0 0 113 51 0 0
#43033 0 0 0 0 28 12 0 0
#51320 0 0 0 0 0 0 0 0
#51322 13 1 0 0 71 42 43 1
#62642 68 0 0 0 753 23 0 0
#64331 2 1 0 0 69 5 0 0
#65319 3 2 0 0 161 4 0 0
#67774 41 6 0 0 359 14 2 0
#68991 68 0 0 0 946 23 0 0
#70619 0 0 0 0 26 0 0 0
#71377 68 0 0 0 946 23 0 0
#72528 68 0 0 0 979 19 0 0
#80249 68 0 0 0 766 26 0 0
#87376 2 6 0 0 19 43 0 0
#121616 128 0 38 1 183 0 45 1
#173602 3 0 1 1 459 13 147 15

Table 8.3: Results of the experimental evaluation for crashing bugs in ASPECTJ with
model depth one and two.

146 CHAPTER 8. GENERATING FIXES FROM OBJECT BEHAVIOR ANOMALIES

Depth 1 Depth 2

Candidates Fixes Candidates Fixes

Bug In
se

rt

D
el

et
e

Po
te

nt
ia

l

V
al

id
at

ed

In
se

rt

D
el

et
e

Po
te

nt
ia

l

V
al

id
at

ed

#37739 95 15 11 0 1921 189 86 0
#42993 139 35 0 0 1831 165 112 0
#47754 129 8 0 0 1366 118 0 0
#49457 8 0 0 0 164 5 0 0
#49638 89 18 0 0 2214 640 0 0
#53981 43 4 0 0 1040 68 0 0
#53999 47 5 0 0 504 249 0 0
#54421 361 9 0 0 2772 150 0 0
#55341 123 43 4 0 1198 316 67 0
#60015 44 30 0 0 746 1090 215 130
#61536 10 5 0 0 468 23 0 0
#64069 80 7 0 0 1198 266 0 0
#69459 60 2 0 0 1115 79 0 0
#72157 27 3 0 0 981 50 0 0
#72531 0 0 0 0 0 0 0 0
#76096 0 0 0 0 0 0 0 0

Table 8.4: Results of the experimental evaluation for non-crashing bugs in ASPECTJ
with model depth one and two.

8.5. EXPERIMENTAL EVALUATION 147

Depth One Depth Two

Candidates Fixes Candidates Fixes

Bug In
se

rt

D
el

et
e

Po
te

nt
ia

l

V
al

id
at

ed

In
se

rt

D
el

et
e

Po
te

nt
ia

l

V
al

id
at

ed

#114491 0 650 0 0 13 2 0 0
#114493 982 1 0 0 6930 1 0 0
#159334 0 0 0 0 161 5 0 0
#179068 0 60 0 0 297 68 0 0
#191668 0 0 0 0 0 15 0 0
#191688 0 0 0 0 0 0 0 0
#194364 1273 16 0 0 17941 105 0 0
#193555 12 78 0 0 98 155 0 0
#203402 0 0 0 0 0 0 0 0
#203841 0 0 0 0 0 0 0 0
#220584 335 11 1 0 721 7 0 0
#210682 1300 946 2 0 1628 1128 3 0

#137181 1999 184 22 0 7507 16 0 0
#157509 0 0 0 0 292 39 33 16
#177314 10 1 0 0 0 0 0 0
#181654 1659 488 9 0 33 0 0 0
#181834 3672 163 181 0 27090 108 1424 0
#184107 3 78 0 0 1066 1400 35 0
#185165 0 0 0 0 1 0 0 0

Table 8.5: Results of the experimental evaluation for all bugs in RHINO with model
depth one and two. Crashing bugs are listed in the first part of the table, while the lower
part shows results fro non-crashing bugs.

148 CHAPTER 8. GENERATING FIXES FROM OBJECT BEHAVIOR ANOMALIES

public boolean visit(MethodDeclaration methodDeclaration,
ClassScope scope) {

> // Fix generated by PACHIKA
> // is the same as in the source repository
> if (methodDeclaration.hasErrors()) {
> return false;
> }

ContextToken tok = CompilationAndWeavingContext.
enteringPhase(...);

...
}

Figure 8.5: The fix for bug #121616 suppresses the violation by aborting the execution
in case methodDeclaration has errors.

Checking for error conditions

In the failing run of bug #121616, a NullPointerException is raised in method
buildFormalAdviceBindingsFrom() of class ValidateAtAspectJAn-
notationsVisitor. When comparing failing and passing run models, PACHIKA
detects a precondition violation for parameter methodDeclaration, namely that
the ignoreFurtherInvestigation flag which is returned by hasErrors()
is true. The delete method strategy generates a conditional return in case that this
precondition is violated (Figure 8.5). In this case, the generated fix is equal to the fix
applied by the developers.

Invoking methods to set default state

The failing run for bug #51322 crashes ASPECTJ by causing a NullPointerEx-
ception in method build() of class InterTypeMethodDeclaration. Fig-
ure 8.6 shows the relevant parts of this method, together with the fix as applied by
the developers, and the fix generated by PACHIKA. The failing run contains two in-
vocations of method build(), of which only the last one fails. For the first invoca-
tion, PACHIKA detects a precondition violation for the declaringClass attribute
in the binding variable. The model from the passing run contains a path that repairs
this violation, which consists of invoking addDefaultAbstractMethods() and
methods(). When this fix is applied to ASPECTJ, the state of binding is al-
tered such that the second invocation of build() no longer occurs and the failing
run passes. The fixed version also passes all the other tests.

The developer’s fix for this problem is simply to abort the execution of build(),
which is very different from PACHIKA’s fix. However, both fixes comply with the

8.5. EXPERIMENTAL EVALUATION 149

public EclipseTypeMunger build(ClassScope classScope) {
...
if(ignoreFurtherInvestigation) { return null;
} else {
binding = classScope.referenceContext.

binding.resolveTypesFor(binding);
> // Fix generated by PACHIKA
> binding.constantPoolDeclaringClass().
> addDefaultAbstractMethods();
> binding.constantPoolDeclaringClass().methods();
> // Fix from source repository
> if (binding == null) {
> throw new AbortCompilation();
> }

ResolvedMember sig = new ResolvedMember(...);
...

}
}

Figure 8.6: The proposed fix for bug #51322 invokes methods that initialize values,
essentially avoiding the illegal access in a subsequent invocation of build().

specification as given by the program’s test suite.5

Unnecessary warnings

Bug #60015 of ASPECTJ is a non-crashing bug concerned with unnecessary warnings
the compiler outputs if an input file contains an interface. The actual fix committed
by the developers (Figure 8.7) is to recognize these cases and suppress outputting the
message.

Since the bug does not raise an exception, PACHIKA uses TARANTULA to find sus-
picious program points and looks for anomalies in the top 20 methods. A surprisingly
large number of 130 validated fixes are generated. Many of these are concerned with
the same precondition. The fixes differ in the position within the method where the
precondition is checked. We investigated a subset of ten validated fixes6 and found that
eight of them are concerned with code that outputs warnings. The effect of all these
patches is that some warnings usually output by ASPECTJ are not printed. It is unclear,
whether these warnings are actually useful. At the very least, there is no test case in
the whole test suite of ASPECTJ that ever tests for any of these messages.

5If Pachika’s fix would be considered incorrect, a simple remedy is to extend the test suite appropriately,
as discussed in Section 8.4. We asked the developer who committed the original fix for his opinion, but did
not get a reply.

6Estimating the effect of a patch is very time-consuming, mostly because we are no experts of the system.

150 CHAPTER 8. GENERATING FIXES FROM OBJECT BEHAVIOR ANOMALIES

private void warnOnConfusingSig(Shadow shadow) {
// no warnings for declare error/warning
if (munger instanceof Checker) return;
...

> // Fix committed by developers
> // PR60015 - Don’t report the warning if the declaring type

// is object and ’this’ is an interface
> if (exactDeclaringType.isInterface(world) &&
> shadowDeclaringType.equals(world.resolve("java.lang.Object"))) {
> return;
> }

...

Figure 8.7: For bug #60015, PACHIKA generates several candidates that suppress warn-
ings output by the compiler.

Incorrect escaping

The symptom for bug #157509 of RHINO is that illegal identifiers with escapes are
not rejected. Instead, RHINO processes them and outputs an incorrect value. The
fixing change applied by the developers churns a total of 310 lines, of which 195 are
actually relevant to fix the problem (see Section 6.5.2 on page 96). In essence, this
fix recognizes escaped characters in identifiers and treats them correctly. This is a non-
crashing bug, and therefore PACHIKA runs TARANTULA to find suspicious methods. In
total PACHIKA generates 16 validated fixes, all of which affect method getToken()
in class TokenStream. This method is responsible for parsing the input file. All of
the generated patches alter getToken() such that a character signaling the end of
file is returned, which in turn causes RHINO to exit. Clearly, this is no valid way of
fixing the bug. However, similar to the previous bug, none of the tests in the test suite
recognizes this problem, which is why PACHIKA considers it to be a valid fix.

8.5.6 Discussion

Model Depth

In our experiments, increasing model depth from one to two causes PACHIKA to gen-
erate more fix candidates. For bug #194364 for example, model depth two yields more
than ten times as many fix candidates as model depth one. This is not surprising, as an
increase in model depth leads to more complex models, and thus to more possibilities
to create fixes. Of the five bugs for which PACHIKA generates at least one validated fix,
three require a model depth of two. Thus, at least for our experimental setting, running
PACHIKA with model depth two yields considerably more validated fixes.

8.5. EXPERIMENTAL EVALUATION 151

Delete vs. Insert

In most cases where PACHIKA detects a violation, both fix strategies generate fixes. In
terms of the numbers of generated fixes, both strategies are also roughly equivalent.
In some cases, the insert method call strategy generates a large number of fixes due
to many different paths through the model. However, the delete strategy generates
validated fixes for four bugs, compared to four bugs for the insert strategy. Thus, in our
experiments, deleting method calls is more successful when it comes to generating a
validated fix.

AspectJ versus Rhino

Our results show that PACHIKA works much better on ASPECTJ than on RHINO. We
examined the log files of our experiments and found two possible causes:

• RHINO is considerably smaller than ASPECTJ and contains only a very small
number of classes that have complex models (see Section 8.6). Thus, PACHIKA
finds only a small number of violations per bug.

• In many cases where a violation is found, technical restrictions such as the lim-
itation to methods without parameters prevent PACHIKA from generating a fix.
We hope to remove some of these restrictions in the near future and thus be able
to generate more fixes for RHINO.

