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Abstract. A common method to localize defects is to compare thecoverageof
passing and failing program runs: A method executed only in failing runs, for
instance, is likely to point to the defect. Some failures, though, come to be only
through a specificsequenceof method calls, such as multiple deallocation of the
same resource. Such sequences can be collected from arbitrary Java programs at
low cost; comparing object-specific sequences predicts defects better than simply
comparing coverage. In a controlled experiment, our technique pinpointed the
defective class in 36% of all test runs.

1 Introduction

Of all debugging activities, locating the defect that causes the failure is by far the most
time-consuming. To assist the programmer in this task, various automatic methods rank
the program statements by thelikelihood that they contain the defect. One of the most
lightweight methods to obtain such a likelihood is to compare thecoverageof passing
and failing program runs: A method executed only in failing runs, but never in passing
runs, is correlated with failure and thus likely to point to the defect.

Some failures, though, come to be only through asequenceof method calls, tied to
a specific object.As an example, consider streams in Java: If a stream is not explicitly
closed after usage, its destructor will eventually do so. However, if too many files are
left open before the garbage collector destroys the unused streams, file handles will run
out, and a failure occurs. This problem is indicated by a sequence of method calls: if
the last access (say,read() ) is followed by finalize() (but notclose() ), we
have a defect.

In this paper, we therefore explore three questions:

1. Are sequences of method callsbetter defect indicators than single calls?In any
Java stream, calls toread() andfinalize() are common; but the sequence of
these two indicates a missingclose() and hence a defect.

2. Do method calls indicate defects more precisely when collectedper object,
rather than globally? The sequence ofread() andfinalize() is only defect-
revealing when the calls pertain to the same object.

3. Do deviating method calls indicate defects in the callee—or in the caller?For
any Java stream, a missingclose() indicates a defect in the caller.

Generalizing to arbitrary method calls and arbitrary defects, we have set up a tool that
instruments a given Java program such that sequences of method calls are collected on



a per-object basis. Using this tool, we have conducted a controlled experiment that an-
swers the above questions. In short, it turns out that (1) sequences predict defects better
than simply comparing coverage, (2) per-object sequences are better predictors than
global sequences, and (3) the caller is more likely to be defective than the callee. Fur-
thermore, the approach is lightweight in the sense that the performance is comparable
to coverage-based approaches. All these constitute the contribution of this paper.

2 How Call Sequences Indicate Defects

Let us start with a phenomenological walkthrough and take a look at the AspectJ
compiler—more precisely, at its bug #30168. This bug manifests itself as follows: Com-
piling the AspectJ program in Fig. 1 produces illegal bytecode that causes the virtual
machine to crash (runr✘):

$ ajc Test3.aj
$ java test.Test3
test.Test3@b8df17.x

Unexpected Signal : 11 occurred at PC=0xFA415A00
Function name=(N/A)
Library=(N/A)
...
Please report this error at http://java.sun.com/...
$

In order to fix this problem, we must locate the defect which causes the failure. As the
AspectJ compiler has 2,929 classes, this is a nontrivial task. To ease the task, though, we
can focus ondifferencesin the program execution, in particular the difference between
a passing run (producing valid Java bytecode) and the failing run in question. Since the
outcome of passing and failing runs is different, chances are that earlier differences in
the program runs are related to the defect. For the AspectJ example in Figure 1, we can
easily identify a passing run—commenting out Line 32, for instance, makes AspectJ
work just fine (runr✔).

Since capturing and comparing entire runs is costly, researchers have turned toab-
stractionsthat summarize essential properties of a program run. One such abstraction is
coverage—that is, the pieces of code that were executed in a run. Indeed, comparing the
coverage ofr✔ andr✘ reveals a number of differences. The methodgetThisJoin-
PointVar() of the classBcelShadow , for instance, is only called inr✘, but not
in r✔, which makesBcelShadow.getThisJoinPointVar() a potential candi-
date for causing the failure.

Unfortunately, this hypothesis is wrong. In our AspectJ problem, the developers
have eventually chosen to fix the bug in another class. Although it might be possible to
alter theBcelShadow class such that the failure no longer occurs,BcelShadow is
not the location of the defect. In fact, none of the methods that are calledonlywithin r✘

contain the defect.
However, it may well be that the failure is caused not by a single method call,

but rather by asequence of method callsthat occurs only in the failing runr✘. Such



1 package test ;
2 import org.aspectj.lang.*;
3 import org.aspectj.lang.reflect.*;
4
5 public class Test3 {

6 public static void main (String[] args) throws Exception {

7 Test3 a = new Test3();
8 a.foo(-3);
9 }

10 public void foo (int i) {

11 this.x=i;
12 }

13 int x;
14 }

15
16 aspect Log {

17 pointcut assign (Object newval, Object targ):
18 set(* test..*) && args(newval) && target(targ);
19
20 before(Object newval, Object targ): assign(newval,targ) {

21 Signature sign = thisJoinPoint.getSignature();
22 System.out.println(targ.toString() + "." + sign.getName() +
23 ":=" + newval);
24 }

25
26 pointcut tracedCall ():
27 call(* test..*(..)) && !within(Log);
28
29 after() returning (Object o): tracedCall() {

30 // Works if you comment out either of these two lines
31 thisJoinPoint.getSignature();
32 System.out.println(thisJoinPoint);
33 }

34 }

Fig. 1.This AspectJ program causes the Java virtual machine to crash.

