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Holger Cleve Andreas Zeller
Universitt Passau Universitt Passau
Lehrstuhl Software-Systeme  Lehrstuhl Software-Systeme
Innstrafl3e 33 Innstrafl3e 33
94032 Passau, Germany 94032 Passau, Germany
+49 851 509-3094 +49 851 509-3095
cleve@fmi.uni-passau.de zeller@acm.org
Abstract In this paper, we give an overview alelta debugging-

an automated debugging method that relies on systematic
testing to prove and isolate failure causes—circumstances
such as the program input, changes to the program code, or

n;[hm, Sléffllctesdtobdetgrmltnetthewlure—lnduclng C'tf"“ﬁ"" d executed statements. Basically, delta debugging sets up sub-
stancesLella debugging tests a program systematically and g f he original circumstances, and tests these configura-

automatically to isolate failure-inducing circumstances such tions whether the failure still occurs. Eventually, delta de-

as the program input, changes to the program code, or exe'bugging returns a subset of circumstances where every sin-
cuted statements.

gle circumstance is relevant for producing the failure.
Keywords: Testing and debugging, debugging aids, combi- This paper unifies our previous work on delta debug-
natorial testing, execution tracing ging [3, 8] by showing that a single algorithm suffices. For
the first time, the isolation of failure-inducing statements is
discussed. After basic definitions and a discussion of the
algorithm, we show how to apply delta debugging to iden-
Debugging falls into three phases: reproducing a failure, tify failure-inducing changes, failure-inducing program in-
finding the root cause of the failure, and correcting the error Put, and failure-inducing statements. We close with discus-
such that the failure no longer occurs. While failure repro- sions of related and future work.

duction and correction are important issues, it is the second

phase, finding the root cause, which is the most significant. 2 Configurations and Tests

Early studies have shown that finding the root cause accounts

A program fails. Under which circumstances does this fail-
ure occur? One single algorithm, tHelta debugginglgo-

1 Debugging by Testing

for 95% of the whole debugging effort [6]. Let us begin with some basic definitions. First of all, what
The common definition of a causessme preceding event  are the “circumstances” of a failure? Roughly speaking, a
without which the effect would not have occurrddhis im- failure circumstance is anything that might influence the ex-

plies that any claim for causality can only be verified by ex- istence of the failure. Without any further knowledge, this
perimentation. To prove that an event is the cause, the effectis anything that may influence the program’s execution: its
must no longer occur if the event is missing. environment, its input, its code. All these are circumstances
In the context of debugging, the “effect” is a failure, and of a failure.
the “event” is some circumstance of the program execution.  We call a set of circumstanceseenario Obviously, the
To prove that some circumstance has caused a failure, ongoot cause of a problem is somewhere within this scenario.
must remove it in a way that the failure no longer occurs. To isolate the root cause, we must separate the chaff from
This is typically done as the very last debugging step: After the wheat, or irrelevant from relevant failure circumstances.
correcting the error, one re-tests the program, verifies that  Let us now have a specific failing scenario to investigate.
the failure is gone, and thus proves that the original error Normally, we also know avorking scenariounder which
was indeed the failure cause. the failure doesot occur. Let us assume we have some
In order to prove causality, there can be no substitute for gradual transitionfrom the working scenario to the failing
testing—not even the most sophisticated analysis of the orig- scenario—for instance, by adding or altering circumstances.
inal program run. In other wordsAnalysis can show the The idea then is to systematically test scenarios along this
absence of causality, but only testing can show its presence.transition in order to isolate failure-inducing circumstances



and to use the test outcome to generate new hypotheses.

Formally, we view afailure-inducing scenario Gas the
result of applying a number ahangesA1, A, ..., Ap to
some working scenario. This way, we have a grathaaisi-
tion from the working scenario (= no changes appliedto
(= all changes applied).