Inadequate test suites

The validated fixes for bugs #51322, #157509 and #60015 highlight a problem for
approaches that validate fixes using the test suite: The quality of validated fixes is
highly dependent on the quality of the test suite. A bad test suite will cause many fixes
to be validated successfully and thus a lot of false positives to be presented to the user.
However, in the absence of a formal specification, a test suite is still the best way to
automatically assess the impact of a change on the program.

8.5.7 Threats to Validity
As with any empirical study, the interpretation of the results is subject to several limi-
tations.

External Validity The scope of our study is limited, as it only investigates 53 bugs in
two programs. Therefore, the results of our experiments are hardly generalizable.

152 CHAPTER 8. GENERATING FIXES FROM OBJECT BEHAVIOR ANOMALIES

However, it is difficult to conduct a controlled experiment with realistic data
since there is only little such data available. A manual investigation, as we did
it on MINA and JDO, requires a lot of effort and is also difficult to reproduce for
other researchers. Although we are aware of these limitations, we believe that
our evaluation is realistic since it uses real post-release bugs7 and relies only on
test runs from a bug database or the test suite.

Internal Validity PACHIKA is a complex system that consists of almost 30000 lines of
code. We verified the correctness of model mining and fix generation for several
small artificial test cases. However, the huge amount of data and the complexity
of the system make it impossible to check every step for realistic examples. It
may well be that PACHIKA contains errors which cause fixes to be missed or
invalid fixes to be generated. However, verifying potential fixes against the test
suite ensures that there are no false positives. We encourage other researchers to
validate our results. All bugs used in the evaluation are available in the IBUGS
dataset. PACHIKA is also available for download; see Chapter 9 for details.

Construct Validity PACHIKA uses the test suite as a source of program runs. As such,
it depends on the tests to correctly classify a run as passing or failing. In some
cases, this check is not precise enough. For example, some tests in ASPECTJ
simply check the output for a certain keyword, which may lead to a test outcome
incorrectly being classified as passing. However, we observed this problem only
for a small number of tests and are confident that the huge number of tests en-
sures a high quality of fixes that are presented to the user.

There also is a risk that PACHIKA generates fixes that only apply to the symptom
at hand, rather than the problem root cause (“The method crashes when p is
null, so let’s insert a check for it”). This risk is best countered by quality
assurance; in particular, any increased level of automated validation (such as
contracts or widespread program proofs) will automatically filter out more bad
fix candidates as generated by PACHIKA. Indeed, our evaluation indicates that
this is already the case.

8.6 Applicability
After coming to the conclusion that automatic fixing of failing programs was indeed
feasible for some cases, we wanted to investigate the general applicability of tools like

7We expect an evaluation of PACHIKA on artificially seeded bugs to yield much better results—in partic-
ular if seeding includes addition or deletion of method calls, as most mutation testing approaches do.

8.6. APPLICABILITY 153

Number of Classes with
Classes preconditions

MINA 166 15
JDO 377 116
ASPECTJ 443 154
RHINO 52 17

Table 8.6: How prevalent are classes with preconditions? With the exception of MINA,
roughly one third of all classes are complex enough to be misused.

PACHIKA. In the experimental evaluation in Section 8.5, our tool was only able to gen-
erate fix candidates for a small number of bugs in RHINO, since only few bugs actually
revealed violations of preconditions. Obviously, PACHIKA’s applicability is limited
to bugs that cause a precondition violation. In order to get a feeling of PACHIKA’s
potential, we wanted to know how many bugs actually show precondition violations.

For this purpose, we investigated a sample of bugs from the bug databases of the
projects used in the evaluation. For each bug, we tried to determine whether or not the
bug would have caused a violation of a precondition. However, we quickly came to the
conclusion that it is not possible to reliably answer this question by only looking at the
bug report and source code. On the other hand, manually building and executing each
snapshot for a large enough set of bugs is too time-consuming.

PACHIKA’s ability to detect bugs correlates with the number of classes that may
potentially be used in a wrong way. A high percentage of such classes would mean
that there is a big potential for wrong usage that causes violations. To measure the
percentage, we generated models for all classes used in our subjects and classified
models as having preconditions or not. A model has preconditions if there is at least one
method invocation other than that of a getter method which requires another method
to be invoked before. For example, in Figure 8.1, the model for VmPipeAcceptor
has preconditions, because in order to satisfy the precondition of unbind(), method
bind() has to be invoked before.

Table 8.6 lists the number of classes for which we mined at least one model (col-
umn 2), and the number of classes with preconditions (column 3). Except for MINA,
approximately one out of three classes has a model with preconditions. Thus, roughly
one third of the classes in our projects are complex enough to be misused. Since there
are typically several objects with different types in the scope at any point in the pro-
gram, there is a big potential for detecting anomalies based on violated preconditions.

154 CHAPTER 8. GENERATING FIXES FROM OBJECT BEHAVIOR ANOMALIES

8.7 Related Work

8.7.1 Locating Bugs
The most frequent work in automated debugging deals with the problem of bug local-
ization—that is, relating a failure to possible bug locations. Milestones in that direction
include the TARANTULA approach by Jones et al. [57] as well as statistical debug-
ging [67] by Liblit et al., who allow the programmer to focus on a small percentage of
the code.

Like these approaches, PACHIKA leverages the difference between passing and fail-
ing executions; rather than suggesting locations, however, it produces fixes. By lever-
aging the test suite (and all other forms of automated validation), PACHIKA can thus
successfully weed out invalid candidates, resulting in either a valid fix—or nothing.
This “no-false-positives” approach is where our approach greatly differs from existing
bug localization techniques. Nonetheless, it can be easily combined with bug localiza-
tion: When PACHIKA cannot generate a fix, then bug localization may at least suggest
a location; or one could use locations as suggested by a bug localization technique as
suspicious locations for PACHIKA (cf. Section 8.2).

8.7.2 Repairing Programs
Most related to PACHIKA is the recent work by Weimer et al. [107] on automatic patch
generation. Weimer et al. systematically mutate a failing C program by inserting, swap-
ping, and deleting statements. Their approach then uses an extended form of genetic
programming to evolve those mutants that pass (1) the (previously failing) test and (2)
as many tests as possible from a regression test suite. The approach produces repairs
in less than three minutes on average on a set of ten selected bugs.

Our approach is similar to their technique in that it also generates potential fixes
and assesses them via a regression test suite. The contribution and potential of their
approach over PACHIKA is clearly the wide range of possible mutations, as well as the
adaptive approach in generating fixes.

Rather than using adaptive random search, however, PACHIKA starts right away
with behavioral differences between passing and failing runs, which keeps the search
space narrow. Such a focus is very much needed: It is unknown whether the approach
of Weimer et al. scales up to a program like ASPECTJ, with more than 75,000 lines of
code and a test suite where one single run already takes a minute; it is also unknown
how much fine-tuning of parameters is required to quickly find fixes. It is also unclear
how the approach of Weimer et al. could integrate bug localization or mined specifi-
cations, as PACHIKA does. Last but not least, we evaluate PACHIKA on all previously

8.7. RELATED WORK 155

documented crashing bugs of ASPECTJ and RHINO—and thus get an idea of scalability
and applicability on real programs and real bugs.

8.7.3 Leveraging Specifications

Weimer developed a method for automatically and soundly patching programs with a
given specification [106]. However, as Weimer states in [107], a formal specification is
seldom available—which is why PACHIKA mines and leverages behavior models from
passing and failing executions.

In the long run, we expect automatic fix generation to rely on both search-based
techniques (as in the approach of Weimer et al.) as well as specification mining (as
in PACHIKA)—in addition to the wide range of information that is available via static
analysis, theorem provers, bug history, and other techniques.

8.7.4 Repairing State

Demsky et al. [34] show how to automatically fix data structures at run-time, again
according to a given specification. Rinard et al. [88] suggest similar repair techniques
for invalid memory accesses. In both these works, only the program state is fixed.
Weimer’s and our work, though, look for repairs not only to the program state of the
current run, but to its actual code (which as a side-effect yields repairs to the state as
well). This requires many more checks, such as contracts or a regression test suite, but
also increases confidence in the correctness of the repairs—besides, hopefully, provid-
ing a permanent fix to the problem.

8.7.5 Mining Specifications

PACHIKA is an instance of specification mining tools. The behavior models as mined
by PACHIKA were first implemented in the ADABU tool [28]. The concept was later
adapted by Ghezzi et al. [47]. Their ADIHEU tool uses models generated by ADABU
to support recovering algebraic specifications from program runs. This approach could
also be used in PACHIKA to capture object behavior and find anomalies.

Dynamic invariants, as conceived by Ernst et al. [39], express properties of data
that hold at specific moments during the observed executions. By checking object
attribute states, one could use the DAIKON [39] tool to extract pre- and postconditions
for method calls and thus object behavior models.

The concept of learning models from actual program runs was first explored by
Amons et al. [1], applying a probabilistic NFA learner on C traces. Their approach re-

156 CHAPTER 8. GENERATING FIXES FROM OBJECT BEHAVIOR ANOMALIES

lies on manual annotations to relate functions to objects (such as C sockets or X11 se-
lections) and to distinguish object definers from object users.

8.7.6 Generating Tests
Our work on generating fixes was heavily inspired by recent work on generating tests.
Ciupa et al. [21] generate random sequences of method calls, leveraging existing con-
tracts to retain only valid sequences. When a test case fails, the approach of Leitner
et al. [64] automatically extracts a test case that reproduces the failure. Both genera-
tion and extraction of call sequences to characterize passing and failing runs are key
concepts of PACHIKA.

8.8 Conclusions
Automatic generation of fixes as the natural next step after fix localization is an emerg-
ing field starting to gain momentum. We propose a new approach called PACHIKA that
leverages object behavior models to analyze differences between normal and abnormal
behavior. Our approach successfully constrains the search space to quickly generate
potential fixes that not only remove the problem at hand, but also have a high diagnos-
tic quality. In an evaluation with real bugs, PACHIKA was able to generate fixes that
pass the test suite for five out of 53 bugs.

The technique can easily be extended to quality assurance beyond testing: As soon
as a specification can be automatically validated, PACHIKA can leverage it to filter fix
candidates.

Chapter 9

Conclusions and Future Work

What happens when a computer program runs? The answer can be frustratingly
elusive, as anyone who has debugged or tuned a program knows. As it runs, a

program overwrites its previous state, which might have provided a clue as to how the
program got to the point at which it computed the wrong answer or otherwise failed.

