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Preface

Abstract

A regression is a common type of failure that occurs while changing source code of a working
program: “Yesterday, your program worked. Today, it does not. Why?” Manual debugging of
regressions is costly in terms of labour and time, it annoys developers and costs organisations lot
of money.

This thesis presents a platform that integrates seamlessly automated determination of failure-
inducing code changes with common development processes. Automated determination may
increase efficiency, improve productivity, while saving time and money. Because established
processes need not to be adapted, start-up costs and risks are low.

The platform supplies two tools in form of plug-ins. A Eclipse plug-in integrates automated
determination of failure-inducing changes with a prominent IDE. As soon as a unit test fails, it
can be debugged automatically. A Maven plug-in enriches continuous building and testing with
automated debugging. Instead of a simple failure report, we obtain valuable information about
failure-inducing changes—without lifting a finger: “The failure cause is the change in line 37 of
file StringUtils.java.”

The plug-ins are instances of a framework that contains all basic functionality in order to build
tools that enable automatic determination of failure-inducing changes. Using that framework,
implementing new tools that debug other types of failure is quite easy and simple—again saving
time and money.
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1 Introduction

1.1 The Problem

The WEB.DE GmbH—operating company of WEB.DE, Germany’s second largest Internet
portal—utilise agile software development in order to implement new features and products for
their portal. These agile methods and processes include Extreme Programming and Scrum, an
iterative, incremental process for developing products. It produces a potentially shippable set of
functionality at the end of every iteration (in the context of Scrum called Sprint). A so-called
Sprint Backlog defines all tasks required to complete an iteration. Working through that backlog,
developers implement all listed features and tests these applying various techniques, such as unit
and continuous testing. A Sprint has not finished until all features are implemented and pass the
tests, including tests implemented during previous iterations—tests are a substantial part of the
software development process operated by WEB.DE1 development teams.

If a developer introduced a defect into a product that previously passed all tests, she made a
regression. As a software product is developed, this type of defect is quite common. Even if
you are not familiar with agile methods and processes, you will know this scenario: “Yesterday,
your program worked. Today, it does not.”. Your key question will be: “Why?” Normally, only a
few changes on the program code are responsible for today’s failure—out of many changes. At
WEB.DE, as well as other larger development teams, many programmers and others have a hand
in development of a software product, making many changes everyday. If a regression occurs,
finding the defect in the code will be a vehement challenge.

Determining failure-inducing changes, the changes that introduced the defect in your code and
therefore caused the failure, is tedious and time-consuming into the bargain. This debugging
task is typically accomplished manually and ties up resources that are busy with other things.
Therefore, manual debugging is not only tedious from the individual programmer’s point of
view, but also costly in terms of labour and in terms of time. In short: debugging regressions
costs WEB.DE money.

1In this work, the term WEB.DE is used instead of WEB.DE GmbH unless otherwise noted.
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1 Introduction

Figure 1.1: As soon as a test failed, you can revert the failure-inducing changes. There were 200
individual changes, only two of them are relevant to the failure.

1.2 The Proposed Solution

The purpose of this thesis is to present a solution that reduces the time spent identifying the
changes that introduced a failure. The main objective of the study is to provide tools that enrich
the familiar development process with automated determination of failure-inducing changes, not
even at the push of a button—completely automatically. As soon as there is a failing test, a tool
should identify the changes as illustrated in Figure 1.1. Although there were 200 changes since
the last passing run of the test, only two of them are relevant to the failure. Thus, the developer
has to examine only two instead of 200 changes, saving a lot of time.

Preferably, the tools are integrated seamlessly into the current development process—without
bothering the developer with additional tasks or other prerequisites. For instance, existing failure
reports should be extended with information about failure-inducing changes.

The determination of failure-inducing changes is based on several existing theoretical concepts.

2



1.3 Structure

These underlying terms and concepts are discussed in an academic way, we review topics that
include approaches to simplify problems and to isolate failure causes. Having the theoretic foun-
dation, we are able to deduce straightforward a strategy that determines the failure-inducing
changes.

We can integrate the automated determination of failure-inducing changes with development
processes at several stages. For instance, a failure can occur both at a developers workstation
when running individual unit tests and at the central server that runs continuous integration and
testing. If we would implement different tools without abstracting common functionality, we had
to duplicate similar code.

Therefore, we implement the deduced strategy and related functionality in form of a very general
framework. That framework should supply the complete functionality in order to accomplish the
determination of the failure-inducing changes. Furthermore, that framework must be easy to use
and to extend, because we want to ensure the cost-benefit over designing tools from scratch.

Finally, we implement concrete instances of the developed framework in order to integrate the
determination of the failure-inducing changes with WEB.DE’s current process. These instances
enrich the development process at two different points. First, a plug-in for the Eclipse IDE
enables the individual developer to determine the failure-inducing changes on hers local work-
station. Second, a Maven plug-in enables the quality assurance department to incorporate the
determination into the automatic build process.

The framework as well as the tools—the platform—are released under an open-source license.
Thus, everybody can use all results of this thesis.

1.3 Structure

The content of this thesis evolves along a continuum from the underlying theory to concrete tools
that are in use at WEB.DE. Figure 1.2 illustrates the continuum as described in detail below.

Chapter 2 of this thesis discusses the fundamental terms and concepts regarding debugging in
general, simplifying a problem, causes and effects, and isolating failure causes. In Chapter 3, we
derive failure-inducing code changes and their automatic determination from the acquired theo-
retic equipment. This chapter contains a strategy to determine these changes in theory. Chapter
4 introduces the framework called DDCHANGE, the practical core of the whole platform. That
framework supplies all required parts in order to accomplish the strategy—it enables you to
develop tools that determine failure-inducing changes. The concrete tools in the form of two
plug-ins for well-known Java development tools are presented in Chapter 5. The plug-ins are
instances of the framework, they enable developers to determine the wanted changes in practice
using their familiar tool. Conclusions are drawn in Chapter 6, it summarises aspects of the pre-
vious chapters and suggests topics for further studies. Finally, the Appendix A lists the content
of the included CD. That CD contains the complete source code of the platform, the JavaDoc

3



1 Introduction

Practical

Theoretic

Chapters

Background

Failure-Inducing
Changes

The Framework

The Tools

Figure 1.2: The content of this work in a continuum from theory to practice. The platform draws
upon the theory of possible worlds.

API documentation, movies that show the tools in action, and the framework and tools ready for
use.

1.4 Results of the Thesis

This thesis proved that the automated determination of failure-inducing changes can be integrated
seamlessly with the established development process at WEB.DE. The automation may save a
developer a significant amount of time, because failure-inducing changes are identified much
faster than they are with manual debugging techniques.

Both tools help the developers at WEB.DE with their day-to-day business. First, the Eclipse
plug-in enables developers to debug failures faster and with less effort using her familiar IDE.
Second, the Maven plug-in can be integrated seamlessly with the continuous build process; thus,
it enriches automated testing with automated debugging. Developers are able to concentrate on
other tasks then the tedious and costly debugging of failures introduced by changes.

4



1.5 Future Work

In addition to the simple usage of the tools, you can extend the framework and develop new
instances, respectively. As seen in this thesis, you need verry little effort to implement such tools,
because the framework, which is fully reusable and extendable, supplies the core functionality.
The framework and the tools are released as open-source, allowing everybody to benefit from the
results. For instance, you could create a tool that debugs failed acceptance tests, on the basis of
the framework.

1.5 Future Work

Because of time limitations and limited resources, the following issues occurred during this work
and are potential subjects for further study and development:

• Evaluation. We cannot prove that DDCHANGE and its two instances save a developer
a significant amount of time. An evaluation could fill this gap. The tools are ready for
use and provide basic statistics. The evaluation could research also the different types of
failures and defects that can be debugged with the platform.

• Optimisations. There is room for additional optimisations. Currently, we disregard the
chronological order of the changes, and we do not take the dependencies of different
changes into account. Thus, we could improve the runtime of the determination by re-
garding history and grouping of the changes. Moreover, related work may be used in order
to improve the runtime of the debugging process. That includes “Continuous Testing”
[SE04b] and “Change Classification” [SRRT05].

• Reproducing the failure. The current implementation interprets all failures as a failing
outcome. For instance, if the location of the failure has another backtrace, that failure
should be interpreted as an unresolved outcome.

• Improvements of the user interfaces. Both the report of the Maven plug-in (a special form
of a user interface) and the user interface of the Eclipse plug-in can be improved. For
instance, we could extend the report with information about the originator and the time of
the change.

5
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2 Background and Basics

What is a bug? How to find a bug? How can we automatise tests—thus making a program fail
automatically? What are the relevant circumstances for a problem? Can we find the relevant ones
automatically? What is a failure cause? How can we isolate failure causes—perhaps even auto-
matically? This chapter answers these important questions in a nutshell. The answers to these
questions form the background of this work, they cover the theory, concepts, principles and algo-
rithms that lead straightforward to the fundamentals of the platform for automated determination
of failure-inducing changes.

The following content follows the structure of [Zel05] and summarizes the most important as-
pects for this work. A complete explanation of these topics goes beyond the scope of this work.
For more details, examples and a comprehensive discussion of (systematic) debugging see that
book.

2.1 Essential Concepts

This section defines some essential terms and gives an introduction of the process called debug-
ging.

2.1.1 A Defect Causes a Failure

When talking about bugs, different terms are used: error, defect, flaw, mistake, failure, or fault.
To have a differentiation let’s see how a defect causes a failure.

At first, a programmer creates a defect in the program code (also called bug). If the program
is executed, the incorrect code may cause an infection: the actual program state differs from
the intended one. Finally, the infection in the program state causes a failure if the effect is an
externally observable error.

For instance, a programmer writes a condition-controlled loop, where the loop condition is never
changed within the loop (the defect). If the program is executed, the incorrect condition causes
an infinite loop but the programmer’s intention was to repeat the loop only a few times (the
infection). A user that uses the program may observe that the user interface does not respond
anymore because of the never-ending loop (the failure).

7



2 Background and Basics

To summarize (cf. [Zel05]):

• Defect: An incorrect program code.

• Infection: An incorrect program state.

• Failure: An observable incorrect program behaviour.

In this work the term bug is avoided, instead the terms as defined above are used.

2.1.2 Debugging in Seven Steps

If we find a failure, we want to identify the defect in the program code in order to remove the
defect. After removing the defect, the failure does not longer occur. That process is called
debugging.

Zeller splits this process in seven steps [Zel05]:

1. Track the problem. Enter the issue in a ticket tracking system that manages software prob-
lems. This ensures that the defect will not be lost. Most tracking systems define a workflow
that automates the lifecycle of the issue.

2. Reproduce the failure. Create a test case that reproduces the failure. This helps to verify
the fix for the defect and to find regressions1.

3. Automate and simplify. Concentrate on the relevant circumstances by leaving out the ir-
relevant. Ideally, use a method that automates this process. One such method is the delta
debugging algorithm.

4. Find infection origins. Every failure can be traced back to the defect via its infection. Find
possible infection origins by going back this trail.

5. Focus on likely origins. If you find more than one possible origin, focus on the most likely
(for example so-called anomalies or code smells).

6. Isolate the infection chain. By isolating transitively the origins, create an infection chain
from the defect to the failure.

7. Correct the defect. Remove the defect from the code and verify the result for example by
running the created test case. Now, that test case must not reproduce the failure anymore.

1Generally spoken a regression is a relapse to an earlier development stage or stage of maturation, a step backwards.
In software engineering, a regression is the degeneration of software under development: A failure occurs after
a change in a part of the software that was working before that. A regression is often a side effect that was not
thought of by the programmer who changes another part of the software. Regression testing is an important part
of the extreme programming methodology. That approach again uses unit tests to define the functionality of
certain parts of the code

8



2.2 Automated Tests

The subject of this work is related to the steps reproduce, automate and simplify, and focus on
and isolate origins.

Having the ability to reproduce the failure, automate the test case, focus on causes in the code and
the method to isolate the origin of the infection, we can focus on implementing the platform.

Locating the defect is the most time consuming activity in the debugging process. Providing a
good hint for the location of the defect, the whole debugging process could be completed faster.
In most cases, the costs of correcting the defect are negligible compared to the preceding six
steps (see above).

2.1.3 Automated Debugging

Instead of accomplishing the whole debugging process manually (a boring and tedious task), the
computer can assist the programmer by debugging a program nearly automatically.