We can describe any scenario between the working sce-

nario andC as aconfiguration of changes

Definition 1 (Scenario) Let C = {A1, Ap,..., Ap} be a
set of changes. A change et C is called ascenario. o

A scenario is constructed by applying changes to the work-
ing scenario:

Definition 2 (Working scenario) An empty scenaria = ¢
is called theworking scenario. O

We do not impose any constraints on how changes may

il

e ——

Figure 2: Tests carried out lidmin

determine minimality requires testing alf2- 1 true subsets
of ¢, which obviously has exponential complexity.

What we can determine, however, isagproximatior—
for instance, a scenario where still every part on its own
is significant in producing the failure, but we do not check
whether removing several parts at once might make the sce-
nario even smaller. Formally, we define this property as
1-minimality, wheren-minimality is defined as:

be combined; in particular, we do not assume that changesDefinition 6 (n-minimality) A scenariac € Cisn-minimal

are ordered. Thus, in the worst case, there 8rpdssible
scenarios fon changes.

To determine whether a scenario fails, we assunesi
ing functionwith three standard outcomes:

Definition 3 (Test) The functiontest : 2¢ — {0, O, ?}
determines for a scenario whether some given failure oc-
curs (J) or not @) or whether the test is unresolve®) ( o

In practice testwould construct the scenario by applying the

if v¢' C ¢ (|c| — || = n = (tes(c)) # O)) holds. o

If cis |c|-minimal, thenc is minimal in the sense of Defini-
tion 5.

Definition 6 gives a first idea of what we should be aim-
ing at. However, given a scenario with, say, 100,000 changes,
we cannot simply undo each individual change in order to
minimize it. Thus, we need an effective algorithm to reduce
our scenario efficiently.

An example of such a minimization algorithm is timén-

given changes to the working scenario, execute the scenaridmizing delta debugging algorithm ddmishown in Figure 1

and return the outcome.
Let us now model our initial setting. We have sowrk-
ing scenariathat works fine and some scenario that fails:

Axiom 4 (Scenarios)tes{¥) = O (“working scenario”) and
tes(C) = O (“failing scenario”) hold. m

Our goal is now taninimizethe failing scenari@C—that is,
making it as similar as possible to the working scenario. A
scenaria being “minimal” means that no subset®tauses
the test to fail. Formally:

Definition 5 (Minimal scenario) A scenarioc € C is min-
imalif v¢' C ¢ (tes(c’) # 0) holds. o

This is what we want: to minimize a scenario such that
all circumstances are relevant in producing the faikure
removing any change causes the failure to disappear.

3 Minimality of Scenarios

How can one actually determine a minimal scenarios? Here
comes bad news. Let there be some scereatimnsisting of
|c| changes to the minimal scenario. Relyingtestalone to

on the following page and discussed in [8dminis based
on the idea oflivide and conquennitially, it partitions the
set of changes into two subseisandc; and tests each of
them: if any test fails, the search is continued with this re-
duced subset.
If no test fails,ddmin increases the granularityy dou-
bling the number of subsets. It then tests each subset and
eachcomplementif the test fails, the search is continued
with this reduced subset. The process is continued until each
subset has a size of 1 and no further reduction is possible.
The whole process is illustrated in Figure 2. Here, we
assume that every test outcome is unresolved. We see how
ddminfirst partitions the whole set of changes (a rectangle)
into two subsets (gray areas), then into four, then into eight,
sixteen, etc., testing each subset as well as its complement.
Theddminalgorithm guarantees that the returned set s 1-
minimal; that is, no single change that can be removed such
that the test still fails. In the last stages of Figure 2, we see
how this guarantee is achievedtminreturns only when all
complements have passed the test, and this means that each
remaining change has been removed at least once.
This guarantee comes at a price. In the worst case (every
test fails but the last complementldminrequires up tm?+



Minimizing Delta Debugging Algorithm
Theminimizing delta debugging algorithm ddnin is

ddmin(c) = ddmirnp(c, 2) where

ddmin(ci, 2) if tes(c;) = Ofor somei (“reduce to subset”)
ddmin(c. n) — ddmirp(ci, max(n — 1, 2)) else iftes{(¢) = Ofor somei (“reduce to complement”)
©7 | ddmirp(c, min([c|, 2n)) else ifn < |c| (“increase granularity”)
c otherwise (“done”).
wherecy, ..., ¢y C csuch that Jc = c, all ¢ are pairwise disjointyc; (|ci| ~ |c|/n), as well agi = ¢ — ¢;.