This all-too-common experience is symptomatic of a more general problem: the
difficulty of accurately and efficiently capturing and analyzing the sequence of events

that occur when a program executes.
– Thomas Ball/James R. Larus [6]

Capturing the dynamic behavior of a program is challenging. Even for short runs
that last only a few seconds, a complete trace consists of several gigabytes of data.
The sheer size of the trace file makes it difficult to analyze behavior based on this
data. Hence, many applications represent dynamic information using different types of
software execution models. A software execution model is an abstract representation of
the trace file that captures those aspects of the dynamic behavior that are important for
the application at hand. Existing types of software execution models mostly use only
control-flow information.

This thesis has presented a novel type of software execution model called object be-
havior models, which characterize the behavior of individual objects at runtime. Such
models are finite state automata where states represent different states of the object and
transitions occur due to method invocations. An object behavior model describes the
effect of a method invocation in terms of changes to the object’s state. By combining
control-flow with information about the values of variables, object behavior models

157

158 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

capture important aspects of the dynamic behavior that are not represented by existing
software execution models.

The contributions of this thesis are as follows:

• We have presented object behavior models, a novel approach to modeling the
runtime behavior of object-oriented programs. To make the models concise, we
use an abstraction function based on existing invariant categories further refined
by static analysis that maps concrete values to abstract categories.

• We have described ADABU, a tool that mines object behavior models from the
execution of JAVA programs. Our implementation is robust and capable of min-
ing models from the execution of large interactive programs such as ECLIPSE
and ASPECTJ.

• We have presented IBUGS, an approach that mines bug benchmarks from the
history of projects. Currently, the repository contains several hundreds of bugs
mined from two large projects. The benchmark is publicly available so that other
researchers can benefit from our work.

• We have shown that object behavior models can be used as specifications for
the correct usage of a class. Our TAUTOKO tool uses ADABU to mine object
behavior models from the execution of test suites. If the initial models do not
provide enough coverage, TAUTOKO mutates the test suite to generate enriched
specifications. When fed into a typestate verifier, enriched models are able to
detect statistically significantly more bugs than initial models.

• We have presented an approach that automatically generates fix candidates for
a given failure. Our PACHIKA tool uses ADABU to mine models from passing
and failing runs and compares them to find violations of preconditions in the
failing run. If a violation is found, PACHIKA analyzes the passing run models to
propose patches that fix the violation. These candidate fixes are evaluated against
the test suite, and PACHIKA proposes only those candidates that fix the problem
and do not break any other tests. In a controlled experiment with the IBUGS
subjects, ADABU was able to generate fixes that are semantically equivalent to
fixes provided by the project developers.

In summary, this thesis advances the state of the art by introducing a new way to
model dynamic program behavior which can be used as a basis for mining specifica-
tions and to synthesize fixes. To enable other researchers to benefit from this work,
we have made the source code of all tools presented in this thesis available for down-
load. The following sections present ideas for future work and instructions where to
download each tool.

9.1. IBUGS 159

9.1 iBugs
The IBUGS repository is available for download at

http://www.ibugs.org

Our next steps to improve the infrastructure will include the following:

Extend the repository. We plan to add more subjects to the IBUGS repository. In
particular, we want to add projects that are multithreaded and provide a graphical
user interface.

Classification of bugs. Our tags and fingerprint provide an initial classification of
bugs. We plan to further improve this classification by using automated tech-
niques from data mining. This will greatly improve the value of our data sets,
because researchers can test for which kinds of bugs their tools perform best.

Score measure. In order to measure the success of bug localization tools, Renieris and
Reiss introduced a score [86] that indicates the fraction of the code that can be
ignored when searching for a bug. In future releases of our dataset, we want to
provide a tool that computes this score. This will hopefully unify the assessment
of results.

9.2 Tautoko
The source code and binary versions of TAUTOKO are available online at

http://www.st.cs.uni-saarland.de/models/tautoko/

Future work on TAUTOKO will contain the following:

Technical Improvements. TAUTOKO can only apply one mutation at a time, which
is why some states cannot be fully explored. This is due to limitations of the
instrumentation framework. In the future, we would like to extend TAUTOKO
such that arbitrary combinations of mutations are possible.

Test Case Generation. TAUTOKO’s strategy for generating tests is simple but effec-
tive and only requires a test suite as input. However, there are many other ap-
proaches to test case generation that could be used just as well. One idea for
future work is to compare different strategies in terms of their ability to enrich a
specification.

http://www.ibugs.org
http://www.st.cs.uni-saarland.de/models/tautoko/

160 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9.3 Pachika
The project page for PACHIKA is available online at

http://www.st.cs.uni-saarland.de/models/pachika/

There are several interesting ideas to further explore possibilities for automatically gen-
erating fixes:

Alternate differences. Right now, the set of differences we observe and the set of fixes
we can generate is limited to conditional method calls. However, there are many
more potential fixes that could be generated. For instance, assigning a value to
an attribute could instantly fix the object state.

Adaptive fix generation. With a larger set of possible fixes, one could consider adap-
tive techniques to systematically explore the search space, as in the approach of
Weimer et al. [107]. One interesting possibility could be to start with behavioral
differences as fix candidates (as PACHIKA does), and to use these as a basis for
further mutations.

Assessing the impact of fixes. What happens if there are multiple fix candidates that
all pass the test suite? In this case, we also would like to minimize the impact
on passing executions—impact as measured using dynamic invariants [93], cov-
erage [49], or object behavior models.

http://www.st.cs.uni-saarland.de/models/pachika/

Appendix A

Additional Figures and Tables

161

162 Appendix A. Additional Figures and Tables

1. Select bugs. Use the meta information provided in the file repository.xml to
select relevant bugs.

Example: In order to select all bugs that raised a NullPointerException, use the
XPath [112] expression

/repository/bug[tag=”null pointer exception”]

2. Extract versions. Use the ant task checkoutversion.

Example: In order to checkout the pre-fix and post-fix versions for Bug 4711,
type

ant -DfixId=4711 checkoutversion

The results are placed in the directory “versions/4711/”.

3. Build the program. Use the ant task buildversion.

Example: Build the pre-fix version of Bug 4711 with

ant -DfixId=4711 -Dtag=pre-fix buildversion

If the build succeeds, you find the Jar files in the directory “. . . /pre-
fix/org.aspectj/modules/aj-build/dist/tools/lib/”

Note: Static tools can analyze the Jars in this directory, while dynamic tools that
execute tests need to instrument the Jars created in the next step.

4. Build tests (dynamic tools). Use the ant task buildtests.

Example: In order to build the tests for the pre-fix version of Bug 4711, type

ant -DfixId=4711 -Dtag=pre-fix buildtests

This creates a Jar file that includes the ASPECTJ compiler and all resources
needed for testing in the directory “versions/4711/prefix/org.aspectj/modules/aj-
build/jars/”.

Figure A.1: Step-by-step guide for an evaluation based on IBUGS (1/2).

163

5. Run test suites (dynamic tools). Use the ant tasks runharnesstests for the inte-
gration test suite and runjunittests for the unit test suite of ASPECTJ, respectively.

Example: Run unit tests for the pre-fix version of Bug 4711

ant -DfixId=4711 -Dtag=pre-fix runjunittests

6. Run specific tests (dynamic tools). Generate scripts by using the ant task gen-
testscript and execute them.

Example: In order to execute test “SUID: thisJoinPoint” described in file
“org.aspectj/modules/tests/ajcTests.xml” generate a script with
ant -DfixId=4711 -Dtag=pre-fix

-DtestFileName="org.aspectj.modules/tests/ajcTests.xml"

-DtestName="SUID: thisJoinPoint".

This creates a new ant script in the directory “4711/pre-
fix/org.aspectj/modules/tests/”. Execute this file to run test “SUID: thisJoin-
Point”.

Hint: All tests executed by the test suite are described in the file “4711/pre-
fix/testresults.xml”.

7. Assess your tool. Compare the predicted bug location against the location
changed in the fix (see repository.xml).

Figure A.2: Step-by-step guide for an evaluation based on IBUGS. Static bug localiza-
tion tools typically integrate with Step 3 and 4. Dynamic tools need to run programs
and therefore integrate with Step 4, 5, and 6.

164 Appendix A. Additional Figures and Tables

1 for (int i = types.length - 1;
2 i >= 0; i--) {
3 - if (typePattern.matchesExactly
4 - (types[i])) return true;
5 + if (typePattern.matchesStatically
6 + (types[i])) return true;
7 }
8 return false;

Bug 42539: “throw derivative point-
cuts not advised.”

Figerprint: M Z-if

1 ResolvedTypeX[] parameterTypes =
2 searchStart.getWorld().resolve(..);
3

4 - arguments = arguments.
5 - resolveReferences(bindings);
6 + TypePatternList arguments =
7 + this.arguments.
8 + resolveReferences(bindings);
9

10 IntMap newBindings=new IntMap();

Bug 43194: “java.lang.VerifyError in
generated code”

Fingerprint: K-this M

1 if (getKind().isEnclosingKind()) {
2 return getSignature();
3 + } else if (getKind() ==
4 + Shadow.PreInitialization) {
5 + // PreInit doesn’t enclose code
6 + // but its signature
7 + // is correctly the signature
8 + // of the ctor.
9 + return getSignature();

10 } else if(enclosingShadow==null){
11 return getEnclosingMethod().
12 getMemberView();

Bug 67774: “Nullpointer-exception in
pointcuts using withincode() clause”

Fingerprint: K-else K-if K-return M O-
== Z-if

1 String packageName = StructureUtil.
2 getPackageDeclarationFromFile
3 (inputFile);
4

5 - if (packageName != null) {
6 + if (packageName != null &&
7 packageName != "") {
8 writer.println("package " +
9 packageName + ";");

10 }

Bug 69011: “ajdoc fails when using
default package”

Fingerprint: O-!= O-&& T V Y Z-if

Figure A.3: Examples for different bugs with fingerprints (1/3). Bug identifiers refer
to the ASPECTJ project.

165

1 if (shadow.getSourceLocation()
2 == null
3 || checker.getSourceLocation()
4 == null)
5 return;
6

7 + // Ensure a node for the target exists
8 + IProgramElement targetNode =
9 + getNode(...);

10 +
11 String sourceHandle = targetNode.
12 createHandleIdentifier(
13 checker.getSourceLocation().
14 getSourceFile(),

Bug 80916: “In some cases the struc-
ture model doesn’t contain the matches
declare relationship”

Fingerprint: M T V

1 // matched by the typePattern.
2 ResolvedType[] annTypes =
3 annotated.getAnnotationTypes();
4 - if (annTypes.length!=0) {
5 + if (annTypes!=null &&
6 + annTypes.length!=0) {
7 for (int i = 0;
8 i < annTypes.length;
9 i++) {

Bug 123695: “Internal nullptr excep-
tion with complex declare annotation
statement that affects injected meth-
ods”

Fingerprint: K-null O-!= O-&& T V Z-
if

1 }
2 }
3 - if (it.hasNext())
4 - sb.append(", ");
5 + if (it.hasNext())
6 + sb.append(",");
7 }
8 sb.append(’)’);

Bug 132130: “Missing relationship for
declare @method when annotating a
co-located method”

Fingerprint: Y

Figure A.4: Examples for different bugs with fingerprints (2/3). Bug identifiers refer
to the ASPECTJ project.