sequences can be collected for specific objects, either collecting the incoming or the
outgoing calls. This sequence, for instance, summarizes the outgoing method calls of a
ThisJoinPointVisitor object inr✘:

〈ThisJoinPointVisitor.isRef() ,

ThisJoinPointVisitor.canTreatAsStatic() ,

MethodDeclaration.traverse() ,

ThisJoinPointVisitor.isRef() ,

ThisJoinPointVisitor.isRef()

〉

This sequence of calls does not occur inr✔—in other words, only inr✘ did an ob-
ject of theThisJoinPointVisitor class call these five methods in succession.
This difference in theThisJoinPointVisitor behavior is correlated with fail-
ure and thus makesThisJoinPointVisitor a class that is more likely to contain
the defect. And indeed, it turns out that AspectJ bug #30168 was eventually fixed in
ThisJoinPointVisitor . Thus, while a difference in coverage may not point to a
defect, a difference in call sequences may well.

Comparing two runs usually yields more than one differing sequence. In our case
(r✔ vs. r✘), we obtain a total of 556 differing sequences of length 5. We can determine
the originating class for each of these sequences, assign a weight to each sequence, and



rank the classes such that those with the most important sequences are at the top. In this
ranking, theThisJoinPointVisitor class is at position 10 out of 542 executed
classes—meaning that the programmer, starting at the top, has to examine only 1.8% of
the executed classes or 3.3% of the executed code (0.3% of all classes or 0.8% of the
entire code) in order to find the defect. (In comparison, comparing coverage ofr✔ andr✘

yields no difference in theThisJoinPointVisitor class, making coverage differ-
ence worse than a random guess.)

Of course, this one experiment cannot be generalized to other defects or other pro-
grams. In the remainder of this paper, we first describe in detail how we collect se-
quences of method calls (Section 3), and how we compare them to detect likely defects
(Section 4). In Section 5, we describe our controlled experiment with the NanoXML
parser; the results support our initial claims. Section 6 discusses related work and Sec-
tion 7 closes with conclusion and consequences.

3 Summarizing Call Sequences

Over its lifetime, an object may receive and initiate millions of method calls. How do we
capture and summarize these to characterize normal behavior? These are the highlights
of our approach:

– Recording a trace of all calls per object quickly becomes unmanageable and is a
problem in itself (Reiss and Renieris, 2001). Rather than recording the full trace,
we abstract from it bysliding a windowover the trace and remembering only the
observed sequences in a set.

– Collecting a sequence set per object is still problematic, as an application may
instantiate huge numbers of objects. We thereforeaggregate the sequence setsinto
one set per class, which thus characterizes the behavior of the class.

– An object both receives and initiates method calls; both can be traced, but they tell
us different things: the trace ofincoming(received) calls tells us how an object is
usedby its clients. The trace ofoutgoing(initiated) calls tells us how an object is
implemented.We consider both for fault localization.

– We keep theoverheadfor collecting and analyzing traces as low as possible. Over-
all, the overhead is comparable to measuring coverage—and thus affordable even
in the field.

The following sections describe these techniques in detail.

3.1 From Traces to Call Sequences

A recording of all calls that an object receives is called atrace. To capture an object’s
behavior, we like to record the whole trace but the huge number of calls received over
the lifetime of an object make the whole trace unmanageable. We are therefore looking
for a more abstract representation. One such technique is to remember onlycharac-
teristic sequencesof the trace. This abstraction works equally well for a trace of calls
initiated by an object, or any other trace, which is why we talk about traces in general.
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Fig. 2.The trace of an object is abstracted to a sequence set using a sliding window.

When we slide a window over a trace, the contents of the window characterize the
trace—as demonstrated in Fig. 2. The observed window contents form a set of short
sequences. The wider the window, the more precise the characteristic set will be.

Formally, a traceS is a string of calls:〈m1, . . . , mn〉. When the window isk calls
wide, the setP(S, k) of observed windows are thek-long substrings ofS: P(S, k) =

{w | w is a substring ofS∧ |w| = k}. For example, consider a window of sizek = 2
slid overSand the resulting set of sequencesP(S, 2):

S = 〈abcabcdc〉 P(S, 2) = {ab, bc, ca, cd, dc}

Obviously different traces may lead to the same set: forT = 〈abcdcdca〉, we have
P(T, 2) = P(S, 2). Hence, going from a trace to its sequence set entails a loss of
information. The equivalence of traces is controlled by the window sizek, which models
the context sensitivity of our approach: in the above example a window sizek > 2 leads
to different setsP(S, k) and P(T, k). In the remainder of the paper, we useP(T) to
denote the sequence set computed fromT , not mentioning the fixedk explicitly.

Note that two calls that are next to each other in a sequence may have been far apart
in time: between the two points in time when the object received the calls, other objects
may have been active.

The size of a sequence set may grow exponentially in theory: Withn distinct meth-
ods, nk different sequences of lengthk exist. In practice, sequence sets are small,
though, because method calls do not happen randomly. They are part of static code
with loops that lead to similar sequences of calls. This underlying regularity makes a
sequence set a useful and compact abstraction—one could also consider it aninvariant
of program behavior.

3.2 From Objects to Classes

Collecting call traces for each object individually raises an important issue: In a pro-
gram with millions of objects, we will quickly run out of memory space, just as if we



collected a global trace. As an alternative, one could think about collecting traces at the
class level.In an implementation of such a trace, an object adds an entry to the trace
every time it receives (or initiates) a call. Sliding a window over this trace results in a
sequence set that characterizes the class behavior.