Some techniques that follow that path, one of these techniques is the most interesting relating to
this work: the delta debugging algorithm narrows down the difference between a passing and a
failing run. Before we introduce that algorithm, we will see how tests help on debugging.

For a more detailed view on defects, infections, failures and debugging see Chapter 1 in
[Zel05].

2.2 Automated Tests

Creating a test case is the first step before a program can be debugged: A test case executes a
program with the intention to make it fail (see [Zel05]). This work concentrates on testing the
unit layer, however, other layers may be tested using the framework as well.

2.2.1 Testing

Reports by the user are one possibility to call attention to problems. But, the earlier a defect is
found the cheaper it is to fix the problem—compare a defect that is found and fixed during the
implementation with a defect that emerges after the deployment of the program. So, one reason
for testing is to find defects as early as possible.

In the test driven software development model tests that might break the code are written by
the programmer first. Initially, these tests fail. After the tests are written, the programmers
implement the code that has to pass more and more of the existing tests. The development has
finished after no test fails anymore. The test suites (a collection of test cases) will be updated
during the whole process, for example if the requirements change or if the programmer discovers

9



2 Background and Basics

new possible problems. See [Bec02] for more information about the test driven development
process.

This view on testing aims to verify the correctness of the code, more precise testing compares the
actual with the expected behaviour. Testing can never be a complete evidence of the correctness
of software in the same way that an experiment cannot prove a theory. Beside this classical
intention of testing it is often required during the debugging process: A test can reproduce a
problem, rerunning a test multiple times helps to simplify a problem and to observe the run.
Running a test after the fix verifies its success and running it before a new release is deployed
ensures that the problem does not occur a second time.

Because a test is required often, it should be automated. Furthermore, automation is a prerequi-
site of several debugging techniques, particularly with regard to the delta debugging algorithm.
Automated tests are used to isolate failure causes automatically, including failure-inducing code
changes.

2.2.2 Unit Tests

A program can be separated into different layers: the presentation (covering user interaction),
the functionality (independent of a specific presentation) and the unit layer. Each layer can
be tested with different techniques. This work concentrates on the unit layer. One motivation
for that focus is that WEB.DE uses the extreme programming approach and the agile software
development framework. Extreme programming adheres to the test driven development model
and as mentioned earlier tests are essential for that model. Besides that motivation unit tests
are well known and there are many frameworks for specifying and running unit tests, including
for the Java programming language2. Most modern IDEs and other tools related to the software
development process support unit tests innately.

Units are modules of source code, for example classes, packages, functions and all other items
that form a unit according to a selected design or language. Each individual test executes a
specific unit, the unit that is covered by that test. Having these tests, the execution of the covered
units can be automated. Because early testing is important in extreme programming, unit tests
are a good candidate for that method. Units are implemented before the whole functionality and
the presentation layer is available.

A tool that runs unit tests provides a test framework. The framework collects unit tests in test
suites and runs all of them or selected ones without any user interaction. Thus, the unit tests are
run automatically.

Besides the automation of executing parts of the program, unit testing allows the programmer to
change code often and with lower risk. For example, if the programmer refactors the structure
of the program she can be sure that the changed unit still works as expected (provided that all

2Opensourcetesting.org lists 115 unit testing tools for more than ten programming languages—2005-11-05.
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2.3 How to Simplify a Problem

aspects of the desired behaviour are covered by the test). The programmer just runs the unit test
after the change. Unit tests provide a kind of documentation of the units. Looking at the unit
test another programmer can learn how to use the API of a particular class, especially in what
order the methods have to be called. But unit tests are afflicted with some limitations. They do
not cover all possible origins of failures. If the programmer of the unit test and the tested unit
is the same person, she tends to test the known aspects, thus unexpected origins are not tested.
Because unit tests only execute the unit under test by definition, they do not catch other problems
like integration errors or performance problems and any other issues that affect the system-wide
behaviour of the program.

In the context of this work, unit tests are very useful:

• They can easily be automated, a prerequisite for automated debugging.

• If you are confronted with a problem in a unit, the unit test that covers that unit will be
useful to reproduce the problem.

• There are testing frameworks available that run unit tests.

• Existing tools provide functionality to run unit tests innately.

Chapter 3 of [Zel05] provides a detailed description of basic testing techniques, including testing
the presentation and the functionality layer. One section of that chapter describes how to isolate
units.

2.3 How to Simplify a Problem

After reproducing a problem, for example with help of a unit test, the next step in the debug-
ging process is to simplify the problem: Check every circumstance of the problem and decide
whether it is relevant or irrelevant for the problem to occur. If it is not relevant, disregard that
circumstance. Simplifying results in a set of circumstances that are all relevant to the problem.
Circumstance is an extensive term; it includes all aspects that may affect the problem. Because
there are many aspects that may influence a problem, simplifying is an important step in debug-
ging. To check the relevance of a circumstance, you conduct some experiments. Remove a few
circumstances and check whether the problem still occurs. If it does, the removed circumstances
are irrelevant; otherwise, they are relevant for the problem.

2.3.1 Simplifying Manually

The method outlined in [KP99] results in a divide-and-conquer process:
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Proceed by binary search. Throw away half the input and see if the output is still
wrong; if not, go back to the previous state and discard the other half of the input.

That method was intended for the input of a faulty program, but the same procedure can be used
in general. Proceeding by that method simplifies the problem, but doing it manually has some
drawbacks. The tests have to be run repeatedly and that exercise is quite mind-numbing. That is
a good encouragement to try to automate that process.

2.3.2 An Algorithm for Automatic Simplification

In order to achieve an automation of the simplification, two integral parts are required. First, we
need an automatic test that decides whether a set of circumstances is relevant or not and second,
we need a strategy that implements the binary search method by running the test on some subset
of circumstances. For example, unit tests are at our disposal to test the subset, only the strategy
is missing.

Before we introduce the strategy, we have to complete the test: Sometimes, you cannot clearly
decide whether a test has failed or passed. In that case, the test outcome is unresolved. Such a
case would, for example, occur when you examine a certain subset of circumstances of a failure
and your program refuses to start—the program run does not arrive at the incorrect state.

As mentioned above, proceeding by binary search is an appropriate attempt to simplify a prob-
lem. But on closer examination you run into a problem and its solution is trickier than extending
the test. To adapt the binary search you must:

1. Throw away half the circumstances and run the test. If the test fails, continue the process
with the remaining half.

2. If the test does not fail, go back to the previous state and discard the other half of the
circumstances.

What to do if neither half fails, if testing both halves results in a passing result? Proceeding by
simple binary search does not suffice anymore. The answer: do not test half the circumstances;
test a smaller subset—quarters, eighths, sixteenth parts, and so on. Thus, after testing the halves,
we test all quarters, then we test all eighths and all the rest of it if required. Now, we have all
prerequisites to introduce a simplification algorithm.

The Delta Debugging Algorithm

The delta debugging algorithm is a general approach to isolate failure causes. It narrows down
the differences between runs of a program—the deltas. The delta debugging instance ddmin is a
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Let C be the set of all possible circumstances. Let test : 2C → {8,4, } be a testing function
that determines for a test case c ⊆ C whether some given failure occurs (8) or not (4) or
whether the test is unresolved ( ).
Now, let test and c8 be given such that test( /0) = 4∧ test(c8) = 8 hold.
The goal is to find c′8 = ddmin(c8) such that c′8 ⊆ c8, test(c′8) = 8, and c′8 is 1-minimal.
The Minimising Delta Debugging algorithm ddmin(c) is

ddmin(c8) = ddmin2(c8,2) where

ddmin2(c′8,n) =


ddmin2(∆i,2) if ∃i ∈ {1, . . . ,n} · test(∆i) = 8

ddmin2(∇i,max(n−1,2)) if ∃i ∈ {1, . . . ,n} · test(∇i) = 8

ddmin2(c′8,min(|c′8|,2n)) if n < |c′8|
c′8 otherwise

where ∇i = c′8−∆i,c′8 = ∆1∪∆2∪·· ·∪∆n, all ∆i are pairwise disjoint,
and ∀∆i · |∆i| ≈ |c′8|/n holds.
The recursion invariant (and thus precondition) for ddmin2 is test(c′8) = 8∧n ≤ |c′8|.

Figure 2.1: The Minimising Delta Debugging Algorithm in a Nutshell.

variant of the algorithm and simplifies problems by minimising the differences. See Figure 2.1
for a formal definition in a nutshell3 of that variant.

The algorithm requires a test function test(c) that decides whether some input c results in a
passing, a failing, or an unresolved test outcome. Having this function the algorithm is able to
decide whether to continue with the first failing half, the second failing half or whether it must
increase the granularity n and split the current (sub) set into four (or even more) subsets. The
advantage compared to the simple binary search is the last step, increasing the granularity. At
this point, the binary search does not provide a solution.

Executing the algorithm on an initial set of circumstances results in a minimal set of circum-
stances under that the problem or the failure occurs. Or, in terms of delta debugging: the
algorithm minimises a failure-inducing configuration, a set of circumstances is called config-
uration.

One property of the ddmin variant is the 1-minimal configuration as result of the algorithm:
Every element in the configuration is relevant for the failure to occur, if you remove one element,
the failure does not occur any longer. That configuration is also called relevant. The resulting
configuration is not necessarily minimal. If you remove two elements (or even more), it could
be that the test fails, too. To get the minimal configuration the algorithm has to test all subsets
of the initial configuration. To test all subsets of a configuration with n elements the algorithm

3This definition in a nutshell is taken from [Bou04] with permission of the author and was modified slightly.
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has to execute 2n tests. To compute the relevant configuration, the number of tests carried out by
ddmin is in O(n2).

Chapter 5 of [Zel05] contains a detailed description of the delta debugging process including
some descriptive examples (simplifying input that causes a program to crash). For formal def-
initions, axioms, corollaries, and propositions see [ZH02]. That paper defines changes and n-
minimal configurations, prooves best and worst case complexity, and shows that ddmin min-
imises, thus ddmin computes an 1-minimal configuration—and much more.

2.4 Causes and Effects

In Section 2.3, we introduced a strategy and an algorithm to simplify a problem. The minimising
algorithm simplifies all circumstances. Thus, only the failing configurations make a contribution
to the minimisation process, the passing ones are disregarded (see Figure 2.1, most notably the
first two cases of the case differentiation).

Instead of that, you can alternatively simplify only the difference between a passing and a failing
configuration (compare the case differentiation in Figure 2.4 with the one in Figure 2.1). If you
also consider the passing tests, the algorithm needs far fewer test runs to determine the difference
compared to the determination of the relevant configuration. Another advantage is focusing: the
difference between a passing and a failing configuration is a failure cause, and the smaller the
difference, the more precise the failure cause. See Section 2.5 for a discussion of “Isolating
Failure Causes”.

Before we will discuss the isolation, we have a look at causes and effects in general. While
debugging, we can observe many circumstances. What are the most expedient circumstances? A
small subset containing the causes answers that question.

2.4.1 Causality and Counterfactual Conditionals

In Section 2.1, we talked about causes—a defect causes a failure. To comprehend better the
meaning of that term we will define it more precisely. Zeller defines that term in [Zel05] as
follows:

A cause is an event proceeding another event without which the event in question
(the effect) would not have occurred.

With regard to the failure: without the defect the failure would not occur, thus the defect is a
cause for the failure. This means that the largest part of the debugging process is the search for
causality. After determining the possible causes of a failure, we have to verify whether they are
actually causes. We try to reproduce the failure without the cause in question.
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Causes for
Non-Failure Causes for

Failure

Alternate or Passing World

Actual or Failing World

Figure 2.2: The theory of two worlds. A cause becomes a difference between the two possible
worlds. In the majority of cases, the two worlds overlap each other—the common
context excludes causes from the search space.

Adding David Lewis’ disquisition on causes and effects with the analysis of counterfactual con-
ditionals [Lew73] in terms of the theory of possible worlds [Lew86] a cause becomes a difference
between the two possible worlds (see Figure 2.2 for an illustration): The semantic of the condi-
tional A > B is based upon considering the most likely situations (alternate worlds) in which A is
true, and verifying whether B is true in all of them.

Formally: A > B is true at a world w if, in all the worlds closest to w where A is true,
B is also true [Wik05a].

w is the actual world, all the world closest to w are the alternate worlds. A world that mirrors
the actual world more suitably than another world is called closer to the actual world.