166 Appendix A. Additional Figures and Tables

1 try {
2 + synchronized (loader) {
3 WeavingAdaptor weavingAdaptor =
4 WeaverContainer.getWeaver(...);
5 if (weavingAdaptor == null) {
6 if (trace.isTraceEnabled())
7 trace.exit("preProcess",
8 bytes);
9 return bytes;

10 }
11 return weavingAdaptor.
12 weaveClass(className, bytes);
13 + }
14 } catch (Exception t) {
15 trace.error("preProcess",t);

Bug 151182: “NPE in BcelWeaver us-
ing LTW”

Fingerprint: K-synchronized T V

1 // at the moment it only deals with
2 // ’declared exception is not thrown’
3 if (!shadow.getWorld().
4 isIgnoringUnusedThrownException()
5 - && !thrownExceptions.isEmpty()){
6 + && !getThrownExceptions().
7 + isEmpty()){
8 Member member =
9 shadow.getSignature();

10 if (member instanceof
11 BcelMethod) {

Bug 161217: “NPE in BcelAdvice”

Fingerprint: Z-if

Figure A.5: Examples for different bugs with fingerprints (3/3). Bug identifiers refer
to the ASPECTJ project.

167

1 <bug id=”69459”>
2 <property name=”files−churned” value=”1”/>
3 <property name=”java−files−churned” value=”1”/>
4 <property name=”classes−churned” value=”1”/>
5 <property name=”methods−churned” value=”1”/>
6 <property name=”hunks” value=”3”/>
7 <property name=”lines−added” value=”0”/>
8 <property name=”lines−deleted” value=”0”/>
9 <property name=”lines−modified” value=”11”/>

10 <property name=”lines−churned” value=”11”/>
11 <property name=”priority” value=”P3”/>
12 <property name=”severity” value=”normal”/>
13 <concisefingerprint>KMZ</concisefingerprint>
14 <fullfingerprint>K−else K−if K−null M O−! O−&&
15 O−+ T V Y Z−if</fullfingerprint>
16 <pre−fix−testcases failing=”105” passing=”1203”/>
17 <post−fix−testcases failing=”105” passing=”1204”/>
18 <testsforfix type=”new”>
19 <file location=”ajcTests.xml”>
20 <test name=”Hiding of Instance Methods”/>
21 </file>
22 </testsforfix>
23 <fixedFiles>
24 <file name=”ResolvedTypex.java” revision=”1.27”>
25 ...
26 1194c1194,1202
27 <
28 −−−
29 > if (parent.isStatic()
30 > && !child.isStatic()) {
31 ...
32 </file>
33 </fixedFiles>
34 </bug>

Figure A.6: XML content descriptor for bug 69459.

168 Appendix A. Additional Figures and Tables

Appendix B

Trace File Format Description

This chapter describes the trace file format as processed by the ADABU model miner.
The purpose of this chapter is to provide enough information to implement a language
frontend that generates a trace file.

B.1 Concepts
The trace file was designed with the following goals in mind:

Simplicity The existing JAVA implementation uses sophisticated instrumentation tech-
niques to gather the required information. As instrumentation in JAVA is very
fragile, instrumentation and tracing is kept as simple as possible.

Self-Containedness The trace file is self-contained, i.e. it contains all information in
one single file.

Events The trace file essentially is a sequence of events. Each event describes an
action in the run that is of interest to ADABU.

Independence The event types are designed for a maximum of independence between
events that deal with different aspects of the execution. For example, it is possi-
ble to completely turn off tracing of array operations.

Stream processing ADABU only reads the trace file once and does not jump between
different locations in the trace file. This requires that information in the trace file
respects a certain order. At least for JAVA, this can sometimes be difficult.

169

170 Appendix B. Trace File Format Description

Record Everything Sometimes it is difficult to reproduce exactly the same execution
due to different schedules for the garbage collector and other issues. To avoid
those problems, the existing tracer records as much information as possible for
as many objects as possible.

Identifiers For efficiency reasons, the trace file makes heavy use of identifiers. For
example, the name and signature of a method m are only transmitted once. All
subsequent invocations of m only specify an identifier for the method.

B.1.1 Serialization

The existing implementation serializes data using JAVA’s DataOutputStream class.
This is a low-level serialization class that provides methods for writing all primitive
JAVA types. To read the data, the corresponding DataInputStream class can be
used. In order to be processed by ADABU, the trace file has to use the same serial-
ization scheme as DataOutputStream. Porting DataOutputStream to another
language should be fairly easy.

B.1.2 Object Identifiers

To mine models, ADABU needs to be able to identify the target object for field accesses
and method invocations. To achieve this, all events associated with a target object spec-
ify an identifier (a positive integer) for the target object. This identifier must be unique
among all objects and remain unchanged over the life-time of the object. An object’s
identifier is established right after the object was created and before the constructor is
invoked.

B.1.3 Method Identifiers

A method identifier is a positive integer that identifies a method in a unique manner.
Similar to object identifiers, method identifiers have to be specified in the trace file
before the first use.

B.1.4 Field Identifiers

A field identifier is a positive integer that identifies a field in a unique manner. Field
identifiers also have to be specified before they are used for the first time.

B.2. EVENTS 171

B.1.5 Thread Identifiers

ADABU is able to distinguish events in different threads. To do so, ADABU requires
almost all events to specify an identifier for the thread that caused the event. Just like
the other identifier types, thread identifiers are positive integers that uniquely identify
a thread.

B.1.6 Allocation Site Identifiers

For some analyzes, ADABU needs to distinguish different allocation sites in a method.
The new object event B.2.1 therefore also specifies an integer that uniquely identifies
the allocation site within the method.

B.1.7 Invocation Site Identifiers

In some circumstances, ADABU needs to know exactly where a call to a method came
from. To do so, the invocation site event B.2.2 specifies a positive identifier that
uniquely identifies the code position where the method call came from.

B.2 Events

This section describes all possible events in the trace file. Every event writes the fol-
lowing two values as its first values:

name type description

eventId byte An identifier for the event type. A list of event
identifiers can be found in Table B.1

threadId integer An identifier for the thread that caused the event
(see Section B.1.5).

B.2.1 Identifier Events

Method Identifier Events

This event specifies the identifier for a certain method. The event has to occur before
any other event that uses the method identifier. It specifies the following values:

172 Appendix B. Trace File Format Description

name type description

methodId integer A positive integer that uniquely identifies the
method.

methodName utf8 A serialized representation of the method name
(see below).

A method identifier is serialized as follows:

1. The fully qualified class name that contains the method with slashes instead of
dots as separator for the package levels.

2. A dot.

3. The name of the method.

4. The signature of the method as specified by the JAVA virtual machine specifica-
tion [68].

5. A hash.

6. The access modifier encoded as specified by the ASM documentation [82].

Field Identifier Events

This event specifies the identifier for a certain field. The event has to occur before any
other event that uses it.

name type description

fieldId integer A positive integer that uniquely identifies the
field.

fieldName utf8 A serialized representation of the field name (see
below).

A field identifier is serialized as follows:

1. The fully qualified class name that contains the method with slashes instead of
dots as separator for the package levels.

2. A percentage sign.

3. The name of the field.

B.2. EVENTS 173

4. A percentage sign.

5. The type of the field as specified by the JAVA virtual machine specification [68].

6. A percentage sign.

7. A serialized boolean (true or false) indicating whether or not the field is
static.

Class Identifier Events

This event specifies an identifier for a class. It has to occur before any other event that
uses it.

name type description

classId integer A positive integer that uniquely identifies the
class.

className utf8 The fully qualified class name with slashes in-
stead of dots.

Object Created Events

This event indicates that a new object was created. It has occur before any other event
that is associated with the object. In particular, it also has to occur before the first call
to a constructor.

name type description

objectId integer The identifier for the new object.
classId integer The identifier for the runtime class of the new ob-

ject.
allocationSiteId integer The identifier for the allocation site (see Section

B.1.6).

Array Created Events

This event indicates that a new array was created. It is similar to the object created
event described in Section B.2.1. In JAVA, arrays are also objects and therefore also get
an identifier. For multi-dimensional arrays, the trace must contain array create events
(and array write events, see Section B.2.6) for all arrays created.

174 Appendix B. Trace File Format Description

name type description

arrayId integer The identifier for the new array.
typeDesc utf8 The type description for the new array as speci-

fied by the virtual machine specification [68].
allocationSiteId integer The identifier for the allocation site (see Section

B.1.6).

B.2.2 Method Call Events
Method Start Event

This event indicates that the execution of a method has started. It has to occur before
any other event that happens when the method is active.

name type description

methodId integer The identifier for the method.
objectId integer The identifier of the target object for the call or

−2 if this is a static method.

Regular Method End Event

This event indicates the end of a method. It has to be the last event that is traced
when the method is active. This event indicates a regular method end, i.e. the method
returned normally and did not raise an exception.

name type description

methodId integer The identifier for the method.

Exceptional Method End Event

This event indicates a method end that raised an exception. It has to be the last event
that is traced when the method is active.

name type description

methodId integer The identifier for the method.
exceptionClass utf8 The fully qualified class name of the exception

that was raised with slashes instead of dots.

B.2. EVENTS 175

Invocation Site Event

This event specifies the invocation site for a call (see Section B.1.7). It has to occur
right before the corresponding method start event.

name type description

siteId integer The identifier for the invocation site.

B.2.3 Parameter Events

A parameter event specifies the value that was passed as a parameter to the currently
active method. Parameter events occur right after the corresponding method start event.
Similar to field events, there is one event type for each primitive type and one for
complex types (see Table B.1).

name type description

index integer The index of the parameter.
value see description The value of the parameter. For primitive types,

this is simply the serialized value. For complex
types, the value is the object identifier passed as
an integer.

B.2.4 Return Events

A return event specifies the value that was returned by a method invocation. Return
events occur right before the corresponding method end event. There is one return event
for all 32 bit integer types (for JAVA these are boolean, byte, char, short
and int), one return event for void methods, return event types for the remaining
primitive types and one for complex return values.

name type description

value see description The returned value. For primitive types, this is
simply the serialized value. For complex types,
the value is the object identifier passed as an inte-
ger.