As an example of sequence sets aggregated at class level, consider the tracesX and
Y of two objects. Both objects are live at the same time and their calls interleave into
one class-based traceS:

X = 〈 a b c d dc〉

Y = 〈a a b c ab 〉

S = 〈aaabbccdabdc〉

P(S, 2) = {aa, ab, bb, bc, cc, cd, da, bd, dc}

The resulting sequence setP(S, 2) characterizes the behavior of the class—somewhat.
The set contains sequences likeda or bb that we never observed at the object level.
How objects interleave has a strong impact on the class traceS, and consequently on its
sequence set. This becomes even more obvious when a class instantiates many objects
and when their interleaving becomes non-deterministic, as in the presence of threads.

We therefore use a better alternative: We trace objectsindividually, but rather than
aggregating their traces, we aggregate theirsequence sets.Previously, we collected all
calls into one trace and computed its sequence set. Now, we have individual traces, but
combine their sequence sets into one set per class. The resultP(X, 2)∪ P(Y, 2) is more
faithful to the traces we actually observed—bb andda are no longer elements of the
sequence set:

P(X, 2) = {ab, bc, cd, dd, dc}

P(Y, 2) = {ab, bc, ca, aa}

P(X, 2) ∪ P(Y, 2) = {aa, ab, bc, cd, dd, dc, ca}

The sequence set of a class is the union of the sequence sets of its objects. It charac-
terizes the behavior of the class and is our measure when comparing classes in passing
and failing runs: we simply compare their sequence sets.

3.3 Incoming vs. Outgoing Calls

Any object receives incoming and initiates outgoing method calls. Their traces tell us
how the object is used by its clients and how it is implemented, respectively. Both kinds
of traces can be used to detect control flow deviations between a passing and a failing
run. However, they differ in their ability to relate deviations to defects.

As an example, consider Fig. 3. A queue objectaQueue can be implemented as a
linked list. The queue object receives calls likeadd() to add an element, andget()
to obtain the first element and to remove it from the queue. These areincomingcalls to
the queue object.

To implement these methods, the queue object callsadd() to add an element
at the end ofaLinkedList , firstElement() to obtain the first element, and
removeFirst() to remove it from the list. These calls areoutgoingcalls of the
aQueue object.
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Fig. 3.Traces of incoming calls (left) and outgoing calls (right) for theaQueue object.

Incoming Calls Inspired by the work of Ammons et al. (2002), we first examined
incomingcalls. The technique of Ammons et al. observed clients that called into a part
of the X11API and learned automatically a finite-state automaton that describes how
the API is used correctly by a client: for example, a client must callopen() before
it may callwrite() . Such an automaton is an invariant of theAPI; it can be used to
detect non-conforming clients.

By tracing incoming calls, we can also learn this invariant and represent it as a
sequence set: each object traces the calls it receives. Since we know the classQueue of
the receiving object, we have to remember in a sequence only the names of the invoked
methods1. In our example, the trace of incoming calls for theaQueue object is

〈add() , isEmpty() , . . . , add() , add() 〉 .

As discussed in Section 3.2, the sequence sets of individual objects are aggregated
into one sequence set for the class. After training with one or more passing runs, we
can detect when a class receives calls that do not belong to the learned sequence set.

Learning class invariants from incoming calls is appealing for at least two reasons:
First, the number of methods an object can receive is restricted by its class. We thus can
expect small traces and may even fine-tune the window size in relation to its number of
methods. Second, class invariants could be learned across several applications that use
the class, not just one. One could even imagine to deploy a class implementation with
invariants learned from correct usage.

1 We also remember their signatures to resolve overloading.



Outgoing Calls In our setting, incoming calls show a major weakness: When we detect
a non-conforming usage of a class, it is difficult to identify the responsible client. For ex-
ample, let us assume we observe a new usage sequence like〈get() , get() , get() 〉.
This sequence could indicate a problem because a consumer should check for an empty
queue (isEmpty() ) before attempting aget() . The sequence might also be harm-
less, for instance, when theget() calls stem from three different objects that all pre-
viously calledisEmpty() . In any case, it is not the queue object which is responsible
for the new sequence, but itsclients.Consequently, we turned from incoming tooutgo-
ing calls: the method calls initiated by an object. ForaQueue, these are:

〈LinkedList.add() , LinkedList.size() , Logger.add() , . . . 〉

Because an object may call several classes, method names are no longer unique—
witness the different calls toadd . We therefore remember the classandmethod name
in a trace. Again, we build one trace per object and aggregate the traces of individual
queue objects into one sequence set for theQueue class, which represents its behavior.

When we detect a sequence of outgoing calls that is not in a learned sequence set,
we know where to look for the reason: theQueue class. Unlike a trace of incoming
calls, the trace of outgoing calls can guide the programmer to the defect.

3.4 Collecting Traces

We trace a Java program using a combination of off-line and on-line methods. Before
the program is executed, we instrument its bytecode for tracing. While it is running, the
program collects traces, computes the corresponding sequence sets, and emits them in
XML format before it quits; analyzing sequence sets takes place offline.

For program instrumentation, we use the Bytecode Engineering Library (BCEL,
Dahm (1999)). This requires just the program’s class files and works with any Java
virtual machine. We thus can instrument any Java application, regardless of whether its
source code is available. While this is not a typical scenario for debugging, it allows us
to instrument theSPEC JVM 98benchmark, or indeed any third-party code.