For instance, you can regard the alcohol level in one’s blood as the cause of a car accident: “If
I had not drunken ten beers, my car wouldn’t have crashed in the ditch.” The counterfactual
implication of the negation: “Not drinking ten beers” implicates counterfactually “Car does not
crash in ditch”. In one of the alternate worlds, the person causing the accident drinks no beer and
as a consequence the driver reaches home safely.

To get the cause for a problem (for example the car accident) we have to determine the difference
between the world where the effect occurs and an alternate world where it does not occur. In our
example, we know the actual world, but it is quite impossible to create all the alternate worlds
(imagine the street was wet because it was raining, perhaps the ABS failed, the driver was hurt,
...). Normally, creating the alternate worlds at least generates huge costs. Therefore, we have to
speculate about the causes, we have to bring to our mind what would happen in such an alternate
world.

Fortunately, we want to debug a program. In that domain, it is much easier to create alternate
worlds and to rerun such a world. We have influence on the circumstances (at least most of
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them, for example we can’t control physical influences like solar winds)—while debugging the
program is under almost total control.

2.4.2 Verification and Actuality

In order to verify whether some aspect of the alternate world or whether some properties of a
program run causes the failure in question, the effect, we have to setup an experiment. The actual
world, the world in which that effect occurs, is the real world. In the alternate world, we need
to show that the property causes the effect. If we carry out our experiment in the alternate world
and the effect does not occur, we have verified the cause—we have shown causality.

Finally, we come to the main problem with causes and effects: Finding (and verifying) a cause is
trivial, but finding the cause among many is more complicated. If a program fails, a trivial cause
would be: use another program in place of the failing. Using the other program, we have proved
that the defect is causing the failure—omitting the defect, we cannot reproduce the failure. In the
example of the car accident, you could completely ommit the “defect” by arranging for a cap.

In debugging, we do not want to find the first cause that comes along, we want to find a cause
that is not far away from the defect, and we want to find the actual cause:

An actual cause is the difference between the actual world and the closest possible
world in which the effect does not occur.4 [Zel05]

Because a closer world mirrors the actual world more suitably than another world, the cause is
the minimal difference between the actual world and the closest possible one where the effect
does not occur (see Figure 2.2).

2.4.3 Narrowing Down

A simple strategy to find an actual cause of a given failure follows:

1. Find an alternate world wherein the failure does not occur.

2. Narrow down the initial difference to an actual cause, using the scientific method to debug.

Here is a sketch of a scientific method to debug: Invent a hypothesis that is consistent with the
observations about the failure. Make predictions using the hypothesis. Test the hypothesis by ex-
periments and further observations: if the experiment complies with the predictions, refine your
hypothesis; if not, you have to create an alternative hypothesis. Continue with making predic-
tions and conducting the experiments until the current hypothesis can no longer be refined5.

4In short and in the spirit of Occam’s Razor: “Keep it simple” [Wik05d]
5[Zel05] contains an appropriate chapter about the scientific method. That chapter contains techniques of creating

and verifying hypotheses and more on how to make the debugging process explicit.
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These two steps are sufficient in order to find an actual cause. You need the current world—
wherein the program fails—and an alternate world—wherein it does not fail. The alternate world
needs not to be a world wherein the program has been corrected. Thus, there must be another
difference causing the program to fail. For instance, that difference can be found in the input or
in the program’s execution. The main task is to find the initial difference. After that difference
has been found, it can be narrowed down to an actual cause.

Zeller encapsulates the philosophical aspects of causes and effects in the twelfth chapter in
[Zel05]. Just like the other chapters, that one contains enlightening examples in addition to
the unavoidable theory.

2.5 Isolating Failure Causes

All prerequisites are now at hand: After we have seen how to (automatically) simplify a problem
and having introduced a theory that allows us to narrow down causes, we will focus on the
automation of most of the debugging process. As we will see within a short time, delta debugging
is able to isolate failure causes automatically.

2.5.1 Isolating Automatically

Just like simplification (cf. Section 2.3.1) narrowing down causes as described in Section 2.4.3
can be a tedious and boring task if it is accomplished manually. Again, we will automate that
process.

In order to automate the scientific method of debugging, we need the following ingredients:

• An automated test that decides whether the failure is present or not—it conducts our ex-
periment,

• an instrumentation that narrows down the difference, and

• a strategy for proceeding.

How can we accomplish that process automatically? The remainder of this chapter will answer
this question which is fundamental in the context of this work.
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Simplifying

Isolating

Actual WorldAlternate World

Figure 2.3: Simplifying compared to Isolation. While simplifying, we move the alternate towards
the real, fixed, world. In contrast, while isolating we move both worlds towards one
another to determine the smallest difference between the two worlds.

2.5.2 Isolating in Comparison with Simplifying

In Section 2.3 we saw how to simplify problems using the delta debugging algorithm. In terms
of Lewis’ theory of possible worlds (see Section 2.4.1) simplification means finding an alternate
world whose difference is as close as possible to the real world—a most simple difference. To
illustrate: The real world is fixed while we move the alternate world as close as possible towards
the real one; we try to remove all differences that are not relevant in order to reproduce the
problem. At the end of the process, we have a difference between the two worlds whose every
aspect is relevant. An important property of that difference is being an actual cause (cf. Section
2.4.2).

As addressed briefly at the beginning of Section 2.4 there is a more efficient approach to narrow
down differences than conducting simplification: isolation. While obtaining by simplifying a
difference where each single aspect is relevant, isolation creates a pair of two worlds whose
difference is minimal between them. Thus, that difference is an actual cause.

To illustrate again: Both worlds are moving forward each other to determine the minimal differ-
ence. In contrast to simplifying, where only the alternate world gets changed, we add circum-
stances to the real world (in fact, the actual world is not the actual one anymore, it is transformed
into an alternate one closer to the actual than the failing one). Figure 2.3 demonstrates that
process in a simplified manner.

Simplification and isolation compared in a nutshell:
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• Simplifying results in a simplified difference: each circumstance is relevant for reproducing
the problem. If you remove any of them then the problem is not reproducible.

• Isolation results in minimal difference between a failing and a passing world: that dif-
ference is one relevant part. If you remove this particular part then the problem is not
reproducible.

Exemplified based on the car accident in Section 2.4.1: Simplifying that accident returns the set
of all circumstances to make the driver completely drunk (for example, the driver has to drink
eight beers). Isolating determines two worlds that differ by a set of circumstances. In one world
the driver is slightly drunk, in another she is completely drunk. The difference is a failure cause
and because it is minimal, it is an actual failure cause: the one beer that makes the difference
between being fit to drive and being unfit to drive.

Commonly isolating is much more efficient than simplifying. Nevertheless, isolating has an im-
portant drawback: its minimal difference may have much lesser context than the one determined
by simplification. In the example of the car accident, it is imaginable that the driver has suddenly
pulled around the steering wheel because he lost control in consequence of being drunk. We
may isolate that pulling around the wheel was the cause for the accident, but in that case we
would not come to know that the driver was drunk—an important aspect when investigating that
accident.

2.5.3 An Algorithm for Automatic Isolation

In Section 2.3.2 we introduced the delta debugging algorithm, an algorithm that automates the
simplification. That algorithm can be extended to determine a minimal difference. The extension
is called general delta debugging algorithm. The distinction between the two variants of the
algorithm is the specification of the set for the next step to proceed: If the computed subset (the
mixed world) fails the test, it will be regarded as the refined failing one. If it passes the test, it
will be regarded as the refined passing one. Thus, instead of testing only a removal, an addition
is also tested (therefore the two worlds are moving forward each other). See Figure 2.4 for a
formal definition in a nutshell6 of the general algorithm.

The new variant has the same worst-case complexity. If almost all tests have an unresolved
outcome, the number of performed tests is in O(n) (again, n is the cardinal number of the initial
configuration). The algorithm is more efficient the more tests are failing or passing (resolved). If
nearly all of them are resolved, the algorithm comes up to a binary search and it has logarithmic
complexity. Therefore, a goal is to keep the number of unresolved tests to a minimum.

With reference to the scientific method (see Section 2.4.3), the delta debugging algorithm auto-
mates that method. It invents a hypothesis (configuration). It tests that hypothesis and refines
the hypothesis depending on the outcome of the test. The delta debugging algorithm is a quite

6This definition in a nutshell is taken from [Bou04] with permission of the author and was modified slightly.
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Let c4 and c8 be test cases with c4 ⊆ c8 ⊆ C such that test(c4) = 4∧ test(c8) = 8. c4 is the
“passing” test case (typically, c4 = /0 holds) and c8 is the “failing” test case.
The Delta Debugging algorithm dd(c4,c8) isolates the failure-inducing difference between c4

and c8. It returns a pair (c′4,c′8) = dd(c4,c8) such that c4 ⊆ c′4 ⊆ c′8 ⊆ c8, test(c′4) = 4,
and test(c′8) = 8 hold and c′8−c′4 is 1-minimal—that is, removing a single circumstance of c′8
makes the failure disappear.
The dd algorithm is defined as dd(c4,c8) = dd2(c4,c8,2) with

dd2(c′4,c′8,n) =



dd2(c′4,c′4∪∆i,2) if ∃i ∈ {1, . . . ,n} · test(c′4∪∆i) = 8

dd2(c′8−∆i,c′8,2) if ∃i ∈ {1, . . . ,n} · test(c′8−∆i) = 4

dd2(c′4∪∆i,c′8,max(n−1,2)) if ∃i ∈ {1, . . . ,n} · test(c′4∪∆i) = 4

dd2(c′4,c′8−∆i,max(n−1,2)) if ∃i ∈ {1, . . . ,n} · test(c′8−∆i) = 8

dd2(c′4,c′8,min(2n, |∆|)) if n < |∆|
(c′4,c′8) otherwise

Figure 2.4: The General Delta Debugging Algorithm in a Nutshell.

simple strategy for proceeding and a human may be more creative while refining the hypothe-
sis. However, the automation of that tedious and boring (and therefore error-prone) process is a
noticeable improvement7.

In the next chapter about “Failure Inducing Changes”, we will see how delta debugging allows
for the automatic determination of changes that introduce a defect in our code.

In Chapter 13 of Zeller’s book [Zel05], you will find detailed information about that topic. It
includes several examples that apply the delta debugging algorithm in order to isolate failure in-
ducing practical circumstances including failure-inducing input and failure-inducing schedules.
If you are interested in the formal definitions, proofs and propositions have a look at the appendix
of that book. [ZH02] also contains all formal definitions, axioms, corollaries, and propositions.

7And remember Occam’s Razor: “Keep it simple”.
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In Chapter 2, we introduced the theoretic equipment required for this work. Using that basic
equipment the introduction of failure-inducing changes and their determination can be done in a
straightforward way. Before we derive the concrete methods and techniques to determine such
changes, we will have a closer look at code changes in general.

3.1 Code Changes

You are writing a program and you know that it has worked as expected yesterday. While imple-
menting new features, improving the current and refactoring your code, you inevitably introduce
some changes to your program code. These changes may alter existing code, may create new
units like classes, or may remove existing units. Even being an experienced and gifted program-
mer, it is not too unlikely that you accidentally introduce some defect while programming—
suddenly your program fails. Because you have learned that a test case is the first step before
a program can be debugged and you want to ensure that your software has an acceptable defect
rate, you are using unit tests to test your code (cf. Section 2.2).

To be more concrete and giving an example: Imagine you test your code during the development
process using the JUnit unit testing framework1. In your current Java project you work on a
package that contains classes concerning customer creditworthiness. At 9:30, you assured your-
self of the correctness of the two classes Customer and PremiumCustomer by running their unit
tests. During your workday, you change that package by altering the class Customer, the class
PremiumCustomer is removed and a new one called Debitor is created. At 14:00, you rerun the
unit tests and you find out that one of the unit tests is failing now—a typical regression. Thus,
you have introduced a defect in the code and that defect causes a failure.

After the unit test has failed, the main question is: “Why does the test fail?”, or in other words
“What change has introduced that failure?”. Having changed only three classes in a short period
debugging that failure and finding the failure-inducing change is not too complicated. You could
conduct the scientific method (see Section 2.4.3) to isolate that change, even using a simple trial-
and-error method will arrive at your destination. Thus, having only about a handful changes,

1JUnit is an unit testing framework for the Java programming language. It was created by Kent Beck and Erich
Gamma and was released as open source software. That framework is arguably the most common instance of
the xUnit architecture. See the website of JUnit [GB05] for more information.
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Time

Customer PremiumCustomer Debitor

9:30

14:00

Some Change

Failure-Inducing

JUnit

JUnit

passed

failed

Figure 3.1: A few changes introduced a defect. Finding the failure-inducing change by hand is
quite easy.

isolating the defect in the code should not be too difficult and time-consuming. Figure 3.1 illus-
trates that case. In our example one change in the Customer class has introduced the defect, that
change is failure-inducing.