176 Appendix B. Trace File Format Description

B.2.5 Field Access Events

This section summarizes all events that indicate read or write access to a field.

Field Read Events

A field read event occurs if the value of a class field is read by a method. All field read
events specify the same values:

name type description

objectId integer The identifier for the object the field belongs to or
−2 if this is a static field.

fieldId integer The identifier of the field that was read.
value see description The value that was read from the field. For fields

of primitive type, this is simply the serialized
value of the field. For fields of complex type, the
value is the object identifier passed as an integer.

Table B.1 lists all field read events. Basically, there is one event type for each
primitive type, and one for complex types.

Field Write Events

A field write event occurs if the value of a class field is written by a method. All field
write events specify the same values:

name type description

objectId integer The identifier for the object the field belongs to or
−2 if this is a static field.

fieldId integer The identifier of the field that was written.
value see description The value that was written to the field. For fields

of primitive type, this is simply the serialized
value of the field. For fields of complex type, the
value is the object identifier passed as an integer.

Table B.1 lists all field write events. Basically, there is one event type for each
primitive type, and one for complex types.

B.2. EVENTS 177

B.2.6 Array Access Events

Although arrays are in many ways similar to objects, ADABU has separate events for
arrays to allow for independent tracing of objects and arrays.

Array Read Events

An array read event occurs if the value of an array is read by a method. All array read
events specify the same values:

name type description

arrayId integer The identifier for the array.
index integer The index in the array that was accessed.
value see description The value that was read from the array. For ar-

rays of primitive type, this is simply the serialized
value. For arrays of complex type, the value is the
object identifier passed as an integer.

Table B.1 lists all array read events. Basically, there is one event type for each
primitive type, and one for complex types.

Array Write Events

An array write event occurs if the value of a class field is written by a method. All
array write events specify the same values:

name type description

arrayId integer The identifier for the array.
index integer The index in the array that was accessed.
value see description The value that was written to the array. For ar-

rays of primitive type, this is simply the serialized
value. For arrays of complex type, the value is the
object identifier passed as an integer.

178 Appendix B. Trace File Format Description

B.2.7 Inspector Events
ADABU supports using return values of inspectors in the state representation. To this
end, the user has to specify an XML file with a list of inspectors. At trace time, ADABU
reads this file and injects additional calls to inspectors at the beginning and the end
of every non-inspector (and non-static) method. Return values are then written to the
stream using events 62 to 66.

name type description

objectId integer The identifier for the target object.
methodId integer The identifier for the inspector.

value The value that was returned by the inspector. For
inspectors with primitive return values, this is
simply the serialized value. For inspectors with
complex return type, the value is the object iden-
tifier passed as an integer.

B.2.8 List of Event Identifiers
Table B.1 lists all field write events. Basically, there is one event type for each primitive
type, and one for complex types.

B.2. EVENTS 179

name Id

EV METHODNAME 2
EV FIELDNAME 3
EV CLASSNAME 4
EV METHODSTART 5
EV METHODEND 6
EV CALLSITE 7
EV FIELDWRITE BOOLEAN 8
EV FIELDWRITE BYTE 9
EV FIELDWRITE SHORT 10
EV FIELDWRITE CHAR 11
EV FIELDWRITE INT 12
EV FIELDWRITE LONG 13
EV FIELDWRITE FLOAT 14
EV FIELDWRITE DOUBLE 15
EV FIELDWRITE OBJECT 16
EV PARAMETER OBJECT 17
EV OBJECTCREATED 18
EV ARRAYCREATED 20
EV ARRAYREAD BYTE 21
EV ARRAYREAD SHORT 22
EV ARRAYREAD CHAR 23
EV ARRAYREAD INT 24
EV ARRAYREAD LONG 25
EV ARRAYREAD FLOAT 26
EV ARRAYREAD DOUBLE 27
EV ARRAYREAD OBJECT 28
EV ARRAYWRITE BYTE 29
EV ARRAYWRITE SHORT 30
EV ARRAYWRITE CHAR 31
EV ARRAYWRITE INT 32
EV ARRAYWRITE LONG 33
EV ARRAYWRITE FLOAT 34
EV ARRAYWRITE DOUBLE 35

name Id

EV ARRAYWRITE OBJECT 36
EV EX METHODEND 37
EV ASTORE 38
EV FIELDREAD BOOLEAN 39
EV FIELDREAD BYTE 40
EV FIELDREAD SHORT 41
EV FIELDREAD CHAR 42
EV FIELDREAD INT 43
EV FIELDREAD LONG 44
EV FIELDREAD FLOAT 45
EV FIELDREAD DOUBLE 46
EV FIELDREAD OBJECT 47
EV PURGE 48
EV PARAMETER BOOL 49
EV PARAMETER BYTE 50
EV PARAMETER SHORT 51
EV PARAMETER CHAR 52
EV PARAMETER INT 53
EV PARAMETER LONG 54
EV PARAMETER FLOAT 55
EV PARAMETER DOUBLE 56
EV RETURN OBJECT 19
EV RETURN INT 57
EV RETURN FLOAT 58
EV RETURN LONG 59
EV RETURN DOUBLE 60
EV RETURN VOID 61
EV INSPECTOR INT 62
EV INSPECTOR FLOAT 63
EV INSPECTOR LONG 64
EV INSPECTOR DOUBLE 65
EV INSPECTOR OBJECT 66

Table B.1: A list of all event identifiers processed by ADABU.

180 Appendix B. Trace File Format Description

Bibliography

[1] AMMONS, G., BODÍK, R., AND LARUS, J. Mining Specifications. In Con-
ference Record of POPL’02: the 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Portland, Oregon, Jan. 16–18, 2002),
pp. 4–16.

[2] ANVIK, J., HIEW, L., AND MURPHY, G. C. Who Should Fix this Bug? In ICSE
’06: Proceeding of the 28th International Conference on Software Engineering
(New York, NY, USA, 2006), ACM Press, pp. 361–370.

[3] ARTZI, S., KIEZUN, A., GLASSER, D., AND ERNST, M. D. Combined Static
and Dynamic Mutability Analysis. In ASE ’07: Proceedings of the twenty-
second IEEE/ACM International Conference on Automated Software Engineer-
ing (2007), ACM, pp. 104–113.

[4] ARTZI, S., KIM, S., AND ERNST, M. D. ReCrash: Making Software Failures
Reproducible by Preserving Object States. In ECOOP 2008 — Object-Oriented
Programming, 22nd European Conference (Paphos, Cyprus, July 9–11, 2008),
pp. 542–565.

[5] AT&T. Graphviz Graph Visualization. http://www.graphviz.org/ as
of 04-07-2010.

[6] BALL, T., AND LARUS, J. R. Using Paths to Measure, Explain, and Enhance
Program Behavior. Computer 33, 7 (2000), 57–65.

[7] BANNING, J. P. An Efficient Way to Find the Side Effects of Procedure
Calls and the Aliases of Variables. In POPL ’79: Proceedings of the 6th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming languages
(1979), ACM, pp. 29–41.

181

http://www.graphviz.org/

182 BIBLIOGRAPHY

[8] BARNETT, M., DELINE, R., FÄHNDRICH, M., JACOBS, B., LEINO, K. R.,
SCHULTE, W., AND VENTER, H. The Spec# Programming System: Chal-
lenges and Directions. In Verified Software: Theories, Tools, Experiments: First
IFIP TC 2/WG 2.3 Conference, VSTTE 2005, Zurich, Switzerland, October 10-
13, 2005, Revised Selected Papers and Discussions (Berlin, Heidelberg, 2008),
Springer-Verlag, pp. 144–152.

[9] BERTOLINO, A., INVERARDI, P., PELLICCIONE, P., AND TIVOLI, M. Auto-
matic Synthesis of Behavior Protocols for Composable Web-services. In ES-
EC/FSE ’09: Proceedings of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (New York, NY, USA, 2009), ACM, pp. 141–150.

[10] BIERHOFF, K., AND ALDRICH, J. Modular Typestate Checking of Aliased
Objects. In OOPSLA ’07: Proceedings of the 22nd annual ACM SIGPLAN
Conference on Object-oriented Programming Systems and applications (New
York, NY, USA, 2007), ACM, pp. 301–320.

[11] BIERMANN, A. W., AND FELDMAN, J. A. On the Synthesis of Finite-State
Machines from Samples of Their Behavior. IEEE Transactions Comput. 21, 6
(1972), 592–597.

[12] BIRD, C., BACHMANN, A., AUNE, E., DUFFY, J., BERNSTEIN, A., FILKOV,
V., AND DEVANBU, P. Fair and Balanced?: Bias in Bug-fix Datasets. In ES-
EC/FSE ’09: Proceedings of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering on European Software Engineering Conference
and Foundations of Software Engineering Symposium (New York, NY, USA,
2009), ACM, pp. 121–130.

[13] BLACKBURN, S. M., GARNER, R., HOFFMANN, C., KHANG, A. M.,
MCKINLEY, K. S., BENTZUR, R., DIWAN, A., FEINBERG, D., FRAMPTON,
D., GUYER, S. Z., HIRZEL, M., HOSKING, A., JUMP, M., LEE, H., MOSS,
J. E. B., MOSS, B., PHANSALKAR, A., STEFANOVIĆ, D., VANDRUNEN, T.,
VON DINCKLAGE, D., AND WIEDERMANN, B. The dacapo benchmarks: java
benchmarking development and analysis. In OOPSLA ’06: Proceedings of the
21st annual ACM SIGPLAN conference on Object-oriented programming sys-
tems, languages, and applications (New York, NY, USA, 2006), ACM, pp. 169–
190.

[14] BORTZ, J. Statistik für Sozialwissenschaftler, 4 ed. Springer, Berlin [u.a.], 1993.

BIBLIOGRAPHY 183

[15] BOWRING, J. F., REHG, J. M., AND HARROLD, M. J. Active Learning for Au-
tomatic Classification of Software Behavior. In ISSTA ’04: Proceedings of the
2004 ACM SIGSOFT International Symposium on Software Testing and Analy-
sis (New York, NY, USA, 2004), ACM, pp. 195–205.

[16] BRANDES, U. GraphML XML Graph File Format. http://graphml.
graphdrawing.org/ as of 04-07-2010.

[17] BRIAND, L. C. A Critical Analysis of Empirical Research in Software Testing.
In ESEM ’07: Proceedings of the First International Symposium on Empirical
Software Engineering and Measurement (Washington, DC, USA, 2007), IEEE
Computer Society, pp. 1–8.