Instrumentation of a class rewrites all call sites and non-static methods. A call is
rewritten such that before a call, the caller’s class and instance identifications are written
to a thread-local variable from where they are read by code added to the prolog of the
called method (the callee). Because of dynamic binding, the caller cannot know stati-
cally the exact class of the callee, only the callee does. Therefore both must collaborate
and only the callee actually adds a new entry to a trace.

Each object builds a trace for its (incoming or outgoing) calls but the trace is not
stored within the object. Instead, trace data associated with an object are stored in
global hash tables where they are indexed by an object’s identity. Since Java’sOb-
ject.hashCode() method is unreliable for object identification, each object creates
a unique integer for identification in its constructor. Keeping trace data outside of ob-
jects has the advantage that they can be accessed by foreign objects, which is essential
for outgoing calls.

For an incoming call, the callee simply adds its name and signature toits owntrace.
But for an outgoing call, the callee must add its name, signature, and class to the trace
of thecaller. To do so, it needs to access the caller’s trace using the caller’s id.



class Caller extends Object {

...
public void m() {

Callee c;
...
Tracer.storeCaller(this.id);
c.message(anObject);
〈 body of m 〉

}

}

class Callee extends Object {

...
public void message(Object x) {

Tracer.addCall
( 〈 message id for Callee.message 〉);

〈 body of message 〉

}

}

Fig. 4. Instrumentation of caller and callee to capture outgoing calls.

Fig. 4 presents a small example illustrating instrumentation that is done for tracing
outgoing calls. (For the sake of readability, we provide Java code instead of byte code.)
Statements added during the instrumentation are shown in bold face. Prior to the invo-
cation ofCallee.message in methodCaller.m , the id of the caller is stored in the
Tracer . At the very start of methodCallee.message , Tracer.addCall adds
the method id ofCallee.message to the trace of the calling object—the one which
was previously stored in classTracer . Hence,addCall only receives the message
id—an integer key associated with a method, its class, and signature.

The combined trace of all method calls for all objects quickly reaches Gigabytes in
size and cannot be kept in main memory, but writing it to a file would induce a huge
runtime overhead. We therefore do not keep the original trace but compute the sequence
set for each class online—while tracing. The sequence sets are small (see Section 3.5
for a discussion of the overhead), kept in memory, and emitted when the program quits.

Computing sequence sets and emitting them rather than the original trace has a few
disadvantages. To compute sequence sets online, the window size must be fixed (per
set) for a program run, where sequence sets for many window sizes could be computed
offline from a raw trace. While a trace is ordered, a sequence set is not. We therefore
lose some of the trace’s inherent notion of time.

To compute the sequence set of a class online, each object maintains a window for
the lastk (incoming or outgoing) calls, which is advanced by code in the prolog of the
called method. In addition, a sequence set is associated with every traced class. When-
ever a method finds a new sequence—a new window of calls—it adds the sequence to
the set of the class. Finally, each class emits its sequence set inXML format.

After the program has quit, we use offline tools to read the sequence sets and analyze
them. For our experimental setup, we read them into a relational database.

3.5 Overhead

To evaluate the overhead of our tracing method, we instrumented and traced the pro-
grams from theSPEC JVM 98benchmark suite (SPEC, 1998). We compared the over-
head with JCoverage (Morgan, 2004), a tool for coverage analysis that, like ours, works
on Java bytecode, and whose results can point to defects.

The SPEC JVM 98benchmark suite is a collection of Java programs, deployed as
543 class files, with a total size of 1.48 megabytes. Instrumenting them for tracing
incoming calls with a window size of 5 on a 3 GHz x86/Linux machine with 1 megabyte
of main memory took 14.2 seconds wall-clock time. This amounts to about 100 kilobyte
or 38 class files per second. The instrumented class files increased in size by 26%.
Instrumentation thus takes an affordable overhead, even in an interactive setting.



Memory Time Sequences
original JCoverageour approach original JCoverageour approach XML

Program MB factor factor seconds factor factor count Kb
check 1.4 1.2 1.1 0.14 10.0 1.5 113 3
compress 30.4 1.2 2.2 5.93 1.7 59.8 85 3
jess 12.1 2.1 17.6 2.17 257.1 98.2 1704 37
raytrace 14.2 1.5 22.7 1.93 380.8 541.6 1489 34
db 20.4 1.4 1.2 11.31 1.5 1.2 127 3
javac 29.8 1.5 1.2 5.46 45.7 31.4 15326 334
mpegaudio 12.8 1.6 1.2 5.96 1.2 27.9 587 13
mtrt 18.4 1.4 18.2 2.06 367.9 574.8 1579 36
jack 13.6 1.7 1.7 2.32 40.5 6.3 1261 28
AspectJ 41.8 1.4 1.4 2.37 3.3 3.0 13920 301

Table 1. Overhead measured for heap size and time while tracing incoming calls (with window
size 5) for the SPEC JVM 98 benchmark. The overhead of our approach (and JCoverage in com-
parison) is expressed as a factor relative to the original program. The rightmost columns show the
number of sequences and the size of their gzip-compressed XML representation.

Running an instrumented program takes longer and requires more memory than
the original program. Table 1 summarizes the overhead infactorsof the instrumented
program relative to the memory consumption and run time of the original program.

The two ray tracersraytrace andmtrt demonstrate some challenges: tracing
them required 380 MB of main memory because they instantiate ten thousands of ob-
jects of classPoint , each of which was traced. This exhausted the main memory,
which led to paging and to long run times.