We can easily extend the complexity of that example. If we consider a large project, more than
only a few classes (and other fragments of code) come into play. More than one hundred classes
will be the rule, not the exception. As well as the complexity in space (for example the number
of classes), the complexity in time may increase. The period in question could be a few days
or even weeks. Imagine a large project with many team members. One member of the team
has programmed a new module of the software under development at the beginning of this year.
Over a period of time the software is under heavy development, many changes were introduced.
The team member responsible for that module has meanwhile left our team, taking out some part
of his knowledge. Then, in the middle of the year a unit test covering the module fails. Now,
it is much harder to isolate the change that introduced the failure. Figure 3.2 illustrates the case
with many changes. In comparison with Figure 3.1 it is obvious by intuition that the debugging
is harder in the second case.

You could argue that the failure-inducing change should be one of the recent ones. Nevertheless,
that constraint may not be valid. The failure-inducing change that has introduced the defect or is
close to the defect may have slipped in much earlier. In consequence of the recent change, the
failure was discovered, but the actual defect exists for a longer time.
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Time
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Some Change

JUnit
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Failure-Inducing

passed

failed

Figure 3.2: Many changes introduced a defect. Finding the failure-inducing change by hand is
annoying and time-killing.

3.2 Version Differences

In the context of the theory of possible worlds (see Section 2.4.1) the runs of two program
versions, the one that is failing and the passing one, can be regarded as two alternate worlds.
In the first one, our program code contains the defect and therefore the unit test fails. In the
second one that defect does not exist and therefore the unit test passes. From the programmer’s
point-of-view the cause of the failure can be found somewhere in the difference between the two
program versions (see Figure 3.3).

The universal concepts actual cause and closest possible worlds are transferable to causes re-
quired for debugging. If we want to find the actual cause of a program failure, we have to search
the closest possible world wherein that failure does not occur. Thus, in order to find the actual
failure cause in a program code we will search the minimal difference between the actual (failing)
code and the closest possible code where the failure does not occur.

In Section 2.5, we have seen how to isolate failure causes, and the delta debugging algorithm
allows to accomplish that process automatically. Now, we can arrive at a conclusion: Using the
delta debugging algorithm we can determine failure-inducing code changes automatically. Thus,
we can narrow down the causes of a regression by focusing on the changes we made.

3.3 Challenges

Before we introduce the general plan, the steps to use the delta debugging algorithm, we are
faced with some challenges. Most of them are problems and limitations of the delta debugging
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JUnit test
passes JUnit test

fails

Old Version

Current Version
Causes

Figure 3.3: The universal concepts actual cause and closest possible worlds are transferable to
causes required for debugging. The difference between the two program versions
contains the failure-inducing change.

algorithm as described in [Zel05]. We do not discuss these issues in general; we focus on the
aspects that are important to code changes.

• An appropriate alternate world. The choice of the alternate world (the program version
that does not contain the defect) has major influence on the time required by the algorithm
to determine the result. In order to keep the search space as small as possible we should
choose a program version that is as close as possible to the failing version.

• Decomposition of the changes, granularity. A change can alter a single line of a file or
replace a whole directory containing multiple files. In order to get a small failure-inducing
difference we should decompose large changes into smaller. The motivation should be
clear: We can treat the initial difference as one change. Consequently, the algorithm can
determine the failure-inducing one very quickly. However, the result is not too helpful.
To gain enlightening insights, the failure-inducing change has to be small, affecting only
a small part of the software to be debugged. One solution would be the decomposition of
the changes into changes that affect only a few lines.

• Reproducing the failure. The test that checks the mixed program version (constructed
during the algorithm’s run) has to ensure that a different failure is not interpreted as a
failing outcome in terms of the algorithm. Only the failure of the original test case should
be returned as failing to the algorithm, all other failures should result in an unresolved
outcome. Applying some changes can cause another defect in the code, thus another failure
is caused by that defect. If our test function returns failure in that case, the algorithm will
not be able to isolate the actual cause. For example, our test function could compare the
backtrace at the time of the failures. An alternative could be comparing the exception or a
combination of both methods.
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• Correction of the defect. The algorithm returns an actual cause that is a fix rather than a
correction (see Section 3.6 for details). The algorithm is not able to distinguish between
fixes and corrections, someone has to decide where and what the defect is. In order to get
the actual defect further investigation by the programmer may be required.

• Inconsistency. If we decompose the difference between the actual and the alternate pro-
gram version, we could get changes that may have to be combined to get testable code. For
example, if a new functionality was added and that is used in another part of the code, the
change that introduces the usage will depend on the change that introduces the definition.
The algorithm would handle this (an unresolved outcome), but such changes negatively af-
fect the runtime of the algorithm (remember: if nearly all tests are unresolved the number
of tests can equal the number of changes squared).

While designing and implementing, we have to keep these challenges in our mind. Now, we are
ready to introduce the single steps that are required to use delta debugging on code changes.

3.4 The General Plan

In order to use the delta debugging algorithm we need at least two things: a configuration and
a test. As discussed in Section 3.2 the set of changes between two program versions can be
treated as a set of failure inducing circumstances. That is the first ingredient required by the
algorithm, only the test remains. If you use some testing technique, then that technique can be
extended to satisfy the requirements of the delta debugging test. Normally, a test reports whether
the aspect under test passes or fails that test. Extending the test with the unresolved outcome in
some appropriate way complies with the algorithm. Thus, we have all required ingredients. In
the context of this work, we use unit tests to test our code. Hence, we will concentrate on unit
tests. In Section 4.5, we will see other tests that may be used to determine other types of failures
that can be debugged with the delta debugging algorithm.

Now, we will see the sequence of steps to use the algorithm on changes:

1. Establish a history. To know when a failing unit test was passing we have to remember
the date. In addition, the date should not be the date of any passing run; in fact, it should
be the one of the latest passing. To reduce the search scope the chronological difference
between the passing and the failing run should be as small as possible assuming that a
shorter period of time comes along with fewer changes (cf. Section 3.3). One possibility
to store the dates is a database.

Storing the dates of the passing test run is insufficient. If we know the date of the latest
passing run, we also need the associated version of the code. Without that version, we
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cannot determine the initial set of changes. There are tools exactly designed for this task:
so-called revision control systems2.

Keeping track of the dates in a database and having a revision control system, we can
establish a history of the former running versions of our program.

2. Determine changes. If one of our unit tests fails, we have to determine the initial changes
between the current failing and an older passing version of our program. Using the estab-
lished history, it is a relatively unproblematic procedure to get these changes.

3. Apply the algorithm. In order to apply delta debugging to the initial changes, we must
construct a function test(c) that decides whether the set of changes c results in a passing,
a failing, or an unresolved outcome (cf. Section 2.3.2). The following steps describe that
test. It can test any subset of changes.

a) Apply current changes. Before we can test the mixed version of our program we
have to create it. Thus, we must apply the current subset of changes selected by the
algorithm to the source code. For instance, we could use the UNIX PATCH tool3 to
apply the changes assuming the changes have the appropriate format.

It may be the case that not all changes can be applied, for instance if some of them
depend on other changes not contained in the subset. In that case, the test has to
return unresolved as outcome (and the test will return without even running the unit
test—but it should undo all applied changes, see below).

b) Reconstruct the program. After all changes have been applied successfully, we must
reconstruct or build the program. For example the changed source code has to be
compiled or other files may require some other procedure in order to build some
artefacts.

Applying a subset of changes that is selected out of a large set at random it is quite
likely that the constructed source code is not translatable, for example because of a
compilation error. Again, the test will return the unresolved outcome and will not run
the unit test. Before returning the result, the applied changes should be undone.

c) Run the unit test. Having the constructed program, we can run the unit test. If the
unit test passes, we will return the passing outcome. If it fails, we have to decide
whether we should return the failing or the unresolved outcome. See Section 3.3 for
a discussion on that topic.

2A revision control system is a system that typically stores information about versions of software and that controls
the shared access on the source code. The system collects all changes in the central repository and provides the
changes with a timestamp; if required, one can return to an earlier version of the software. Examples for such a
system are the well-known Concurrent Versions System (CVS) and the newer Subversion (SVN), which aims to
replace CVS by addressing some of its limitations.

3PATCH is a Unix tool that changes files containing ordinary textual characters (for example source code
files) according to some instructions. These constructions are often contained in a separate file, called
a patch file. They define operations like adding, deleting or changing a line.
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d) Undo current changes. Before our test returns its outcome to the algorithm, we undo
all applied changes. Thus, we have again the unchanged version and in the next
round, we can start from scratch. If we are not able to undo the changes, we have to
get the unchanged version in another way.

e) Return outcome. The last step is to return the computed outcome to the algo-
rithm. Depending on that outcome the algorithm selects another subset and runs this
test again, or it has completed its work and returns the determined failure-inducing
changes.

You have seen a rough sketch of all required steps to determine the failure-inducing changes.
Now, the tasks for the platform are defined: it has to provide a history, methods to apply and
undo changes, automated construction and regression tests—and the delta debugging algorithm,
of course. Before we come to the practical part and describe the platform, we will discuss some
(optional) optimisations.

3.5 Optimisations

We have made available all the ingredients required to build a platform that enables us to deter-
mine failure-inducing changes. However, some issues demand optimisation. The first one listed
here is related to delta debugging in general, the subsequent issues are specific to applying the
algorithm to changes.

• Caching. The delta debugging algorithm gives no guarantee that each configuration is
tested only once. Because applying changes, constructing the code, running the unit test
and undoing the changes in a final step is very time-consuming, we should cache the
outcome of a run test. If the algorithm wants to test a configuration a second time, we can
look up its outcome in the cache and return it immediately.

• History. One possibility to get the initial changes is to consider only the passing and the
failing program version, thus we create the changes between these two versions without
considering other information. As mentioned before, we will use a revision control system
to get the changes. Such a system contains more information about the difference: it
records all changes and therefore contains all versions between the passing and the failing
one, it knows the chronological order of the changes (cf. Figure 3.1). By grouping these
changes by their creation time, we could ensure that later changes are always applied along
with earlier ones. Thus, we get fewer errors during the reconstruction stage and therefore
more resolved test outcomes. The benefit: unresolved test outcomes result in a quadratic
number of tests, in contrast to resolved: they result in a logarithmic number of tests—we
come up to a binary search along the change history.
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• Reconstruction. Before we can run the unit test, we have to reconstruct the program. To
reduce the time spent for this stage, we should not do a full reconstruction that rebuilds all
artefacts. Instead of that, we should do an incremental reconstruction. For instance, only
the sources changed since the last construction have to be compiled.

• Grouping. After applying a subset successfully, the mixed program version may not be
buildable, that case results in an unresolved outcome. For instance, change D adds the
declaration of a variable and change R adds a reference to that variable. Obviously, change
R depends on change D. Therefore, every subset which contains R but not D results in a
program version that cannot be constructed. If we pay attention to the scope of the changes,
we can speed up the debugging process by returning an unresolved outcome without even
applying the changes. Furthermore, we can keep those changes together that affect the
same directory, file, class or method. In further iterations, we can break up that cohesion
to get repeatedly a smaller set of failure-inducing changes.

If we pay attention to all of these optimisations while constructing the platform, the process to
determine the failure-inducing changes would be much faster than without them. Therefore, we
should implement at least some of the described optimisations.

3.6 Fixes or Corrections?

If we found a failure-inducing code change using delta debugging, that change is not necessar-
ily a correction. If we undo that change, the failure will vanish. Therefore, the undo of the
failure-inducing change is a workaround that suggests a fix. Such a fix may be an important
starting point for further investigation on that failure. At least, the programmer has to proofread
the changes. Thus, the determination of failure-inducing changes may not provide a tool for
automatic corrections of defects, but may be an important and helpful technique to improve the
debugging process—easing the programmer’s life.

In order to achive that goal, the determination has to be reliable and has to result in changes that
are close to changes that would be accomplished by a real programmer to correct the defect.