The recursion invariant (and thus precondition)ddmir istes{c) = O A n < |c|.

Figure 1: Minimizing delta debugging algorithm

3n tests forn changes [3]. However, in the best case (every changes\y, ..., Aj_1, then every scenario which would not
test fails),ddminrequires only logn tests. fulfill these constraints could be rejected straight away. Un-
The performance aldmincan be dramatically improved der these conditions, only configurations with a full set of
if we know that once a set of changes passes the test, therthanges\y, . .., Aj_; actually had to be testedddminde-
every subset passes the test as well—the so-aaltewtony. graded into a simpléinary searchwith logarithmic com-
If we know that a set of changes is monotone, we need notplexity.
test sets whose supersets have already passed théetsst: But even when the dependency between changes was not
can simply returri] without actually carrying out the test. known, or when a single logical change was still too large,
This optimization makeddminlinear at worst—but only ~ ddminperformed satisfactorily. In one case study, we had
if there are no unresolved test outcomes. The number of testsa single 178,000-line change to tkeu debugger éDB);
required byddminlargely depends on our ability to group this change was broken down into 8721 textual changes in
the scenario transitions such that we avoid unresolved testthe GDB source, with any two textual changes separated by a
outcomes and increase our chances to get failing tests. context of at least two unchanged lines. The problem was, of
course, that applying any subset of these 8721 changes did
not have many chances to result in something consistent.
To summarize: Nearly all tests were unresolvddmin
In our first case study [8], we applied delta debugging to had a chance to succeed only after the subsets and their com-
a common, yet simple regression case. The situation is asPlements had become sufficiently close/tandC, respec-
follows: There is some old version of the program (“yester- tively. As shown in Figure Iidminrequired 470 tests to iso-
day”), which works, and a new version (“today”) which does late the single failure-inducing change. Each test involved
not. The goal is to identify the changes to the program code change application, smart reconstructionaafs, and run-
which induce the failure. ning the test, which took an average time of 190 secénds.
This situation fits nicely into the scenario model of Sec-  After grouping changes by location criteria (i.e. com-
tion 2. The “yesterday” version is the working scenario; the mon files and directoriesfJdminrequired 289 tests. After
changes are textual changes to the program code; the “today’@Pplying syntactic criteria (grouping of changes according
version is the failing scenario where all changes are applied.to functions) ddminrequired only 97 tests, or about 4 hours.
Using the scenario minimization algorithm, we should be
able to minimize the set of applied changes and thus identify
a small set of failure-inducing changeks.
Our results with delta debugging were quite promising. el Debuoang Loa

10000 T T T
DB-with-ranek lustering

First, if the dependency between changes was known (from S GDB wih fle clustering ‘ ......

4 Finding Failure-Inducing Changes

2All times were measured on a Linux PC with a 500 MHz Pentium IIl processor.

. . . . 1000 IETTTTTH GDB with function clustering -
a version history, for instance), then delta debugging be- i
came quite trivial: If every changa; depended on earlier 100 i ||]
Lin this first case study, we actually used a variantiamin calleddd [8]. For 1
the examples in this Sectioddt has exactly the same performanceddsinunder i p 1'00 Py p po ‘300 o a0 o =00
monotony; i.etesic) returnsd without actually testing if a superset o has already Tests executed

passed the testidmindoes not guarantee 1-minimality, which is why we recommend
ddmin(possibly with the monotony optimization), as a general replacemedtifor

Changes left

Figure 3: Simplifying failure-inducingbs changes



tomin log 6 Reducing Execution Traces

1 T
>L MN events removed

L As a further example, we show how delta debugging can
j—L be helpful in identifyingfailure-inducing eventsluring the