[18] BURGER, M. Locating Failure-Inducing Code Changes in an Industrial Envi-
ronment. Diploma thesis, Saarland University, December 2005.

[19] CATANO, N., AND HUISMAN, M. CHASE: A Static Checker for JML’s
Assignable Clause. In VMCAI 2003: Proceedings of the 4th International Con-
ference on Verification, Model Checking, and Abstract Interpretation (2003),
Springer-Verlag, pp. 26–40.

[20] CHIBA, S. Javassist 3.2. http://www.jboss.org/javassist as of
07-05-2010.

[21] CIUPA, I., LEITNER, A., ORIOL, M., AND MEYER, B. Experimental As-
sessment of Random Testing for Object-oriented Software. In ISSTA ’07: Pro-
ceedings of the 2007 International Symposium on Software Testing and Analysis
(New York, NY, USA, 2007), ACM, pp. 84–94.

[22] CLEVE, H., AND ZELLER, A. Locating Causes of Program Failures. In Pro-
ceedings of the 27th International Conference on Software Engineering (ICSE
2005) (St. Louis, USA, 2005).

[23] COOK, J., AND WOLF, A. Discovering Models of Software Processes from
Event-Based Data. ACM Transactions on Software Engineering and Methodol-
ogy 7, 3 (July 1998), 215–249.

[24] COOPER, K. D., AND KENNEDY, K. Interprocedural Side-effect Analysis in
Linear Time. In PLDI ’88: Proceedings of the ACM SIGPLAN 1988 Conference
on Programming Language design and Implementation (1988), ACM, pp. 57–
66.

http://graphml.graphdrawing.org/
http://graphml.graphdrawing.org/
http://www.jboss.org/javassist

184 BIBLIOGRAPHY

[25] CUBRANIC, D., MURPHY, G. C., SINGER, J., AND BOOTH, K. S. Hipikat:
A Project Memory for Software Development. IEEE Transactions on Software
Engineering 31, 6 (June 2005), 446–465.

[26] DAHM, M. Byte Code Engineering with the Java API. Technical Report B-17-
98, Freie Universität Berlin, Institut für Informatik, Berlin, Germany, July 07
1999.

[27] DALLMEIER, V., KNOPP, N., MALLON, C., HACK, S., AND ZELLER, A.
Generating test cases for specification mining. In ISSTA ’10: Proceedings of
the 19th International Symposium on Software Testing and Analysis (New York,
NY, USA, 2010), ACM, pp. 85–96.

[28] DALLMEIER, V., LINDIG, C., WASYLKOWSKI, A., AND ZELLER, A. Mining
Object Behavior with ADABU. In WODA ’06: Proceedings of the 2006 Inter-
national Workshop on Dynamic Systems Analysis (New York, NY, USA, 2006),
ACM, pp. 17–24.

[29] DALLMEIER, V., LINDIG, C., AND ZELLER, A. Lightweight Defect Local-
ization for Java. In European Conference on Object-Oriented Programming
(ECOOP) (2005), A. Black, Ed.

[30] DALLMEIER, V., ZELLER, A., AND MEYER, B. Generating Fixes from Object
Behavior Anomalies. Automated Software Engineering, International Confer-
ence on (2009), 550–554.

[31] DALLMEIER, V., AND ZIMMERMANN, T. Extraction of Bug Localization
Benchmarks from History. In ASE ’07: Proceedings of the twenty-second
IEEE/ACM International Conference on Automated Software Engineering (New
York, NY, USA, 2007), ACM, pp. 433–436.

[32] DELINE, R., AND FÄHNDRICH, M. Typestates for Objects. In In Proceedings
18th ECOOP (2004), Springer, pp. 465–490.

[33] DEMILLO, R. A., LIPTON, R. J., AND SAYWARD, F. G. Hints on Test Data
Selection: Help for the Practicing Programmer. Computer 11, 4 (1978), 34–41.

[34] DEMSKY, B., AND RINARD, M. Data Structure Repair using Goal-directed
Reasoning. In ICSE ’05: Proceedings of the 27th International Conference on
Software Engineering (New York, NY, USA, 2005), ACM, pp. 176–185.

[35] DIETZ, F. Ristretto 1.0. http://ostatic.com/ristretto as of 01-12-
2010.

http://ostatic.com/ristretto

BIBLIOGRAPHY 185

[36] DIETZ, L., DALLMEIER, V., ZELLER, A., AND SCHEFFER, T. Localizing
Bugs in Program Executions with Graphical Model. In Advances in Neural
Information Processing Systems (2009).

[37] DO, H., ELBAUM, S. G., AND ROTHERMEL, G. Supporting Controlled Exper-
imentation with Testing Techniques: An Infrastructure and its Potential Impact.
Empirical Software Engineering: An International Journal 10, 4 (2005), 405–
435.

[38] ECLIPSE FOUNDATION. Eclipse GPL, 2008. http://www.eclipse.
org/.

[39] ERNST, M. D., COCKRELL, J., GRISWOLD, W. G., AND NOTKIN, D. Dy-
namically Discovering Likely Program Invariants to Support Program Evolu-
tion. IEEE Transactions on Software Engineering 27, 2 (Feb. 2001), 1–25. A
previous version appeared in ICSE ’99, Proceedings of the 21st International
Conference on Software Engineering, pages 213–224, Los Angeles, CA, USA,
May 19–21, 1999.

[40] FINK, S. J., YAHAV, E., DOR, N., RAMALINGAM, G., AND GEAY, E. Ef-
fective Typestate Verification in the Presence of Aliasing. ACM Transactions
Software Engineering Methodology 17, 2 (2008), 1–34.

[41] FISCHER, M., PINZGER, M., AND GALL, H. Populating a Release History
Database from Version Control and Bug Tracking Systems. In Proceedings
International Conference on Software Maintenance (ICSM 2003) (Amsterdam,
Netherlands, Sept. 2003), IEEE.

[42] FOWLER, M. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[43] FROST, R. Jazz and the Eclipse Way of Collaboration. IEEE Software 24, 6
(2007), 114–117.

[44] GAMMA, E. JUnit 3.8.1 GPL, 2007.

[45] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. Design Patterns:
Abstraction and Reuse of Object-Oriented Design, 1993.

[46] GEAY, E., YAHAV, E., AND FINK, S. Continuous Code-quality Assurance with
SAFE. In PEPM ’06: Proceedings of the 2006 ACM SIGPLAN Symposium on
Partial evaluation and semantics-based program manipulation (New York, NY,
USA, 2006), ACM Press, pp. 145–149.

http://www.eclipse.org/
http://www.eclipse.org/

186 BIBLIOGRAPHY

[47] GHEZZI, C., MOCCI, A., AND MONGA, M. Efficient Recovery of Algebraic
Specifications for Stateful Components. In IWPSE ’07: Ninth International
Workshop on Principles of Software evolution (New York, NY, USA, 2007),
ACM, pp. 98–105.

[48] GOLD, E. Language Identification in the Limit. Information and Control (1967),
447–474.

[49] GRÜN, B. J. M., SCHULER, D., AND ZELLER, A. The Impact of Equivalent
Mutants. In ICSTW ’09: Proceedings of the IEEE International Conference
on Software Testing, Verification, and Validation Workshops (Washington, DC,
USA, 2009), IEEE Computer Society, pp. 192–199.

[50] GUPTA, N., AND HEIDEPRIEM, Z. V. A New Structural Coverage Criterion for
Dynamic Detection of Program Invariants. Automated Software Engineering,
International Conference on 0 (2003), 49.

[51] HANGAL, S., AND LAM, M. S. Tracking Down software Bugs using Auto-
matic Anomaly Detection. In ICSE ’02: Proceedings of the 24th International
Conference on Software Engineering (New York, NY, USA, 2002), ACM Press,
pp. 291–301.

[52] HARROLD, M. J., ROTHERMEL, G., WU, R., AND YI, L. An Empirical In-
vestigation of Program Spectra. In PASTE ’98: Proceedings of the 1998 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and En-
gineering (New York, NY, USA, 1998), ACM, pp. 83–90.

[53] HIERONS, R. M., BOGDANOV, K., BOWEN, J. P., CLEAVELAND, R., DER-
RICK, J., DICK, J., GHEORGHE, M., HARMAN, M., KAPOOR, K., KRAUSE,
P., AND LÜTTGEN, G. Using Formal Specifications to Support Testing. ACM
Comput. Surv. 41, 2 (2009), 1–76.

[54] HOVEMEYER, D., AND PUGH, W. Finding Bugs is Easy. SIGPLAN Not. 39,
12 (2004), 92–106.

[55] INFO ETHER. PMD. http://pmd.sourceforge.net/.

[56] JHA, S., TAN, K., AND MAXION, R. A. Markov Chains, Classifiers, and
Intrusion Detection. In CSFW ’01: Proceedings of the 14th IEEE Workshop on
Computer Security Foundations (Washington, DC, USA, 2001), IEEE Computer
Society, p. 206.

http://pmd.sourceforge.net/

BIBLIOGRAPHY 187

[57] JONES, J. A., AND HARROLD, M. J. Empirical Evaluation of the Tarantula
Automatic Fault-localization Technique. In ASE ’05: Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineering (New
York, NY, USA, 2005), ACM, pp. 273–282.

[58] Java Virtual Machine Tool Interface. http://java.sun.com/javase/
6/docs/technotes/guides/jvmti/.

[59] KICZALES, G., HILSDALE, E., HUGUNIN, J., KERSTEN, M., PALM, J., AND
GRISWOLD, W. G. An Overview of AspectJ. In Proceedings of the 15th Eu-
ropean Conference on Object-Oriented Programming (ECOOP) (2001), J. L.
Knudsen, Ed., vol. 2072 of Lecture Notes in Computer Science, pp. 327–353.

[60] KING, J. C. Symbolic Execution and Program Testing. Commun. ACM 19, 7
(1976), 385–394.

[61] KNIZHNIK, K., AND ARTHO, C. Jlint–Find bugs in Java programs.
http://jlint.sourceforge.net/.

[62] KO, A. J., AND MYERS, B. A. A Framework and Methodology for Study-
ing the Causes of Software Errors in Programming Systems. Journal of Visual
Languages and Computing 16, 1-2 (2005), 41–84.

[63] KO, A. J., AND MYERS, B. A. Debugging Reinvented: Asking and Answering
Why and Why Not Questions about Program Behavior. In ICSE ’08: Proceed-
ings of the 30th International Conference on Software Engineering (New York,
NY, USA, 2008), ACM, pp. 301–310.