[Zel05] contains a section about failure-inducing changes in addition to failure-inducing input
and thread schedules. This chapter is based on the section in that book, but it is organized in a
different way. So most of the information provided here could be found in another order in the
book.

Now, we are ready to describe the platform.
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This chapter contains the description of the framework called DDCHANGE, the core of the plat-
form. The framework consists of about 260 files, including metadata about the framework and
nearly 100 Java classes defining circa 560 methods—without making mention of the unit tests.

Describing every aspect of the framework goes beyond the scope of this elaboration and would
lengthen it with unnecessary material. The comprehensive API documentation covers most of
the framework’s documentation. It contains the specification of public, protected, and private
packages, classes, interfaces, fields, and methods. The PDF version of that API documentation
would span over 390 pages. Therefore, it is not included in the printed version of the elaboration;
enclosed you will find a CD that hosts the API amongst other useful documents. See Appendix
A.1 for more information about the CD.

The following sections cover the most relevant aspects and concepts of the framework at a glance.
In conjunction with the theoretical (see Chapter 2) and related to practise (see Chapter 3) back-
ground it should be easy to use the framework, to navigate in the source code, to extend the
framework in order to customise it, and to contribute new features.

First, we will briefly describe a framework in general and an existing implementation of the delta
debugging algorithm. In the following main part, we will describe the several components of
the framework considering the general plan (see Section 3.4). The succeeding sections cover
the attempts to gain some quality and some examples that explain how to extend the frame-
work. The closing sections describe some possible optimisations and draw a conclusion about
the framework.

4.1 Why a Framework?

Class libraries can be classified into two categories (cf. [Bal01]):

• Plain class libraries. These libraries do not force predetermined application architecture;
such a library is a collection of independent classes designed primarily for reusability of
code. In the context of the Java programming language, the “Apache Jakarta Commons
Lang” [Tea05b] component is probably the best known class library.
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• Frameworks. The complement of a class library as described above is a so-called frame-
work. A framework forces well-defined application architecture by adapting the prin-
ciple Inversion of Control1. One well-known framework for the Java language is the
Spring Framework, a layered Java/J2EE application framework, based on code published
in [Joh02].

The purpose of frameworks is the reusability of design, not primarily the reusability of code. It
defines the architectural design of the classes and objects and their responsibility and collabora-
tion; it specifies the classes’ coupling and the control flow of the provided operations. A concrete
application registers own classes to the framework by using well-defined interfaces (called De-
pendency Injection2); the framework calls these classes in its own control flow. Because the
framework defines a preliminary design, the programmer is able to concentrate on the details of
the application.

Frameworks can be classified by the techniques used to extend them, which range along a con-
tinuum from White-Box-Frameworks to Black-Box-Frameworks (cf. [JF88]).

• White-Box-Frameworks. Based on inheritance and subclassing. They rely on inheritance
and dynamic binding to achieve extensibility. Existing functionality is reused and extended
by inheriting from framework base classes and overriding pre-defined hook methods using
patterns like Template Method [GHJV95].

• Black-Box-Frameworks. Based on composition and parameterisation. They provide ex-
tensibility by defining interfaces for components that can be plugged into the framework
via object composition. Existing functionality is reused by defining components that im-
plement a particular interface and integrating these components into the framework using
patterns like Strategy and Abstract Factory [GHJV95].

Using a White-Box-Framework requires detailed knowledge by the programmer about the frame-
work’s internal structure. Consequently, an application that uses such a framework tends to be
coupled tightly to the framework’s inheritance hierarchies. In contrast, Black-Box-Frameworks
are structured using composition and delegation more than inheritance. Thus, they are generally
easier to use and extend.

Frameworks in general reduce cost and improve quality [FS97]; they reduce the required source
code to write an application. Because they encapsulate implementation details behind interfaces,
they localise the impact of changes, too. The usage of interfaces enhances reusability; reusabil-
ity leverages the domain knowledge and can yield improvements in programmer productivity
[FS97]. These advantages have to be seen alongside several problems. According to [Pre96], a

1Inversion of Control (IOC) is an object-oriented design pattern. That principle inverts the way an object gets
its dependencies—it adopts the Hollywood principle “Don’t call us, we’ll call you!”. The application hands
the control flow of particular subroutines over to the framework instead of managing that flow by itself. Cf.
[Wik05c] and [GHJV95]

2Dependency Injection is an adaptation of IOC.
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high development effort is required to realize a framework. Learning to use a framework effec-
tively requires large investment of effort—the learning curve is steep [FS97].

In order to allow the straightforward development of tools that determine failure-inducing
changes, the platform’s core will be a framework that tends to be a Black-Box-Framework. That
framework called DDCHANGE will provide the required functionality and operations to accom-
plish the general approach to determine these changes (see Section 3.4). DDCHANGE must be
easy to use to ensure cost-benefit over designing the tools from scratch. It will provide built-in
mechanisms for customisations like factories and persistent storages. Because the tools depend
on that framework, it must be stable and well tested.

Note: The guest editorial by Fayad and Schmidt in [FS97] contains a compact but extensive
overview on object-oriented frameworks. It is a good source for further readings on that topic.

4.2 Delta Debugging Algorithm

The implementation of the delta debugging algorithm is certainly one of the most important
components of the framework. Fortunately, Philipp Bouillon has implemented the algorithm in
the Java programming language as part of his diploma thesis [Bou04]. DDCHANGE uses an
extended and partially reworked version of that implementation.

Bouillon has developed an automated debugging framework using Eclipse (see Section 5.2.1 for
more information about Eclipse) to automate the process of minimisation of failure-inducing
input. That framework is divided into two Eclipse plug-ins; one of them contains the implemen-
tation of the algorithm. That plug-in depends on some Eclipse libraries, so it was necessary to
resolve these dependencies in order to create a simple JAR file that contains the algorithm. Now,
Maven (see Section 5.1.1 for more information about Maven) can be used to create that JAR with
a modicum of effort.

The changes required by the task to decouple the implementation from Eclipse were minor com-
pared to the second change on the implementation. Bouillon’s implementation does not provide
a working cache for the test outcomes. As described in Section 3.5, the algorithm gives no guar-
antee that each configuration is tested only once. Thus, a working implementation of an outcome
cache may result in noticeable performance improvements—depending on the duration of a sin-
gle test. Because we have to reconstruct the code amongst others steps (see Section 3.4), that
cache should have a huge impact on the run-time.

Bouillon has tried to use a treap3 to store already known test outcomes, just like the original
implementation in the Python programming language by Andreas Zeller [Zel01]. In Java, Bouil-
lon’s implementation of this treap uses a large amount of memory. Thus, searching for an alter-
native implementation was still an issue.

3A treap (binary search tree + heap) is a binary search tree. Each node consists of two elements: a key and a
priority (cf. [SA96]).
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add(DeltaSet c, int result)
getSize()
lookup(DeltaSet c)
remove(DeltaSet c)
setMaximumSize(int maximumSize) 

<<interface>>
ICache

SimpleOutcomeCache LRUOutcomeCacheNotCachingOutcomeCache

Figure 4.1: UML class diagram of new cache for delta debugging algorithm. The diagram shows
only the most important methods.

In addition to the release of the JAR library, DDCHANGE provides a new, working implementa-
tion of the cache. The extended version of the algorithm contains a new interface ICache and
three implementations of that interface.

• NotCachingOutcomeCache. This outcome cache does not cache any outcome.
Added outcomes are ignored, the lookup methods return “no outcome exists” at every
call.

• SimpleOutcomeCache. A cache that holds the outcomes in a Map4. You cannot set
the maximum size of this cache. Thus, it grows until an OutOfMemoryError is thrown.

• LRUOutcomeCache. A cache that holds the outcomes in a LRU Map: A map which has
a maximum size and uses a Least Recently Used algorithm to remove items from the map
when the maximum size is reached and new items are added.

Figure 4.1 shows the UML class diagram of the cache; only the most important methods are
included. The API documentation (see Appendix A.1) contains the complete specification of the
cache.

The main delta debugging class DD provides two new methods, a getter and a setter for the cache
used by the algorithm. By default, DD uses the NotCachingOutcomeCache.

In order to add instances of the class DeltaSet5 to a Map, that class was extended by proper
implementations of the methods equals(Object) and hashCode().

4An instance of java.util.Map
5DeltaSet stores a specific test configuration. This is the primary data structure the algorithm operates on.
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Extended by the cache as described above, the algorithm does not test the same configuration
twice. According to first observations, enabling the cache saves about 50% of the tests as per-
formed without a cache—depending on the number and type of initial changes, and so on. Be-
cause the run of an individual test in our context tends to be time-consuming, that interim result
is promising. However, further research on that topic is required to get reliable numbers.

Having the new interface, other (maybe more sophisticated) implementations are imaginable.
For instance, a cache that provides memory and disk stores. Such a cache is especially suited to
store outcomes of profoundly time-consuming tests. An existing cache appropriate to perform
that task is the ehcache [LDK05], a pure Java in-process cache.

Further research on caching test outcomes goes beyond the scope of this work; even though the
extended implementation allows for accomplishing that research.

One last minor change affects the licence under which the implementation is released. Bouillon
has released his implementation under the “Common Public License v1.0”. In the context of
DDCHANGE the new implementation is released under the “Eclipse Public License v1.0” (not
without prior consultation with Philipp Bouillon). The Eclipse Public License Frequently Asked
Questions [Off04] contains information about the differences between these licenses.

In the following sections, we regard this component as a black-box. Thus, we pass all required
parameters (for example the tester and the initial set of changes) to that component and it will
compute the failure-inducing changes.

4.3 Components

A framework is an appropriate technique to improve reuse—different applications can be re-
alised by instantiating it. However, the instantiation process can be complex, requiring a good
understanding of the framework design and implementation.

To accomplish the desired flexibility, frameworks provide special constructions. They have fixed
parts, called frozen spots [Pre99], which reflect the common behaviour of applications in the
domain. Similarly, frameworks have parts that need to be kept flexible, called hot spots, which
have to be adapted according to the specific requirements of concrete applications derived from
the framework.

In the following sections, we will describe the different components concentrating on the hot
spots of this framework. This will enable you to customise the framework in order to instanti-
ate own tools or applications. If we can gain valuable insight, we will discuss frozen spots and
default implementations of hot spots in addition. As we will see in Chapter 5, the framework
provides default implementations for all hot spots allowing the rapid derivation of a tool. Fur-
thermore, it is flexible in order to instantiate tools with new features and using the framework for
the most important tasks at the same time.
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4.3.1 Database

As seen in Section 3.4, we have to establish a history of test runs to remember the date of the most
recent passing run. We have to store the run’s date and the version of the program. The program
version is stored using a revision control system; it keeps track of all work and all changes. In the
context of this work, we act on the assumption that such a system is used. Thus, the developer
commits the changes to that system. Consequently, DDCHANGE is not responsible to store the
version information. However, it has to obtain the initial set of changes from the system (see
Section 4.3.3).

As the component name suggests, its domain is the persistence of test results.

Test Results

A test result is composed of the outcome (passed, failed or unresolved), a possible stack trace,
the date of the test execution and a reference to the run test case. The test case consists again
of a method that executes the test, a class that contains the method, a package that contains the
class (may be unnamed), and a reference to a project that contains the package. This results
in three classes as shown in Figure 4.2. The three classes can describe a test and its results
unambiguously; results of JUnit test runs can be stored in instances of these classes without
going a long way round.

Persistence of Results

DDCHANGE uses Hibernate [Com05a], an object/relational persistence and query service for
Java, to store the results in a database. That open-source object-relational mapping tool allows
the bidirectional mapping from Java classes to database tables and provides data query and re-
trieval facilities. The advantages in a nutshell: you can develop persistent classes while using the
common Java idiom (associations, the Java collections framework, and more), most of the com-
mon data persistence-related programming tasks are done by Hibernate, and you are independent
of a particular database product.

Describing Hibernate and its features goes far beyond the scope of this work. The Hibernate
documentation [Com05b] provides users FAQ, product evaluation, discussion on performance,
tutorials, and more.