The overheads for memory consumption and runtime varied by two orders of mag-
nitude. At first sight, this may seem prohibitive—even when the overhead was compa-
rable or lower than for JCoverage. We attribute the high overhead in part to the nature
of the SPEC JVM 98, which is intended to evaluate Java virtual machines—most pro-
grams in the suite areCPUbound and tracing affects them more than, say, I/O-intensive
programs.

The databasedb and thempegaudio decoder benchmarks, for instance, show a
small overhead. When we traced the AspectJ compiler for the example in Section 1
(with window size 8), we also observed a modest overhead and consider these more
typical for our approach.

4 Relating Call Anomalies to Failures

As described in Section 3, we collect call sequences per object and aggregate them
per class. At the end of a program run, we thus have a sequence set for each class.
These sequence sets now must be compared across multiple runs—or, more precisely,
across passing and failing runs. Our basic claim is that differences in the test outcome
correlate with differences in the sequence sets, thus pointing to likely defective classes.
Therefore, we mustrank the classes such that classes whose behavior differs the most
between passing and failing runs get the highest priority.



4.1 One passing and one failing run

Let us start with a simple situation: We have one failing runr0 and one passing runr1.
For each class, we compare the sequence sets as obtained inr0 andr1. Typically, both
sets will have several common sequences. In addition, a deviating class may have addi-
tional (or “new”) as well as missing sequences. We consider new and missing sequences
as symmetrical: a failure may be caused by either.

We are only interested in sequences that are “new” or “missing”. We thus assign
each sequencep ∈ P(r0) ∪ P(r1) a weightw(p) of

w(p) =

{
1 if p /∈ P(r0) ∩ P(r1)—that is,p is “new” or “missing”

0 otherwise
(1)

From the weights of all sequences, we compute the average sequence weight of a class.
The calculation uses the sequences from the passing run and the failing run: it is the
sum of all weightsw(p), divided by the total numbert of sequences:

average weight=
1

t

∑
p∈P(r0)∪P(r1)

w(p) wheret =
∣∣P(r0) ∪ P(r1)

∣∣. (2)

Our claim is that those classes with the highest average weight are most likely to contain
a defect. Therefore, the programmer should start searching for the defect in the code of
these classes.

4.2 Multiple passing runs

For a programmer, it is often easier to produce passing runs than failing runs. We take
advantage of this situation by consideringmultiple passing runswhen searching for
a defect in a single failing run. We thus haven passing runs and one failing run and
therefore must extend the weight calculation to this more general case.

The general idea is as follows: A sequence absent in the failing run is more im-
portant when it is present in many passing runs. Conversely, it is less important when
the sequence is rare among passing runs. A sequence only present in the failing run is
always important.

In Fig. 5, we have illustrated these relationships between thesequence sets from
different runs(again, all coming from the same class). On the left side, we see two sets
for passing runs, and one for a failing run. The set of sequences in the failing run can
intersect with then = 2 sets of the passing runs in various ways.

With multiple passing runs, “new” and “missing” sequences are no longer equally
important. A sequence that is missing in the failing run does not have to be present
in all passing runs. We account for this by assigning each missing sequence a weight
according to the number of passing runs were it was found. Again, a new sequence in
the failing run is absent in all passing runs and always has the same weight of 1.

The weight of a sequence is assigned according to the scheme on the left side of
Fig. 5: a new sequence, occurring in the failing run only, is assigned a weight of 1.
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A sequence missing from the failing run, but present inall passing runs, is assigned a
weight of 1, as well.

All other missing sequences are assigned a weight between 0 and 1. Intuitively, the
weight is the larger the more “new” or “missing” a sequence is. Formally, for one failing
run r0 andn passing runsr1, . . . , rn, let k(p) = |{r i | p ∈ P(r i ) ∧ i > 0}| denote the
number of passing runs that include a sequencep in their sequence set. Then the weight
w(p) is:

w(p) =


k(p)

n
if p /∈ P(r0)

1 −
k(p)

n
if p ∈ P(r0)

(3)

Note that ifn = 1 holds, we obtaink(p) = 1 if p ∈ P(r1), andk(p) = 0, otherwise;
therefore, (3) is equivalent to (1).

Again, from the weights of all sequences, we compute the average sequence weight
of a class. The calculation uses the sequences fromall passing runsr1, . . . , rn, plus the
failing run r0:

average weight=
1

t

∑
p∈∪P(r i )

w(p) wheret =

∣∣∣∣∣
n⋃

i =0

P(r i )

∣∣∣∣∣ . (4)

Note that ifn = 1 holds, (2) is a special case of (4).
Again, we claim that those classes with the highest average weight are most likely

to contain a defect (and therefore should be examined by the programmer first). To
validate this claim, we have conducted a controlled experiment.



Version Classes LOC Faults Tests Drivers
all failing

1 16 4334 7 214 160 79
2 19 5806 7 214 57 74
3 21 7185 10 216 63 76
5 23 7646 9 216 174 76

total 24971 33 474

Table 2.Characteristics of NanoXML, the subject of our controlled experiment.

5 A Case Study

As described in Section 4, we rank classes based on their average sequence weight and
claim that a large weight indicates a defect. To evaluate our rankings, we studied them
in a controlled experiment, with the NanoXML parser as our main subject. As a com-
plementary large subject, we applied our techniques to the AspectJ compiler (Kiczales
et al., 2001). Our experiments evaluate class rankings along three main axes: incoming
versus outgoing calls, various window sizes, and class-based versus object-based traces.