[64] LEITNER, A., CIUPA, I., ORIOL, M., MEYER, B., AND FIVA, A. Contract
Driven Development = Test Driven Development - Writing Test Cases. In
ESEC-FSE ’07: Proceedings of the ACM Symposium on the Foundations of
Software Engineering (New York, NY, USA, 2007), ACM, pp. 425–434.

[65] LI, Z., TAN, L., WANG, X., LU, S., ZHOU, Y., AND ZHAI, C. Have Things
Changed Now?: An Empirical Study of Bug Characteristics in Modern Open
Source Software. In ASID ’06: Proceedings of the 1st Workshop on Architec-
tural and System support for improving Software dependability (New York, NY,
USA, 2006), ACM Press, pp. 25–33.

[66] LI, Z., AND ZHOU, Y. PR-Miner: Automatically Extracting Implicit Program-
ming Rules and Detecting Violations in Large Software Code. In ESEC/FSE-13:
Proceedings of the 10th European Software Engineering Conference held jointly

http://java.sun.com/javase/6/docs/technotes/guides/jvmti/
http://java.sun.com/javase/6/docs/technotes/guides/jvmti/

188 BIBLIOGRAPHY

with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (New York, NY, USA, 2005), ACM Press, pp. 306–315.

[67] LIBLIT, B., NAIK, M., ZHENG, A. X., AIKEN, A., AND JORDAN, M. I. Scal-
able Statistical Bug Isolation. In PLDI ’05: Proceedings of the 2005 ACM SIG-
PLAN Conference on Programming language design and implementation (New
York, NY, USA, 2005), ACM Press, pp. 15–26.

[68] LINDHOLM, T., AND YELLIN, F. The Java Virtual Machine Specification,
1st ed. Addison-Wesley, Reading, Massachusetts, 1997.

[69] LIU, C., YAN, X., FEI, L., HAN, J., AND MIDKIFF, S. P. SOBER: Statistical
Model-based Bug Localization. In ESEC/FSE-13: Proceedings of the 10th Eu-
ropean Software Engineering Conference held jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (New York,
NY, USA, 2005), ACM Press, pp. 286–295.

[70] LORENZOLI, D., MARIANI, L., AND PEZZÈ, M. Automatic Generation of
Software Behavioral Models. In ICSE ’08: Proceedings of the 30th Interna-
tional Conference on Software Engineering (New York, NY, USA, 2008), ACM,
pp. 501–510.

[71] LU, S., LI, Z., QIN, F., TAN, L., ZHOU, P., AND ZHOU, Y. BugBench:
Benchmarks for Evaluating Bug Detection Tools. In PLDI Workshop on the
Evaluation of Software Defect Detection Tools (June 2005).

[72] MAJUMDAR, R., AND SEN, K. Hybrid Concolic Testing. In ICSE ’07: Pro-
ceedings of the 29th International Conference on Software Engineering (Wash-
ington, DC, USA, 2007), IEEE Computer Society, pp. 416–426.

[73] MCMINN, P. Search-based Software Test Data Generation: A Survey. Software
Testing, Verification and Reliability 14 (2004), 105–156.

[74] MESBAH, A., AND VAN DEURSEN, A. Invariant-based Automatic Testing of
AJAX User Interfaces. In ICSE ’09: Proceedings of the 2009 IEEE 31st Inter-
national Conference on Software Engineering (Washington, DC, USA, 2009),
IEEE Computer Society, pp. 210–220.

[75] MEYER, B., FIVA, A., CIUPA, I., LEITNER, A., WEI, Y., AND STAPF, E.
Programs That Test Themselves. Computer 42 (2009), 46–55.

BIBLIOGRAPHY 189

[76] MILANOVA, A., ROUNTEV, A., AND RYDER, B. G. Parameterized Object
Sensitivity for Points-to and Side-effect Analyses for Java. SIGSOFT Software
Engineering Notes 27, 4 (2002), 1–11.

[77] MILICEVIC, A., MISAILOVIC, S., MARINOV, D., AND KHURSHID, S. Korat:
A Tool for Generating Structurally Complex Test Inputs. In ICSE ’07: Proceed-
ings of the 29th International Conference on Software Engineering (Washington,
DC, USA, 2007), IEEE Computer Society, pp. 771–774.

[78] MOZILLA FOUNDATION. Rhino Javascript Interpreter. http://www.
mozilla.org/rhino/ as of 01-28-2010.

[79] NATIONAL INSTITUTE OF STANDARDS. Software Errors Cost U.S. Economy
$59.5 Billion Annually. http://www.nist.gov/publicaffairs/
releases/n02-10.htm.

[80] NEUHAUS, S. Repeating the Past: Experimental and Empirical Methods in
System and Software Security. PhD thesis, Saarland University, Department of
Computer Science, 2008.

[81] NEUHAUS, S., AND ZELLER, A. Isolating Intrusions by Automatic Experi-
ments. In Proceedings of the 13th Annual Network and Distributed System Se-
curity Symposium (Reston, VA, USA, February 2006), Internet Society, pp. 71–
80.

[82] OBJECTWEB. ASM 3.2. http://asm.objectweb.org as of 12-01-2009.

[83] PRADEL, M., AND GROSS, T. R. Automatic Generation of Object Usage Spec-
ifications from Large Method Traces. Automated Software Engineering, Inter-
national Conference on 0 (2009), 371–382.

[84] PURUSHOTHAMAN, R., AND PERRY, D. E. Towards Understanding the
Rhetoric of Small Source Code Changes. IEEE Transactions on Software Engi-
neering 31, 6 (2005), 511–526.

[85] RAMANATHAN, M. K., GRAMA, A., AND JAGANNATHAN, S. Static Specifi-
cation Inference using Predicate Mining. In PLDI ’07: Proceedings of the 2007
ACM SIGPLAN Conference on Programming language design and implementa-
tion (New York, NY, USA, 2007), ACM, pp. 123–134.

[86] RENIERIS, M., AND REISS, S. P. Fault Localization With Nearest Neighbor
Queries. In Proceedings 18th IEEE International Conference on Automated
Software Engineering (ASE) (2003), IEEE Computer Society, pp. 30–39.

http://www.mozilla.org/rhino/
http://www.mozilla.org/rhino/
http://www.nist.gov/public affairs/releases/n02-10.htm
http://www.nist.gov/public affairs/releases/n02-10.htm
http://asm.objectweb.org

190 BIBLIOGRAPHY

[87] REPS, T., BALL, T., DAS, M., AND LARUS, J. The Use of Program Profiling
for Software Maintenance with Applications to the Year 2000 Problem. In Pro-
ceedings of the Sixth European Software Engineering Conference (ESEC/FSE
97) (Sept. 1997), M. Jazayeri and H. Schauer, Eds., Lecture Notes in Computer
Science Nr. 1013, Springer–Verlag, pp. 432–449.

[88] RINARD, M., CADAR, C., DUMITRAN, D., ROY, D. M., AND LEU, T. A
Dynamic Technique for Eliminating Buffer Overflow Vulnerabilities (and Other
Memory Errors). In ACSAC ’04: Proceedings of the 20th Annual Computer Se-
curity Applications Conference (Washington, DC, USA, 2004), IEEE Computer
Society, pp. 82–90.

[89] ROTHERMEL, G., AND HARROLD, M. J. Empirical Studies of a Safe Regres-
sion Test Selection Technique. IEEE Transactions Software Engineering 24, 6
(1998), 401–419.

[90] ROUNTEV, A. Precise Identification of Side-Effect-Free Methods in Java. In
ICSM ’04: Proceedings of the 20th IEEE International Conference on Software
Maintenance (2004), IEEE Computer Society, pp. 82–91.

[91] RUTAR, N., ALMAZAN, C. B., AND FOSTER, J. S. A Comparison of Bug
Finding Tools for Java. In ISSRE ’04: Proceedings of the 15th International
Symposium on Software Reliability Engineering (ISSRE’04) (Washington, DC,
USA, 2004), IEEE Computer Society, pp. 245–256.

[92] SANTELICES, R., JONES, J. A., YANBING, Y., AND HARROLD, M. J.
Lightweight Fault-localization Using Multiple Coverage Types. In ICSE ’09:
Proceedings of the 2009 IEEE 31st International Conference on Software Engi-
neering (Washington, DC, USA, 2009), IEEE Computer Society, pp. 56–66.

[93] SCHULER, D., DALLMEIER, V., AND ZELLER, A. Efficient Mutation Test-
ing by Checking Invariant Violations. In ISSTA ’09: Proceedings of the eigh-
teenth International Symposium on Software Testing and Analysis (New York,
NY, USA, 2009), ACM, pp. 69–80.

[94] SHOHAM, S., YAHAV, E., FINK, S., AND PISTOIA, M. Static Specification
Mining using Automata-based Abstractions. In ISSTA ’07: Proceedings of the
2007 International Symposium on Software Testing and Analysis (New York,
NY, USA, 2007), ACM, pp. 174–184.

[95] ŚLIWERSKI, J., ZIMMERMANN, T., AND ZELLER, A. When Do Changes
Induce Fixes? On Fridays. In Proceedings International Workshop on Mining
Software Repositories (MSR) (St. Louis, Missouri, U.S., May 2005).

BIBLIOGRAPHY 191

[96] SPACCO, J., HOVEMEYER, D., AND PUGH, W. BugBench: Benchmarks for
Evaluating Bug Detection Tools. In PLDI Workshop on the Evaluation of Soft-
ware Defect Detection Tools (June 2005).

[97] SPACCO, J., STRECKER, J., HOVEMEYER, D., AND PUGH, W. Software
Repository Mining with Marmoset: An Automated Programming Project Snap-
shot and Testing System. In MSR ’05: Proceedings of the 2005 International
Workshop on Mining Software repositories (New York, NY, USA, 2005), ACM
Press, pp. 1–5. See also: http://marmoset.cs.umd.edu/.

[98] SRIDHARAN, M., AND BODÍK, R. Refinement-based Context-sensitive Points-
to Analysis for Java. SIGPLAN Notes 41, 6 (2006), 387–400.

[99] STROM, R. E., AND YEMINI, S. Typestate: A programming Language Concept
for Enhancing software Reliability. Transactions Software Engineering 12, 1
(1986), 157–171.

[100] SU, Z., AND MISHERGHI, G. HDD: Hierarchical Delta Debugging. Software
Engineering, International Conference on 0 (2006), 142–151.