DDCHANGE uses Hibernate’s bidirectional many-to-one association to declare the parent/child
relationship between the three classes that represent test results. One advantage of that bidi-
rectional association is the automated deletion of orphan children. If we remove a project, all
associated test cases and results are removed automatically from the database; the same holds
true for the test cases.
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addTestCase(TestCase testCase)
containsTestCase(TestCase testCase) 
getProjectName()
getTestCase(...)
removeTestCase(TestCase testCase) 
setProjectName(String project)

TestProject
addTestResult(TestResult testResult)
containsTestResult(TestResult testResult)
getClassName()
getMethodName()
getPackageName()
getProject()
getTestResult(...)
removeTestResult(TestResult testResult)
setClassName(String clazz)
setMethodName(String method)
setPackageName(String packagge)
setProject(TestProject project)

TestCase

getDate()
getOutcome()
getStackTrace()
getTestCase()
setDate(Date date)
setOutcome(int outcome)
setStackTrace(String stackTrace)
setTestCase(TestCase testCase)

TestResult

Figure 4.2: UML class diagram of the three classes that represent a test result unambiguously.
Hibernate persists these classes. The diagram shows only the most important meth-
ods.
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Hibernate supports different caches to speed up the database access. DDCHANGE uses ehcache
[LDK05] as second-level cache system with Hibernate. The default configuration uses ehcache
for JVM-level read-write caching to ensure best performance for reads and writes. If you want
to use that strategy in a cluster, you should ensure that the underlying cache implementation
supports locking. Hibernate’s built-in cache providers do not.

The most important aspect in the context of this work is the independence from a particular
database. Thus, we can store the results in nearly every (central) database. Hibernate supports
currently more than twenty different SQL dialects, including Oracle, MySQL, Progress, and
HypersonicSQL.

Provided Database

One goal of DDCHANGE was, that it should be usable out-of-the-box. To fulfil that requirement,
DDCHANGE provides a SQL database ready to use. The framework includes classes to launch
and stop an instance of the HSQLDB database [hDG05a]. HSQLDB is an open-source relational
database management system written in Java. It is small in size, can run completely in memory
(in-memory and disk-based tables can be used), and it is fast. As mentioned above, Hibernate
supports HypersonicSQL, the HSQLDB SQL dialect.

To run the database, you have to instantiate one of the subclasses of
DatabaseConfiguration and to pass it to a concrete DatabaseLauncher, an
abstract launcher for a database. Currently, there are two different implementations of configu-
ration and launcher. The first one launches an HSQLDB instance in the so-called “In-Process
(Standalone) Mode”. In that mode, the data is not converted and sent over the network.
One drawback of this mode is that it is not possible to connect to the database from outside
your application. The second mode, “Hsqldb Server Mode”, provides external accessibility,
applications programs (clients) can connect to the server using the HSQLDB JDBC driver.
According to the HSQLDB manual [hDG05b], the first mode can be faster than the second (for
most applications), so you should use the first mode when you deploy your application. The
manual contains further information about the two modes. Figure 4.3 shows an UML diagram
of the classes to configure and launch a database.

If you instantiate one of the two implementations of the configuration, sensible default values
are chosen (for example the database files are stored in the system’s temporary folder). Thus, it
is sufficient to instantiate a configuration and to pass it to the matching launcher—two steps to
configure a runnable database.

Data Access Object

The framework uses a Data Access Object (DAO) to isolate the application from the underlying
persistence technology (in our case Hibernate). A DAO is a component that provides a common
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getJDBCDriverName()
getJDBCURL()
getPassword()
getUsername()
setJDBCDriverName(String drivername)
setJDBCURL(String url)
setPassword(String password)
setUsername(String username)

DatabaseConfiguration

launch(DatabaseConfiguration config)
shutDown(IRunningDatabase runningDatabase)
shutDownAll()

DatabaseLauncher

getConfiguration()
isRunning()
stop()

<<interface>>
IRunningDatabase RunningHSQLDBInProcess

RunningHSQLDBServer

HSQLDBInProcessLauncher

HSQLDBServerLauncher

getDatabasePath()
setDatabasePath(String path)

HSQLDBInProcessConfiguration

getAddress()
getDatabasePath()
getPort()
setAddress(address)
setDatabasePath(path)
setPort(int port)

HSQLDBServerConfiguration

Figure 4.3: UML class diagram of the classes that provides a mechanism to launch a database.
DDCHANGE can launch HSQLDB database instances innately. The diagram shows
only the most important methods.
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interface between the application and one or more data storage devices [SM05]. Hibernate hides
programming tasks like writing SQL queries, but you have, for instance, to open and close so-
called sessions. Some knowledge about Hibernate is required to persist and request test results.

The advantage of using DAO is that any business object (which contains application or operation
specific details) does not require knowledge of the final destination for the information it requests
or modifies. As a result, if it is necessary to change where or in what way that data is stored, that
modification can be made without requiring changing the application. The underlying technology
can be changed or replaced without the need to change other parts of the framework. Thus, your
application can relay on the DAO, even if DDCHANGE would use another storage service.

DDCHANGE provides an Abstract Factory that produces factories, which produce again DAOs.
The concrete subclass HibernateDAOFactory provides Factory Methods to produce DAOs
that use Hibernate. Thus, if you want to use another storage service to persist results, you should
implement an own factory that returns IResultDAO, the interface that specifies the DAO.

As we have seen, storing the test results in a database using DDCHANGE is quite easy and
unproblematic. DDCHANGE provides classes that represent unambiguously test results, it can
launch a database, and DAOs isolate your application from the used object-relational mapping
tool. If you use the provided DAO, Hibernate will store your results in one of more than 20
different database products.

4.3.2 Differences

The second task in the general plan (see Section 3.4) is to determine the initial set of changes.
The domain of the “Differences” component is the computation and applying of changes. This
component plays an important role in several tasks of the general plan, including the determina-
tion of the initial changes.

So far, we have not defined how we will represent a change. In software engineering, appropriate
techniques and programs exist to compute and to apply changes between text files (thus, source
code files).

Diff

The diff program, developed in the early 1970s on the Unix operating system, can compute the
differences [Wik05b]. The basic algorithm is described in [MM85] and [Mye86]. The most
common implementation of the diff program is probably the “GNU diff” tool [EHH+05].

Contrary to what you would expect, it was problematic to find an appropriate implementation in
the Java programming language. There is a translation of the GNU diff algorithm to a Java class
[Gat05]. That class would enable DDCHANGE to compute the required differences. Because that
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port is based on GNU diff, which is licensed under the GPL6, the usage of the port (DDCHANGE
would be compiled against it) would force DDCHANGE to be released under the GPL, too. The
license of our choice is the Eclipse Public License, a less restrictive one; thus, using that port is
no option.

The first approach to solve this problem was to call an installed version of the GNU diff tool.
Calling the diff command line tool has two main disadvantages. At first, that method is quite
slow, Java has to spawn a process, and the strings to be compared have to be written previously
to disk. Second, the command line tool has to be installed on the computer DDCHANGE runs
on. That tool is installed on almost all Linux machines, whereas it is not on Windows machines.
On the last named, you have to install a GnuWin327 package. That solution does not fulfil the
out-of-the-box requirement.

One library used by the “Subclipse” component provides an Java implementation (not ported
from GNU diff) of the diff algorithm. Fortunately, that implementation can be used by the
“Differences” component. Thus, the component works without the need to install additional
software.

You could ask why I have not implemented the diff algorithm by myself. The GNU diff algorithm
is an optimised version of the original algorithm. If you try to optimise the original, you will be
nearly unavoidably close to that implementation, violating the GPL. Finally, using an existing
implementation saves a lot of time.

Currently, DDCHANGE is able to create unified diffs8 using either the command line tool, or the
Java implementation. That unified diff represents a difference between two arrays of strings,
for example, lines of a source code file. By default, the Java implementation is used. Other
implementations are possible; you should use the interface IDiffCreator provided by DD-
CHANGE.

Patch

If you want to apply a (unified) diff, you probably use the patch program. Larry Wall (most
widely known for his creation of the Perl programming language) wrote that program. Now, it
is part of the GNU project [WE05]. Applying a patch changes the text (file) according to the
instructions contained in the diff.

The Eclipse Project (see Section 5.2.1) contains classes that implement the patch algorithm.
Because these classes were linked heavily with Eclipse and we want to use them in DDCHANGE,
independent of Eclipse, it was necessary to uncouple them from Eclipse. Now, the affected

6The GNU General Public License (GNU GPL or simply GPL) is a free software license, originally written by
Richard Stallman for the GNU project.

7GnuWin32 provides Win32 ports of tools with a GNU license.
8The “unified” format is one of the different formats provided by the diff tool. This format is often used as input

to the patch program.
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classes are part of DDCHANGE. During this work, I found two bugs9 in Eclipse’s implementation;
I have fixed them and submitted the patches to Eclipse’s bugtracker [Fou05b].

The interface IPatch represents a textual difference between two arrays of strings (“original”
and “target”), or in short diff. In addition to a diff, an IPatch can be applied using the provided
implementation of the patch. Thus, instances of that interface are the conjunction of a diff with
the patch utility.

You can use the utility class DiffUtilities to obtain instances of that interface. Given two
strings (or arrays of strings), the utility class constructs instances that can be applied to a string
(or array of strings) in order to change that string according to the internally created unified diff.
If you have obtained already a unified diff, the utility class can create an instance by passing that
given unified diff.

Hunks

When comparing two sequences of lines (for example files or arrays of strings), diff finds sub-
sequences of lines common to both sequences. The subsequences are disjoined by groups of
differing lines called hunks. Comparing two identical sequences, diff computes one sole (sub)
sequence of common lines and no hunks—no lines differ. If the two sequences are entirely dif-
ferent, the diff algorithm results in one large hunk and no common lines. In general, there are
many ways to match up lines between two given sequences. The algorithm tries to minimise the
total hunk size by finding large sequences of common lines separated by small hunks of differing
lines.

As discussed in Section 3.3, the decomposition of the changes is important in order to get a small
failure-inducing difference. Obviously, the decomposition of a diff into its hunks is one way to
break a diff that affects a whole file into smaller parts; usually a hunk affects a few lines.

The DiffUtilities class can compute one (possible) large diff between given strings. Fur-
thermore, it can break the internal diff into its hunks. Using the related method, the utility class
returns an array of instances of IPatch, whereas every individual instance represents one single
hunk—small patches.

Reverting

The provided patches by DDCHANGE can be undone. Thus, after a change was applied, it can be
reverted. That allows to switching between the program versions while the algorithm is running.
Without that operation, DDCHANGE would have to obtain the unchanged version of the program
repeatedly after a test was run. In the case of the version control system, that operation would be
much slower than reverting the changes.

9See bugs with ID 93810 and 93901 in Eclipse’s Bugzilla bug database.

40



4.3 Components

Using the utility class DiffUtilities you can create small patches and apply them to strings
or arrays of strings. A utility class reads the content of a file into an array of strings. Thus, you can
create patches that change the content of a file according to hunks. These patches can represent
the changes between the passing and the failing program version. Using the delta debugging
algorithm and these patches, DDCHANGE determines the failure-inducing changes.

4.3.3 Subversion

We have seen the way DDCHANGE stores the chronological information about the run tests (see
Section 4.3.1). DDCHANGE can create and apply changes between program versions (see Section
4.3.2). However, how can we obtain the initial set of changes from the revision control system?
The “Subversion” component manages to do exactly that. Its domain is to create diffs between
two versions of a program in the Subversion version control system [dev05b]. The utility class
DiffUtilities can create patches using that given diff.

In order to access the working copy10 and the repository11, DDCHANGE can use different client
adapters. Two are supported out-of-the-box.

SvnClientAdapter

Subversion was designed from the start to be an API, in contrast to CVS12. It is written in C
as a set of libraries. The command line tool svn is the default UI of Subversion that uses
these libraries. In addition, Subversion provides language bindings for various programming
languages. Therefore, the native C libraries can be used in other languages. The Subversion
project provides a Java language binding named JavaHL [dev05a], it implements the API via a
thin layer that uses JNI13.

The svnClientAdapter [Céd05] is a Java project that was developed for Subclipse, a user interface
to Subversion from within the Eclipse IDE. SvnClientAdapter is a higher level API that uses
JavaHL; this client adapter is easier to use than JavaHL in many cases.

10A Subversion working copy is an ordinary directory tree on your local system, containing a collection of files.
That collection is under control of Subversion.

11A Subversion repository is the central store of data. The repository stores information about all changes on a
central server.

12CVS (Concurrent Versions System) is another version control system. A number of key developers who have
worked on CVS are now responsible for Subversion, which aims to replace CVS by addressing some of its
limitations.