TL execution of the program. We assumeexiecution traces

10 i a sequence gfrogram statesluring execution, starting with

-1 a working (empty) state and ending in a failing state. During

1 a program run, statements are executed that access and alter

the program state. The goal is now to identify those events

(i.e. statement executions) that were relevant in producing

100

number of X-events

0 oo o e e s the failure and to eliminate those that were not.
Again, this nicely fits into our scenario model of Sec-
Figure 4: Simplifying failure-inducing Mozilla input tion 2. The “working” scenario is no execution at all. The
“failing” scenario is the result of the state chandeés=
5 Simplifying Test Cases {A1, ..., Ap} induced by the executed statements. Apply-

ing delta debugging to minimiz€ means to isolate exactly
In a second case study [3], we used delta debugging to sim-those state changes that were relevant in producing the fi-
plify failing test cases-by minimizing the differences be-  nal state—very much like well-known dynamic slicing tech-
tween the failing input and a trivial (empty) input. niques [1, 4, 7], but relying opartial executiorrather than
Having a minimal test case is an important issue for de- analysis of control and data flow and thus showing real causal-
bugging. Not only does it show the relevant failure cir- ity instead of potential causality.
cumstances; simplifying test cases also helps to identify and  As an example, consider the followimgRL program. It

eliminate duplicate bug reports. It turned out tlaigmin reads in two numbers andb and computes the susum=
works just as well to minimize failure-inducing input than Zib:ai as well as the produchul = l_[ib:ai:

to minimize failure-inducing changes.

Here comes another case stulipzilla, Netscape’s new ; ﬁ:ﬁt f,’
web browser project [5], is still in beta status and thus shows 3 prim..a?’ " ga = ()
numerous bugs. We hunted a bug in which printing a certain 4 print"b? " ;$b = ();
www page caused the browser to fail. This scenario gave us 5 while $a < $b) |
two things to look for: 6 $sum = $sum + $a;
. . 7 $mul = $mul * $a;
e Which parts of thevww page are relevant in reproduc- 8 S—Sad+l
ing the failure? 9 )
e Which user actions are relevant in reproducing the fail- 10 print’sum = ", $sum " \n";
11 print'mul = " , $mul, " \n";

ure?

Using delta debugging, we could successfully simplify both H€re is an example run sample.pl

the sequence of user actions as well asvhewn page. It $ perl ./sample.pl
turned out that a number of user actions (such as changing a? 0
the printer settings) were not relevant in reproducing the fail- b? 5

sum = 15

ure. As shown in Figure 4, our prototype minimized 95 user
actions into 3 after 39 test runs (or 25 minutes): In order to
crash Mozilla, it suffices to presalt+P and press and re-
lease the mouse button &mint.3 Likewise, in 57 test runs,  For this run, we wanted to determine the events which have
our prototype reduced theww page from 896 lines to a  influenced the final program output. We set up a prototype
single line: calledsTrIPE* which applies theldminalgorithm on execu-

o _ tion traces.
<SELECT NAME="priority" MULTIPLE SIZE=7> In a first step, STRIPE determines the execution trace—

GNU C compiler as well as variousnix utilities, all with Then,sTRIPEruns theddminalgorithm on the execution trace.

promising results. All one needs is an input, a sequence of To omit a statemert from executionsSTRIPEUSES a conven-
user actions, an observable failure—and a little time to let tional interactive debugger to insert a breakpoinSafThe

the computer do the minimization. breakpoint causes the program to interrupt whené&/es
reached; an associated breakpoint command causes the de-
bugger to resume execution behigd

mul = 0

3Note that releasing the key is not required.

4STRIPE = “Systematic Trace Reduction by Iterative Partial Execution”



Figure 5:sTRIPErun onsample.pl

ooooooooooo

0OO00O00000000000000

[=lalulalalalalelalalnlal=lal=]