5.1 Object of Study

NanoXML is a non-validatingXML parser implemented in Java, for which Do et al.
(2004) provide an extensive test suite. NanoXML comes in five development versions2,
each comprising between 16 and 23 classes, and a total number of 33 known faults
(Table 2). These faults were discovered during the development process, or seeded by
Do and others. Each fault can be activated individually, such that there are 33 variants
of NanoXML with a single fault.

Faults and test cases are related by a fault matrix: for any given fault and test case,
the matrix tells whether the test case uncovers the fault. Each test uses exactly one
test driver but several tests may share the same driver. A test driver provides general
infrastructure, like reading anXML file and emitting its last element.

5.2 Experimental Setup

Our experiment simulates the following situation: for a fixed program, a programmer
has one or more passing test cases, and one failing test case. Based on traces of the
passing and failing runs, our techniques ranks the classes of the program. The ranking
aims to place the faulty class as high as possible.

In our experiment, we know the class that contains the defect (our techniques, of
course, do not); therefore, we can assess the ranking. We express the quality of a ranking
as thesearch length—the number of classes above the faulty class in the ranking. The
best possible ranking places the faulty class at the top (with a search length of zero).

2 We could not use Version 4 because it does not come with a fault description file.



To rank classes, we needed at least one passing run for every failing run. However,
we wanted to avoid comparing totally unrelated program runs. For each ranking there-
fore selected a set of program runs from the suite of programs that met the following
conditions:

– All program runs were done with the same version, which had one known bug, and
used the same test driver.

– One “failing” run in the set showed the bug, the other “passing” runs did not.

Altogether, we had 386 such sets (Table 2). The test suite contains 88 more failing runs
for which we could not find any passing run. This can happen, for example, when a
fault always causes a program to crash such that no passing run can be established.

For each of the failing runs with one or more related passing runs, we traced their
classes, computed their sequence sets, and ranked the classes according to their average
sequence weight. The rankings were repeated in several configurations:

– Rankings based on class and object traces (recall Section 3.2)
– Rankings based on incoming and outgoing calls (recall Section 3.3).
– Rankings based on six window sizes: 1, 2, 3, 4, 5, and 8.

We compared the results of all configurations to find the one that minimizes the search
length, and thus provides the best recommendations for defect localization.

5.3 Threats to Validity

Our experiments are not exhaustive—many more variations of the experiment are pos-
sible. These variations include other ways to weight sequences, or to trace with class-
specific window sizes rather than a universal size. Likewise, we did not not evaluate
programs with multiple known defects.

NanoXML provides many test cases, but itself is a small program. We therefore
can’t argue for the scalability of our approach. We do have some evidence, though, that
our approach does scale: bytecode instrumentation of theSPEC JVM 98benchmark suite
did not pose a problem, and instrumenting and tracing AspectJ wasn’t a problem, either.
Our belief is further supported by the fact that our technique ranks the faulty class from
AspectJ in 10th place, among 2,929 classes in total.

The search lengths reported in our results are abstract numbers that don’t make
our potential mistakes obvious. We validated our methods when possible by exploiting
known invariants; for example:

– To validate our bytecode instrumentation, we generated Java programs with stati-
cally known call graphs and, hence, known sequence sets. We verified that these
were indeed produced by our instrumentation.

– When tracing with a window size of one, the resulting sequences for a class are
identical for object- and class-based traces: any method called (or initiated) on the
object level is recorded in a class-level trace, and vice versa. Hence, the rankings
are the same; object- and class-based traces show no difference in search length.



Incoming Calls
random guess

window size 1 2 3 4 5 8 executed all
object 3.69 3.35 3.38 3.52 3.32 3.194.78 9.22
class 3.69 3.35 3.39 3.52 3.31 3.194.78 9.22

Outgoing Calls
object 2.63 2.75 2.55 2.62 2.53 2.224.78 9.22
class 2.63 2.81 2.56 2.72 2.55 2.274.78 9.22

Table 3.Evaluation of class rankings. A number indicates the average number of classes in atop
of the faulty class in a ranking. The two rightmost columns indicate these numbers for a random
ranking when (1) considering only executed classes, (2) all classes.

5.4 Discussion of Results

Table 3 summarizes the average search lengths of our rankings for NanoXML , based
on different configurations: incoming versus outgoing calls, various window sizes, and
rankings based on object- and class-based traces. The search length is the number of
classes in atop of the faulty class in a ranking.

For a ranking to be useful, it must be at least better than a random ranking. Each
search length in Table 3 is an average over 386 program runs (or rankings). On average,
each run utilizes 19.45 classes from which 10.56 are actually executed (excluding the
test driver). Random placing of the faulty class would result in an average search length
of 9.22 classes, and 4.78, respectively.

All rankings in our experiment are noticeably better than random rankings. They are
better even if a programmer had had the additional knowledge of which classes were
never executed.

Comparing sequences of passing and failing runs is effective in locating defects.

Sequences vs. CoveragePrevious work by Jones et al. (2002) has used coverage anal-
ysis to rank source code statements: statements more often executed in failing runs than
in passing runs rank higher. Since we are ranking classes, the two approaches are not
directly comparable. But ranking classes based on incoming calls with a window size
of 1 is analogous to method coverage: the sequence set of a class holds exactly those
methods of the class that were called, hence executed. The corresponding search length
of 3.69 is the largest in our table, therefore strongly supporting our claim (1): sequences
predict defects better than simply comparing coverage.

Comparing sequences of length 2 or greater always performs better than comparing
coverage (i.e. sequences of length 1).