13The JNI (Java Native Interface) is a framework with a standardised API that allows Java to call native applications
and libraries written in other languages, such as C, C++, and other. For instance, a program running in the Java
virtual machine can use operations defined in a DLL (Windows Dynamic Link Library) or in a shared library on
Linux.
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If the JavaHL library is available on your system, or easily attainable, then it is probably the
best choice. It supports all features of Subversion because it uses the native libraries. At the
same time, that is the main drawback; if there are no native libraries on your system, you will be
lost. For instance, a Windows user has to install several non-documented DLLs in the system’s
path. On a Linux system, you will have to compile these libraries by yourself, if there is no
precompiled package available. Thus, using only that client adapter does not fulfil the out-of-
the-box requirement.

JavaSVN

In contrast to the JavaHL bindings described above, JavaSVN is a pure Java Subversion client
library [Sof05]. Thus, it does not need any additional configuration or native binaries to work on
any OS that runs Java. However, there are some issues of this adapter:

• It cannot access subversion servers 1.0.*, the server has to be at least version 1.1.*.

• It does not support file:// URL’s.

• It uses pure java JSCH library to establish SSH connection. This library supports only SSH
version 2, with password or private key authentication.

• It uses SSL support included into JDK. Some JDK versions do not support SSL server
certificates longer than 1024 bytes or do not support certain Cypher Suites.

If these limitations do not apply to your application or system, you should use the JavaSVN
client adapter. This client adapter was added later in the development of the framework. At the
beginning of this work, there was no stable version of JavaSVN available. Now, there is a stable,
public version and that version is used by DDCHANGE.

Autoconfiguration

If you do not configure DDCHANGE explicitly to use one of the two client adapters, DDCHANGE
automatically uses one that is available. At first, it tries to initialise the svnClientAdapter. If that
attempt fails (for example because the required native libraries are not available), the JavaSVN
client adapter will be used.

The class SubversionToolFactory can be used to produce instances of
ISubversionTool, a toolset for Subversion. Other than that mentioned operation to
create diffs, the toolset provides methods to undo local edits in the working copy (revert),
to checkout a working copy from a repository, and more. The Factory uses the mechanism
described above to determine the best client adapter that is used by the returned instance of the
toolset.

42



4.3 Components

Because the JavaSVN client adapter does not support all features, your application will be warned
if the svnClientAdapter is not available. However, this method ensures that most of the possible
repositories are supported.

Other Version Control Systems

At present, DDCHANGE supports directly only Subversion as version control system. Other
systems, such as CVS and Perforce, are imaginable. DDCHANGE does not provide an abstraction
of accessing a version control system. However, as we will see in Section 5.2, using CVS to
obtain the initial set of changes does not require much cost. Furthermore, the Eclipse plug-in
uses another repository to get these changes. Only a few classes were needed to accomplish this
task.

Nevertheless, providing an interface that specifies the access would be enhance the reusability
and localise the impact of changes. That one issue could be tackled on further work.

Subversion was chosen because of several reasons. First, WEB.DE uses that system. Obviously,
DDCHANGE, or at least the tools, have to support that system. Second, Subversion aims to
replace CVS, a widely used version control system that has become popular in the open-source
world. It begins to show that new open-source projects use Subversion instead of CVS, and
newer projects tend to use unit tests rather than older projects. Thus, Subversion is a good choice
regarding current and future projects.

The Subversion component provides all methods in order to compute the initial set of changes
between the failing and the working program version. In conjunction with the Diff component,
DDCHANGE is able to compute the initial set of changes. These changes can be applied and
reverted, thus the delta debugging algorithm can test different configurations.

4.3.4 Test

As seen before, DDCHANGE is able to establish a history, to determine changes, to apply, and
to undo current changes. One of the main tasks in the general plan (see Section 3.4) is missing:
to run the unit test. Exactly this task is the domain of the “Test” component, to run JUnit tests.
However, this component provides interfaces and classes in order to use other types of tests,
too.

JUnit tests

As described in Section 2.2, unit testing is an essential part of debugging. In the Java world, JUnit
is the most popular unit-testing framework (see Section 3.1). Therefore, DDCHANGE provides
support for running JUnit out-of-the-box.
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DDCHANGE supports running tests in a general fashion (see below), but it implements all prereq-
uisite in order to execute JUnit tests. The class SimpleJUnitTester will be the first contact
point if you want to understand the mechanism to run the tests. Given a description of the test
to run, the tester will launch that test in the same virtual machine (VM). The aspect mentioned
at last is the main drawback of this tester. If you run the JUnit test in the same VM and this test
crashes the VM, your complete application will crash, too. Especially, if the crash of the VM is
the failure, DDCHANGE would not be able to debug that failure. Therefore, DDCHANGE is able
to run tests in a separate VM.

Remote tests

The class RMIJUnitTester is the actual tester used by DDCHANGE (that uses again internally
the simple tester). That tester can be contacted via RMI14; you can call a remote method that
runs the test specified by the given description. Thus, tests can be executed in a separate VM—
DDCHANGE will execute its JUnit tests in the separate VM communicating via RMI. The main
intention is to run the tests in a separate VM. However, that mechanism enables you to run tests
even on another machine.

RMI Registry Remote objects can be obtained from remote objects already known. The first
contact requires an URL that contains the address of the server and the name of the requested
object (in terms of RMI: service name). If you have the URL of the desired object, you can
request the actual reference to the remote object from the RMI registry, a naming service that
associates readable names with remote objects. The remote object has to be registered with the
naming server.

Obviously, the RMI registry has to be started before the JUnit test can be run. Generally, the
rmiregistry command creates and starts a remote object registry on the specified port on the
current host. To fulfil the out-of-the-box requirement, the application should not be responsible
for launching that naming service. In fact, the remote testing procedure should be as far as
possible transparent to the application. Therefore, DDCHANGE is able to launch and stop the
registry programmatically. The Factory RegistryManagerFactory returns an instance of
IRegistryManager, a service that is able to start and stop the registry. Currently, a manager
starting and stopping the registry in a separate thread is available.

Launching the tester In order to launch the tester, you have to start at first the registry. As
described above, DDCHANGE provides the required operations. After the registry has started,
you can start the separate tester. The class RMIJUnitTester provides a main(...) method,

14The Java Remote Method Invocation API (short: RMI) is a Java application programming interface for performing
remote procedural calls. Remote means the called object can be instantiated in another VM. That VM can be
running on the same host or even on another machine reachable over the Internet.
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thus can be started as a Java program. The main method starts several threads (one is required in
order to shut down cleanly the tester, another runs the tester itself).

Java does not provide an easy way to run other (Java) programs programmatically. Thus, DD-
CHANGE provides the class RMIJUnitTesterLauncher. That class launches the remote
tester in a separate VM. The running tester can be contacted via RMI.

Because the JUnit test to run may relay on system properties, the launcher writes the current
properties to a temporary file; the remote tester will load the stored properties as its system
properties. Thus, the JUnit test finds the same properties in the separate VM as it would find in
the VM running DDCHANGE.

The remote tester requires some third-party libraries. It uses the Log4j logging service to log
messages and relies on the Commons Lang component. Therefore, the launcher provides meth-
ods to add the required libraries automatically to the class path.

Reloading Class Loader

The default class loader15 loads the requested class only once from the file system. After the
class was loaded when requested for the first time, subsequent requests will return the already
loaded implementation. Normally, that improves the performance because it saves accesses to
the hard disc. In our case, that is a big drawback. While applying changes, the source code of
the classes may be changed. Thus, the implementation of the named class changes. If the unit
test is run again, this changed implementation of the class must be loaded.

One possibility to resolve that problem is to restart the remote tester between the individual
test runs. Though, launching of a separate VM is time-consuming, the runtime of the algorithm
would jump up. Therefore, a better solution is to implement a class loader that reloads the classes
every time.

DDCHANGE uses an own class loader to accomplish this task. The class loader
ReloadingClassLoader reloads classes at every request. Because some classes cannot
be loaded by a custom class loader for security reasons (for instance, the classes in the java.lang
package), the reloading loader uses a given fallback class loader to load these restricted classes.
By default, it uses the actual instance of sun.misc.Launcher$AppClassLoader (the
class loader that typically loads the application) as fallback. That issue is the reason for running
the tester in a separate thread in the separate VM. The remote tester sets the context class loader
of the thread running the tester. Thus, the reloading class loader loads all classes in the context
of the run JUnit test.

A very interesting and enlightening article about class loaders is [Gül05b]. It describes exactly
the problems (and causes) I run into while implementing the remote tester.

15The class loader concept is one of the cornerstones of the Java virtual machine. It describes the behaviour of
converting a named class into the bits responsible for implementing that class.
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Currently, the reloading class loader reloads the requested classes every time, for every request.
A better solution would be some kind of a flag that indicates the need to reload the classes
once. Thus, if a class is requested for the first time, its actual implementation will be loaded.
Subsequent requests will result in returning the already loaded implementation, until that flag is
set again. Obviously, that flag would be set before an individual test will be run.

Other Tests

Unit tests are one possible type of tests to detect failures; other types are imaginable and existing.
Therefore, DDCHANGE provides classes and interfaces that specify the description of a test to
be run and the tester that runs the described test. Given a description, the tester will execute the
appropriate test and will finally return the test outcome. Figure 4.4 shows an UML class diagram
of these classes and interfaces.

As we will see in Section 4.3.5, DDCHANGE uses the interfaces and not the concrete implemen-
tations to run the tests. Thus, you can implement your own concrete test and DDCHANGE will
use your test while running the delta debugging algorithm.

DDCHANGE is able to run a test that decides whether a set of changes is relevant or not. It
provides an implementation that runs JUnit tests; other types of tests are possible.

The JUnit tests are run in a separate VM to ensure stability while the tests are run. The reloading
class loader enables DDCHANGE to change the implementation of the classes while the tester is
running. All these features are usable out-of-the-box, thus DDCHANGE allows using unit tests
without larger costs. As we will see in Section 5.1, instances of the framework can use JUnit
tests without the need to implement a single class.

4.3.5 Debugger

In order to complete the tasks required by the general plan (see Section 3.4), we need to re-
construct the program and to call the delta debugging algorithm. Furthermore, the Diff and the
Subversion components provide utilities to create changes, but they are not responsible for the
creation of the initial set of changes.

All these tasks compose the domain of the “Debugger” component, the last component not de-
scribed, so far.
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isRunning()
shutdown()

<<interface>>
IRMITester

test(ITestDescription description)

<<interface>>
ITester

getTestOutcome()
getThrowable()

<<interface>>
ITestResult

getTestClass()
getTestMethod()
setTestClass(String className)
setTestMethod(String methodName)

<<interface>>
ITestDescription

SimpleJUnitTester

RMIJUnitTester

TestResult

TestDescription

Figure 4.4: UML class diagram of the classes and interfaces responsible for conducting tests.
DDCHANGE is capable of running JUnit tests in a separate VM. The diagram shows
only the most important methods.
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Reconstruction

After all changes have been applied successfully, we have to reconstruct the program. DD-
CHANGE provides the generic interface IBuilder, its only method builds something. For
instance, a compiler would compile Java source files if that method is called. DDCHANGE has
three implementing classes. The NullBuilder will be useful, if DDCHANGE should not build
by itself (the debugger requires an instance of that interface, see below). The MultiBuilder
uses multiple builders when it builds; it calls all given builders in the order of their addition.
Because DDCHANGE uses exactly one builder to reconstruct the program, you will have to use
that builder, if you need to reconstruct in several steps (for example to create J2EE home and
remote interfaces, and to compile all the source code afterwards).

Ant Compiler The most interesting class implementing the interface may be the
AntCompiler, a builder that compiles Java sources. For these purposes, that builder uses
the Ant Javac task [dt05b] programmatically. The compiler is simple to use and powerful at the
same time. The initialisation requires two steps, you have to set the source folder, the location of
the java files, and the destination folder, the location to store the class files. If the build method
is called, it compiles the specified java files using the default configuration values of the Javac
task. However, you can set all the optional parameters of the Javac task by calling the appropri-
ate method of the compiler. See [dt05b] for more information about the possible parameters to
configure the compiler.

Scrub or Depend DDCHANGE provides two modes that specify which classes will be recon-
structed. The first mode called scrub removes all class files (it “scrubs” the destination folder);
thus, the compiler will compile all Java files. That mode is something like brute force, even if
only one Java file out of several dozens has changed, all files will we compiled.