[101] SĂLCIANU, A., AND RINARD, M. C. Purity and Side-effect Analysis for Java
Programs. In Proceedings of the 6th International Conference on Verification,
Model Checking and Abstract Interpretation (VMCAI’05) (2005), pp. 199–215.

[102] THIELE, M. Classification of Software Defects. Bachelor’s thesis, Saarland
University, January 2007.

[103] TONELLA, P. Evolutionary Testing of Classes. SIGSOFT Software Engineering
Notes 29, 4 (2004), 119–128.

[104] VEANES, M., CAMPBELL, C., SCHULTE, W., AND TILLMANN, N. Online
testing with Model Programs. SIGSOFT Software Engineering Notes 30, 5
(2005), 273–282.

[105] WASYLKOWSKI, A., ZELLER, A., AND LINDIG, C. Detecting Object Usage
Anomalies. In ESEC-FSE ’07: Proceedings of the the 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (New York, NY, USA, 2007), ACM,
pp. 35–44.

[106] WEIMER, W. Patches as Better Bug Reports. In GPCE ’06: Proceedings of
the 5th International Conference on Generative Programming and component
Engineering (New York, NY, USA, 2006), ACM, pp. 181–190.

192 BIBLIOGRAPHY

[107] WEIMER, W., NGUYEN, T., GOUES, C. L., AND FORREST, S. Automatically
Finding Patches Using Genetic Programming. In Proceedings of the Interna-
tional Conference on Software Engineering (ICSE) (Vancouver, Canada, May
2009).

[108] WHALEY, J., MARTIN, M. C., AND LAM, M. S. Automatic Extraction
of Object-oriented Component Interfaces. In ISSTA ’02: Proceedings of the
2002 ACM SIGSOFT International Symposium on Software Testing and Analy-
sis (New York, NY, USA, 2002), ACM, pp. 218–228.

[109] WHITTAKER, J. A., REKAB, K., AND THOMASON, M. G. A Markov Chain
Model for Predicting the Reliability of Multi-build Software. Information and
Software Technology 42, 12 (2000), 889 – 894.

[110] WILLIAMS, C., AND HOLLINGSWORTH, J. K. Bug Driven Bug Finders. In
Proceedings International Workshop on Mining Software Repositories (MSR
2004) (Edinburgh, Scotland, UK, May 2004), pp. 70–74.

[111] WILLIAMS, C. C., AND HOLLINGSWORTH, J. K. Automatic Mining of Source
Code Repositories to Improve Bug Finding Techniques. IEEE Transactions on
Software Engineering 31, 6 (2005), 466–480.

[112] WORLD WIDE WEB CONSORTIUM. “XML Path Language (XPath)”.
http://www.w3c.org/TR/xpath/.

[113] XIE, T., MARTIN, E., AND YUAN, H. Automatic Extraction of Abstract-
object-state Machines from Unit-test Executions. In ICSE ’06: Proceedings
of the 28th International Conference on Software Engineering (New York, NY,
USA, 2006), ACM, pp. 835–838.

[114] XIE, T., AND NOTKIN, D. Mutually Enhancing Test Generation and Specifi-
cation Inference. In Proceedings of the 3rd International Workshop on Formal
Approaches to Testing of Software (FATES 03) (October 2003), vol. 2931 of
LNCS, pp. 60–69.

[115] XIE, Y., AND ENGLER, D. Using Redundancies to Find Errors. IEEE Transac-
tions on Software Engineering 29, 10 (2003), 915–928.

[116] XU, H., PICKETT, C. J. F., AND VERBRUGGE, C. Dynamic Purity Analysis
for Java Programs. In Proceedings of the 7th Workshop on Program Analysis for
Software Tools and Engineering (2007), ACM, pp. 75–82.

BIBLIOGRAPHY 193

[117] YANG, J., EVANS, D., BHARDWAJ, D., BHAT, T., AND DAS, M. Perracotta:
Mining Temporal API Rules from Imperfect Traces. In ICSE ’06: Proceeding
of the 28th International Conference on Software Engineering (New York, NY,
USA, 2006), ACM Press, pp. 282–291.

[118] ZELLER, A. Yesterday, My Program Worked. Today, it does Not. Why? In Pro-
ceedings of the ESEC/FSE’99, 7th European Software Engineering Conference
(September 1999), vol. 1687 of Lecture Notes in Computer Science, Springer,
pp. 253–267.

[119] ZELLER, A. Why Programs Fail: A Guide to Systematic Debugging. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2009.

[120] ZELLER, A., AND HILDEBRANDT, R. Simplifying and Isolating Failure-
Inducing Input. IEEE Transactions on Software Engineering 28, 2 (February
2002), 183–200.

[121] ZHANG, X., GUPTA, N., AND GUPTA, R. Locating Faults Through Auto-
mated Predicate Switching. In ICSE ’06: Proceeding of the 28th International
Conference on Software Engineering (New York, NY, USA, 2006), ACM Press,
pp. 272–281.

[122] ZIMMERMANN, T. Fine-grained Processing of CVS Archives with APFEL. In
Proceedings of the 2006 OOPSLA Workshop on Eclipse Technology eXchange
(New York, NY, USA, October 2006), ACM Press.

[123] ZIMMERMANN, T., DALLMEIER, V., HALACHEV, K., AND ZELLER, A.
eROSE: Guiding Programmers in Eclipse (Tool Demonstration). In Companion
to the 20th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2005 (New York, NY,
USA, October 2005), ACM, pp. 186–187.

[124] ZIMMERMANN, T., PREMRAJ, R., AND ZELLER, A. Predicting Defects for
Eclipse. In Proceedings of the Third International Workshop on Predictor Mod-
els in Software Engineering (May 2007).

[125] ZIMMERMANN, T., AND WEISSGERBER, P. Preprocessing CVS Data for Fine-
Grained Analysis. In Proceedings of International Workshop on Mining Soft-
ware Repositories (MSR 2004) (Edinburgh, Scotland, UK, May 2004), pp. 2–6.

	1 Introduction
	1.1 About this Thesis
	1.2 Terminology
	1.3 Publications

	2 Classifying Bugs
	2.1 Source Data
	2.2 Classification
	2.3 Conclusions

	3 State of the Art
	3.1 Dynamic Program Behavior
	3.2 Program Spectra
	3.3 Call-Sequence Sets
	3.4 Finite State Automata
	3.4.1 Learning Finite State Automata
	3.4.2 Software Process Models
	3.4.3 Extended Finite State Machines
	3.4.4 Object Usage Specifications
	3.4.5 Markov Chains
	3.4.6 Summary

	3.5 Invariants
	3.6 Conclusions

	4 Object Behavior Models
	4.1 Identifiers
	4.2 Inspectors
	4.3 Value Access Paths
	4.4 Object States
	4.5 Object Behavior Models
	4.6 Model Depth
	4.7 State Abstraction
	4.8 Conclusions

	5 Mining Object Behavior Models
	5.1 Tracing
	5.1.1 Data Collection
	5.1.2 Architecture
	5.1.3 Principles
	5.1.4 Traced Data
	5.1.5 Object Identifiers
	5.1.6 Tracing Inspector Values
	5.1.7 Multithreading
	5.1.8 Runtime Evaluation

	5.2 Model Mining
	5.2.1 Dynamic Heap Model
	5.2.2 Model Generation
	5.2.3 Runtime Optimizations

	5.3 Dynamic Side-Effect Analysis
	5.3.1 Pure Methods
	5.3.2 Analysis
	5.3.3 Tracing
	5.3.4 Algorithm
	5.3.5 Multiple Program Runs
	5.3.6 Soundness
	5.3.7 Evaluation
	5.3.8 Related Work

	5.4 Conclusions

	6 Mining Bug Benchmarks
	6.1 Motivation
	6.2 Related Work
	6.2.1 Existing Benchmark Suites
	6.2.2 Defect Localization Tools
	6.2.3 Bug Classification

	6.3 Bug Extraction from History
	6.3.1 Prerequisites
	6.3.2 Fix Identification
	6.3.3 Extraction
	6.3.4 Test Execution
	6.3.5 Associated Tests
	6.3.6 Meta Information
	6.3.7 Repository

	6.4 Subjects
	6.4.1 Characteristics
	6.4.2 Locality
	6.4.3 Size
	6.4.4 Syntactical Properties

	6.5 Minimizing Fixes with Delta Debugging
	6.5.1 Delta Debugging
	6.5.2 Minimizing Fixes

	6.6 Biased Data Sets
	6.6.1 Bug Features
	6.6.2 Results

	6.7 Conclusions

	7 Mining Models for Typestate Verification
	7.1 Typestate Analysis
	7.2 Mining Typestate Automata
	7.3 Enriching Typestate Automata
	7.4 Experimental Evaluation
	7.4.1 Subjects
	7.4.2 Quantitative Evaluation
	7.4.3 Qualitative Evaluation
	7.4.4 Usefulness
	7.4.5 Threats to Validity

	7.5 Related Work
	7.5.1 Test Case Generation
	7.5.2 Typestate Verification
	7.5.3 Specification Mining

	7.6 Conclusions

	8 Generating Fixes from Object Behavior Anomalies
	8.1 Mining Models
	8.1.1 Mining Preconditions

	8.2 Detecting Violations
	8.3 Generating Fixes
	8.3.1 Inserting Calls
	8.3.2 Deleting Calls

	8.4 Choosing the Best Fix
	8.5 Experimental Evaluation
	8.5.1 Subjects
	8.5.2 Experimental Setup
	8.5.3 Running the Experiments
	8.5.4 Performance
	8.5.5 Results
	8.5.6 Discussion
	8.5.7 Threats to Validity

	8.6 Applicability
	8.7 Related Work
	8.7.1 Locating Bugs
	8.7.2 Repairing Programs
	8.7.3 Leveraging Specifications
	8.7.4 Repairing State
	8.7.5 Mining Specifications
	8.7.6 Generating Tests

	8.8 Conclusions

	9 Conclusions and Future Work
	9.1 iBugs
	9.2 Tautoko
	9.3 Pachika

	A Additional Figures and Tables
	B Trace File Format Description
	B.1 Concepts
	B.1.1 Serialization
	B.1.2 Object Identifiers
	B.1.3 Method Identifiers
	B.1.4 Field Identifiers
	B.1.5 Thread Identifiers
	B.1.6 Allocation Site Identifiers
	B.1.7 Invocation Site Identifiers

	B.2 Events
	B.2.1 Identifier Events
	B.2.2 Method Call Events
	B.2.3 Parameter Events
	B.2.4 Return Events
	B.2.5 Field Access Events
	B.2.6 Array Access Events
	B.2.7 Inspector Events
	B.2.8 List of Event Identifiers

	Bibliography