Classes vs. ObjectsTracing on the object level (rather on the simpler class level)
offered no advantage for incoming calls, and only a slight advantage for outgoing calls.
We attribute this to the few objects NanoXML instantiates per class and the absence



of threads. Both would lead to increased non-deterministic interleaving of calls on the
class level, which in turn would lead to artificial differences between runs.

To validate our hypothesis, we traced AspectJ, which was presented in the intro-
duction, both on the class and the object level. While the class where the developers
fixed bug #30168 showed up at position 10 out of 541 executed classes with object-
based traces, it showed up at position 16 with class-based tracing. This supports our
claim (2): per-object sequences are better defect predictors than global sequences.

Object-based traces are at least slightly better defect locators than class-based traces.
For multi-threaded programs, object-based traces should yield a greater advantage.

Window Size With increasing window sizes, search lengths decrease for all traces.
The decrease is not always strict, but a strong trend for both incoming and outgoing
calls. Moving from a window size of 1 to a window size of 8 reduces the average search
length by about 0.5 classes for incoming calls, and by about 0.4 classes for outgoing
calls. This corresponds to an improvement of 15 percent. This supports our claim that
longer call sequences capture essential control flow of a program.

Given this result, we also experimented with larger window sizes, but moving be-
yond a window size of 8 did not pay off. A wide window misses any trace shorter than
its size and this became noticeable with window sizes greater than 8.

Medium-sized windows, collecting 3 to 8 calls, provide the best predictive power.

Outgoing vs. Incoming Calls Outgoing calls predict faults better than incoming calls.
The search length for rankings based on outgoing calls are smaller than those based on
incoming calls. Even the worst result for outgoing calls (2.75 for window size of 2) beats
the best result for incoming calls (3.19 for window size of 8). This strongly supports
our claim (3): the caller is more likely to be defective than the callee.

The inferiority of incoming calls is not entirely surprising: traces for incoming calls
show how an object (or a class) is used. A deviation in the failing run from the passing
runs indicates that a class is used differently. But the class is not responsible for its
usage—its clients are. Therefore, different usage does not correlate with faults.

This is different for outgoing calls, which show how an object (or a class) is imple-
mented. For any deviation here the class at hand is responsible and thus more likely to
contain a fault.

Outgoing calls locate defects much better than incoming calls.

Benefits to the Programmer Tracing outgoing calls with a window size of 8, the
average search length for a ranking was 2.22. On the average, a programmer must thus
inspect 2.22 classes before finding the faulty class—that is, 21.0% of 10.56 executed
classes, or 10% of all 23 classes.

Fig. 6 shows a cumulative plot of the search length distribution. Using a window of
size 8, the defective class is immediately identified in 36% of all test runs (zero search
length). In 47% of all test runs, the programmer needs to examine at most one false
positive (search length = 1) before identifying the defect.
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Fig. 6. Distribution of search length for outgoing calls in NanoXML. Using a window size of 8,
the defective class is pinpointed (search length 0) in 36% of all test runs.

Because NanoXML is relatively small, each class comprises a sizeable amount of
the total application. As could be seen in the example of AspectJ, large applications
may exhibit vastly better ratios. We also expect larger applications to show a greater
separation of concerns, such that the number of classes which contribute to a failure
does not grow with the total number of classes. We therefore believe that the results of
our controlled experiment are on the conservative side.

In NanoXML, the defective class is immediately identified in 36% of all test runs. On
average, a programmer using our technique must inspect 21% of the executed classes
(10% of all classes) before finding the defect.

6 Related Work

We are by no means the first researchers who compare multiple runs, or analyze function
call sequences. The related work can be grouped into the following categories:

Comparing multiple runs. The hypothesis that a fault correlates with differences in
program traces, relative to the trace of a correct program, was first stated by Reps
et al. (1997) and later confirmed by Harrold et al. (1998). The work of Jones et al.
(2002) explicitly compares coverage and thus is the work closest to ours. Jones
et al. try to locate an error in a program based on the statement coverage produced
by several passing and one failing run. A statement is considered more likely to be
erroneous the more often it is executed in a failing run rather than in a passing run.
In their evaluation, Jones et al. find that in programs with one fault the one faulty
statement within a program is almost certainly marked as “likely faulty”, but so is



also 5% to 15% of correct code. For programs with multiple faults, this degrades to
5% to 20% with higher variation. Like ours, this approach is lightweight, fully au-
tomatic and broadly applicable—but as demonstrated in the evaluation, sequences
have a significantly better predictive power.

Intrusion detection. Our idea of investigating sequences rather than simply coverage
was inspired by Forrest et al. (1997) and Hofmeyr et al. (1998)’s work onintru-
sion detection.They traced the system calls of server applications likesendmail ,
ftpd , or lpd and used the sliding-window approach to abstract them as sequence
sets (n-tuples of system calls, wheren = 6, . . . , 10). In a training phase, they
learned the set from normal behavior of the server application; after that, an unrec-
ognized sequence indicated a possible intrusion. As a variation, they also learned
sequence that did not match the normal behavior and flagged an intrusion if that
sequence was later matched by an application. Intrusion detection is considerably
more difficult than defect localization because it has topredictanomalous behavior,
where weknowthat a program run is anomalous after it failed a test. We found the
simplicity of the idea, implementation, and the modest run-time cost appealing. In
contrast to their work, though, our approach specifically exploits object orientation
and is the first to analyze sequences for defect localization.