Doooooooooooo

with program output as test criterion

Event Original trace Reduced trace . wLrgufh ...wort. $nul
1; $sum=0; $sum=0; $sum=0;
2 $mul=1,
33 print"a? " ;%a= (); print"a? " ;%a=(); print"a? " ;$a=(); print"a? " ;%a= ();
4y print"b? " ;$b=();
55 while ($a < $b) {
66 $sum= $sum-+ $a;
77 $mul = $mul « $a; $mul = $mul = $a; $mul = $mul x $a
8g $a="%a+1, $a=%a+1; $a=%a+1,;
9 |}
510 while ($a < $b) {
611 $sum= $sum+ $a; $sum= $sum+ $a; $sum= $sum+ $a;
712 $mul = $mul s $a;
813 $a="%a+1, $a=2%a+1, $a=%a+1;
94 |}
515 while ($a < $b) {
616 $sum= $sum+ $a; $sum= $sum+ $a; $sum= $sum+ $a;
717 $mul = $mulx $a;
818 $a="%a+1, $a=2%a+1, $a=%a+1;
99 |}
550  while ($a < $b) {
621 $sum= $sum-+ $a; $sum= $sum-+ $a; $sum= $sum+ $a;
722 $mul = $mulx* $a;
83 $a="%a+1; $a=%a+1; $a==%a+1;
%94 }
505  while ($a < $b) {
626 $sum= $sum-+ $a; $sum= $sum-+ $a; $sum= $sum+ $a;
727 $mul = $mulx* $a;
88 $a="%a+1, $a="%a+1; $a=%a+1,;
99 |}
530 while ($a < $b) {
631 $sum= $sum-+ $a; $sum= $sum-+ $a; $sum= $sum+ $a;
732 $mul = $mul x $a;
833 $a=%a+1;
931}
535  while ($a < $b) {
1036 print"sum = " ,$sum"\n"; print"sum = ", $sum"\n"; print"sum = ", $sum"\n";
1137  print"mul = " ,$mul"\n"; print"mul = " , $mul, " \n"; print"mul = " , $mul, " \n";

Figure 6: Execution traces sample.pl



In our example, théestfunction would return

o [Jwhenever the expected behavior was actually repro-
duced,

e [0 when anything else was produced, and

o ?if the program did not produce anything, i.e. the pro-
gram crashed or hung.

Figure 5 on the preceding page showsshrIPErun. STRIPE
required a total of 176 tests (i.e. partial executions) to reduce
the execution trace. Each bullestands for an applied,

or executed statement. We see that most tests either result i
O or 2. Only after 50 tests do we seégest outcome—the

expected output was produced and the trace can be reduce
to the shown set of statements. The last line shows the final

1-minimal trace. The actual result is shown in Figure 6. All
events are listed in the fortime numbefime.

e The original trace is shown in the first column; we
see how the variablesa$and $ are read in (events
33 and 4 in Figure 5) and how $umand $nul are
computed and printed.

The reduced trace in the second column shows that
several of these statements are actually irrelevant for
computing the output—executing the original trace and
the reduced trace has the same effect. Thus, we find
that the initialization of $ul (1) is irrelevant, since
whatever it is initialized to, Sl will always be zerc.

In the third column, we have ruaTRIPE with a test
function that compares only thes@moutput. This
means that the few statements related nulcan be
eliminated as well.

In the fourth and last column, we have rsTRIPEWith
a test function that compares only thenthil output.
Only the initial assignment and the final output remain.

We see howsTRIPE effectively reduces execution traces to
those events which were actually relevant ¢oitical) in

n

to the program code, or executed statements. All that is re-
quired is an automated test.

Delta debugging comes at a price: Although titimin
algorithm guarantees 1-minimality, the worst-case quadratic
complexity is a severe penalty for real-world programs—
especially considering program runs with billions of exe-
cuted statements. Consequently, our future work will con-
centrate on introducingomain knowledgito delta debug-
ging. In the domain of code changes, we have seen signif-
icant improvements by grouping changes according to files,
functions, or static program slices, and rejecting infeasible
configurations; we expect similar improvements for program
@put and program statements.

Our long-term vision is that, to debug a program, all one
has to do is to set up an appropridéstfunction. Then,
one can let the computer do the debugging, isolating failure
circumstances using a combination of program analysis and
automated testing. Automatic isolation of failure causes is
no longer beyond the state of the art. It is just a question of
how much computing power and program analysis you are
willing to spend on it.
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Further information on delta debugging is available at
http://www.fmi.uni-passau.de/st/dd/
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