Learning automata. Sekar et al. (2001) note a serious issue in Forrest et al. (1997)’s
approach: to keep traces tractable, the window sizen must be small. But small
windows fail to capture relations between calls in a sequence that aren or more calls
apart. To overcome this, the authors propose tolearn finite-state automatafrom
system call sequences instead and provide an algorithm. The interesting part is that
Sekar et al. learn automata from traces where they annotate each call with the caller;
thus calls by two different callers now become distinguishable. Using these more
context-rich traces, their automata produced about 10 times fewer false positives
than then-gram approach. Learning automata from object-specific sequences is an
interesting idea for future work.

Learning APIs. While we are trying to locate defects relative to a failing run, Ammons
et al. (2002) try to locate defects relative toAPI invariantslearned from correct runs:
they observe how anAPI is used by its clients and learn a finite-state automaton that
describes the client’s behavior. If in the future a client violates this behavior, it is
flagged with an error. A client is only required during the learning phase and the
learned invariants can later be used to validate clients that did not even exist during
the learning phase. However, as Ammons et al. point out, learningAPI invariants
requires a lot of effort—in particular because context-sensitive information such as
resource handles have to be identified and matched manually. With object-specific
sequences, as in our approach, such a context comes naturally and should yield
better automata with less effort.

Data anomalies.Rather than focusing on diverging control flow, one may also focus
on differing data.Dynamic invariants,pioneered by Ernst et al. (2001), is a pred-
icate for a variable’s value that has held for all program runs during a training
phase. If the predicate is later violated by a value in another program run this may
signal an error. Learning dynamic invariants takes a huge machine-learning appa-
ratus and is far from lightweight both in time and space. While Pytlik et al. (2003)
have not been able to detect failure-related anomalies using dynamic invariants, a
related lightweight technique by Hangal and Lam (2002) found defects in four Java



applications. In general, techniques that detect anomalies in data can complement
techniques that detect anomalies in control flow and vice versa.

Statistical sampling. In order to make defect localization affordable for production
code in the field, Liblit et al. (2003) suggest statistical sampling: Rather than col-
lecting all data of all runs, they focus on exceptional behavior—as indicated by
exceptions being raised or unusual values being returned—but only for asampled
set.If such events frequently occur together with failures (i.e. for a large set of users
and runs), one eventually obtains a set of anomalies that statistically correlate with
the failure. Our approach requires just two instrumented runs to localize defects,
but can be easily extended to collect samples in the field.

Isolating failure causes.To localize defects, one of the most effective approaches is
isolatingcause transitions,as described by Cleve and Zeller (2005). Again, the ba-
sic idea is to compare passing and failing runs, but in addition, the delta debugging
technique generates and testsadditional runsto isolate failure-causing variables in
the program state (Zeller, 2002). A cause transition occurs at a statement where one
variable ceases to be a cause, and another one begins; these are places where cause-
effect chains to the failure originate (and thus likely defects). Due to the systematic
generation of additional runs, this technique is precise, but also demanding—in par-
ticular, one needs an automated test and a means to extract and compare program
states. In contrast, collecting call sequences is far easier to apply and deploy.

7 Conclusion and Consequences

Sequences of method calls locate defective classes with a high probability. Our evalu-
ation also revealed that per-object sequences are better predictors of defects than per-
class or global sequences, and that the caller is significantly more likely to be defective
than the callee. In contrast to previous approaches detecting anomalies inAPI usage,
our technique exploits object orientation, as it collects method call sequences per ob-
ject; therefore, the approach is fully generic and need not be adapted to a specificAPI.
These are the results of this paper.

On the practical side, the approach is easily applicable to arbitrary Java programs,
as it is based on byte code instrumentation, and as the overhead of collecting sequences
is comparable to measuring coverage. No additional infrastructure such as automated
tests or debugging information is required; the approach can thus be used for software
in the field as well as third-party software.

Besides general issues such as performance or ease of use, our future work will
concentrate on the following topics:

Further evaluation. The number of Java programs that can be used for controlled ex-
periments (i.e. with known defects, automated tests that reveal these defects, and
changes that fix the defects) is still too limited. As more such programs become
available (Do et al., 2004), we want to gather further experience.

Fine-grained anomalies.Right now, we are identifyingclassesas being defect-prone.
Since our approach is based on comparingmethods,though, we could relate dif-
fering sequences to sets of methods and thus further increase precision. Another
interesting option is to identify anomalies in sequences of basic blocks rather than
method calls, thus focusing on individual statements.



Fig. 7.For the AspectJ bug of Section 2, Eclipse ranks likely defective classes (bottom left)

Sampled calls.Rather than collecting every single method call, our approach could
easily be adapted tosampleonly a subset of calls—for instance, only the method
calls of a specific class, or only every 100th sequence (Liblit et al., 2003). This
would allow to use the technique in production code and thus collect failure-related
sequences in the field.

Exploiting object orientation. Our approach is among the first that explicitly exploits
object orientation for collecting sequences. Being object-aware might also be ben-
eficial to related fields such as intrusion detection or mining specifications.

Integration with experimental techniques. Anomalies in method calls translate into
specific objects and specific moments in time that are more interesting than others.
These objects and moments in time could be good initial candidates for identifying
failure-inducing program state (Zeller, 2002).

An Eclipse plugin. Last but not least, we are currently turning the prototype into a
publicly available Eclipse plugin: As soon as a JUnit test fails, a list shows the
most likely defective classes at the top—as in the AspectJ example (Fig. 7).

For future and related work regarding defect localization, see

http://www.st.cs.uni-sb.de/dd/
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