Therefore, DDCHANGE provides a second mode, called depend. That mode uses the Ant De-
pend task [dt05a]. It determines the class dependencies in order to find out which classes have
to be compiled. The task does not parse the source files; it uses the class references encoded into
the class files by the compiler. That method is generally faster than parsing the sources. The
dependency tree is cached, the task re-analyses only the classes that have changed. DDCHANGE
uses Depend to detect direct class-class relationships. The task can determine transitive, indi-
rect relationships. However, considering transitive relationships will often result in recompiling
all the classes. In that case, the depend mode is much slower than the scrub mode. The per-
formance dependents on factors such as class relationship complexity and how many class files
have changed. Thus, using the scrub method can be faster than the depend mode. Furthermore,
the Depend task has some limitations; it cannot detect all types of dependencies. For instance,
the Java compiler may optimise away some class relationships. See [dt05a] for more information
about the advantages and the drawbacks of using that task.
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Because of the performance issue and the limitations, DDCHANGE uses the scrub mode as de-
fault. Obviously, that mode has not any problem with dependencies or inner classes. While
testing DDCHANGE, the simple scrub mode was often faster than the depend mode; the compu-
tation of the dependency information and the determination of the relationships may be to slow.
However, that depends on the actual project16.

The Deltas

DDCHANGE uses an abstraction of the changes, called deltas (because of the name of the al-
gorithm). The IDelta interface specifies such a delta. It provides methods to apply and to
undo the delta. DDCHANGE uses only instances of that interface when calling the algorithm.
Thus, any class that implements that interface can be used in order to debug automatically some
deltas.

Changed Files In order to describe deltas on files (most notably changes), DDCHANGE uses
the subinterface IFileDelta. Instances of that interface represent a delta that affects a file.
There are several implementing classes.

• FileDeltaAdded. A delta that represents a file that will be added when this delta is
applied and that will be removed again if this delta is undone afterwards.

• FileDeltaChanged. A delta that represents a file that will be patched when this delta
is applied and that will be un-patched again if this delta is undone afterwards.

• FileDeltaRemoved. A delta that represents a file that will be removed when this delta
is applied and that will be restored again if this delta is undone afterwards.

• FileDeltaReplaced. A delta that represents a file that will be replaced when this
delta is applied and that will be restored again if this delta is undone afterwards. That delta
is useful for binary files that cannot be patched.

Using these deltas, you can represent all possible changes of a file. Figure 4.5 shows an UML
class diagram of the interfaces and classes used to represent deltas and changes, respectively.

Collecting and Creating Deltas

Until now, we have seen the different utilities available to create changes between files and
between program versions in a version control system. DDCHANGE provides classes that help
to collect and to create changes.

16And remember Occam’s Razor: “Keep it simple”.
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apply()
isApplied()
undo()

<<interface>>
IDelta

getAffectedFile()

<<interface>>
IFileDelta

FileDeltaAdded

FileDeltaChanged FileDeltaRemoved

FileDeltaReplaced

Figure 4.5: UML class diagram of deltas and changes on files. The diagram shows only the most
important methods.
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The most abstract interface in that context is IDeltaCollector. Implementations of that
interface start some process. After the process has finished, the collected deltas can be obtained
from the collector. The abstract class AbstractDeltaCollector implements that interface.
It provides methods to add collected deltas and to obtain them later.

During the process of collecting deltas, the deltas have to be created in some way. The inter-
face IFileDeltaCreator specifies a class that creates an array of deltas for a given file.
For instance, while collecting deltas, that creator is used for considering files—it will create
changes.

DDCHANGE provides an implementation of the creator interface, the
SubversionDeltaCreator. That class creates deltas between a given date in the
repository and a file in the working copy (wc). If that delta is applied, it will patch a file with the
content of the revision in the repository to the content of the file in the wc. If the diff between the
revision in the repository and the current wc contains more than one hunk, this creator creates as
many deltas as there are hunks. So, every hunk is transformed into one individual patch. Using
that creator, you can create changes between different versions of a file.

How can we create changes between program versions?

Visiting File System Trees Normally, the source code of a program is stored in a file system
tree. Thus, descending that tree is an applicable method in order to process it. While visiting the
files in that tree, a creator can handle every individual file.

The Visitor Pattern is used often to separate the structure of an object collection (here, a tree)
from the operations performed on that collection (here, creating deltas). Unfortunately, the
current Java specification does not support that pattern on file system trees. Therefore, DD-
CHANGE provides two interfaces and a class that add the Visitor Pattern to Java File ob-
jects. The interface IFileVisitable specifies the pattern on File objects, the interface
IFileVisitor should be implemented by classes that visit IFileVisitable trees. The
class FileVisitable implements the IFileVisitable interface to add the pattern to file
system trees.

The class FileDeltaCollector, extending AbstractDeltaCollector and imple-
menting IFileVisitor, is the connection between the process of collecting changes and
their creation. That collector processes file hierarchies creating deltas using one or more
IFileDeltaCreator. At construction time, you specify the root node of the hierarchy as
File object. Starting at that node, it descends the file hierarchy. For every node in that hierar-
chy, it calls the createDeltas(File) method of the attached creators.

Figure 4.6 demonstrates the usage of that collector. You can use an instance of
SubversionDeltaCreator as the creator.
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Running the Delta Debugging Algorithm

Now, we have all prerequisites to determine the failure-inducing changes. Using the
SubversionDeltaCreator and the FileDeltaCollector we can compute the ini-
tial set of changes. We can reconstruct the code; the changes can be applied to create different
configurations. Finally, we can run JUnit tests.

Tip of the Iceberg DDCHANGE hides completely the call of the delta debugging algorithm.
You have to create an instance of the class DeltaDebugger, passing a builder, a tester, and a
description of the test. Given the set of initial changes, the debugger will determine the failure-
inducing. Figure 4.7 shows briefly how to use the debugger.

Listening to the Algorithm If you want to observe the debugger and the algo-
rithm during the debugging process, you can use an implementation of the interface
IDeltaDebuggingListener, a listener interface for observing the execution of the delta
debugging algorithm.

The debugger will notify every attached listener whenever a test starts, ends, and so on. If you
want to inform the user of your application, an instance of the framework, about the progress of
the determination, this mechanism is probably the only choice. However, listeners are notified
only about the events of individual test runs. Because we do not know how many test runs are
required before having the result, DDCHANGE is not able to give a prediction about the runtime
of the whole process.

Compile Flow Statistics on the Algorithm DDCHANGE allows analysing the complete pro-
cess and the individual run tests by providing a flow statistic. Using the listener concept as
described above, DDCHANGE collects information about the conducted tests. That informa-
tion contains the runtime of the tests, their outcome, the number of deltas, and more. After
the determination, the debugger can return an instance of IDeltaDebuggingStatistic,
a statistic of a single delta debugging run. This statistic can return an array of instances of
ISingleTestStatistic, the statistic for a single test run. The elements in the array are
sorted by the order of the run tests.

To ease the further processing of the statistic, both interfaces specify a method that returns an
XML element representing the statistic. For instance, you can easily write the statistic in the
XML format to your hard disc. One of the tools uses those methods to create an HTML report
that shows the final report containing the failure-inducing changes (and the statistic).
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1 class DeltaCreator implements IFileDeltaCreator {
2

3 public IFileDelta[] createDeltas(File file) {
4 // your code here return new IFileDelta[0];
5 }
6

7 }
8

9 // the root node for collecting deltas in file system
10 File root = ...;
11

12 // collect deltas in file system
13 FileDeltaCollector collector = new FileDeltaCollector(root);
14 collector.addCreator(new DeltaCreator());
15 collector.collect();
16

17 // obtain collected deltas
18 IDelta[] collectedDeltas = collector.getCollectedDeltas();

Figure 4.6: Listing: How to collect changes.

1 // reconstructs changed code
2 IBuilder builder = ...;
3

4 // runs the test, for instance unit test
5 ITester tester = ...;
6

7 // specifies the test to run
8 ITestDescription description = ...;
9

10 // the initial set of changes
11 IDelta[] allChanges = ...;
12

13 // constructs new debugger
14 DeltaDebugger debugger =
15 DeltaDebugger(builder, tester, description);
16

17 // determines failure-inducing changes
18 IDelta[] failureInducingChanges = debugger.debug(allChanges);

Figure 4.7: Listing: Tip of the Iceberg. How to determine failure-inducing changes.
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As we have seen, using the Debugger component along with the other, we can accomplish the
general plan. Thus, DDCHANGE enables us to determine the failure-inducing changes. The
component described above provides methods to reconstruct the program, to determine the initial
set of changes by visiting a file system tree, and to call the delta debugging algorithm via a well-
defined abstraction, the debugger. That class of the framework is the tip of the iceberg, it pulls
the strings. In addition, the debugger allows to observe the process and to compile some statistics
about the process.

4.4 Ensure Quality

As seen before, DDCHANGE can accomplish the tasks defined in the general plan. Because
instances of the framework depend on the reliability of DDCHANGE, the framework should as-
sure some quality management policy. However, quality in computer software is a controversial
subject. For some people, quality is a practical or even aesthetic issue, for example the pro-
gramming style. For other people, quality is defined as strict compliance to requirements and
non-appearance of bugs [Wik05e]. An advanced discussion of that topic goes beyond the scope
of this work. Therefore, in the following we briefly discuss some indications for quality.

• Using Maven. The DDCHANGE projects are managed by Maven, a software project man-
agement and comprehension tool. This ensures a coherent project documentation and a
well-defined release process. Maven runs all unit tests before a new version is released.
Thus, versions that do not pass all the unit tests are prevented. See Section 5.1.1 for a
more detailed description of Maven. The included CD (see Appendix A.1) contains the
complete documentation generated by Maven.

• Unit Tests. Creating a test case is the first step before a program can be debugged (see Sec-
tion 2.2). DDCHANGE uses JUnit tests to ease the debugging of failures.17 For instance,
when you change the source code adding new features, you will probably be warned if you
introduced a failure in the existing code. The unit tests and the high test coverage (see next
item) help to avoid regressions while changing and extending the current implementation.

• Code Coverage. Code coverage is a metrics that reflects the degree to which the source
code of a program has been tested. DDCHANGE uses Clover [Ltd05a], a code coverage
analysis tool, to discover sections of code that are not being adequately tested (using unit
tests). Figure 4.8 shows the coverage for conditionals, statements, methods, and the total
percentage coverage18.

17There are currently 396 unit tests. Four of them are failing because of bugs in third party libraries. Thus, the
failing tests do not show failures of the framework, but of the used libraries. See DDCHANGE’s Bugzilla bug
database for more information about these bugs.

18 The Total Percentage Coverage (T PC) is calculated using the formula: T PC = (CT +CF +SC +MC)/(2∗C +
S+M) where CT - conditionals that evaluated to “true” at least once, CF - conditionals that evaluated to “false”
at least once, SC - statements covered, MC - methods entered, C - total number of conditionals, S - total number
of statements, and M - total number of methods.
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Based on the assumption that the unit tests are implemented correctly, the total percentage
coverage of 84% indicates an almost faultless implementation of the framework. Achiev-
ing a coverage of more than 90%—or actually achieving 100%—is very hard and time-
consuming. If you look at the Clover coverage report (see Appendix A.1), you will see
that most of the uncovered code sections are catch blocks of error-handling code. Writ-
ing tests covering that type of code is particularly costly19.

Clover is run by Maven. Thus, it is transparent to the developer; she does not have to run
that tool explicitly. The following two tools are also run by Maven while generating the
project documentation.

• Checkstyle. Checkstyle [Tea05a] implements a static code analysis in order to help pro-
grammers write Java code that adheres to a defined programming style. Code conventions
improve readability of the software, allowing you to understand the code more quickly and
thoroughly.

• Findbugs. FindBugs [Hov05] is a tool to find bugs in Java programs. It looks for instances
of so-called bug patterns—code instances that are likely to be errors. Using FindBugs
helps to avoid code idioms that are often an error. For example, if you forget to close
a database connection on all exception paths out of a method, FindBugs will warn you.
Failure to close database resources on all paths may result in poor performance.

• JavaDoc. The API documentation of DDCHANGE is nearly complete; almost every public,
protected, and private package, class, interface, field, and method is documented. The doc-
umentation contributes to a developer’s understanding and helps a developer write reliable
tools based on DDCHANGE more quickly.

• Logging. DDCHANGE uses log4j [Gül05a], a popular logging framework for the Java
programming language. The log messages can help you to observe the program run in
order to gather facts about concrete runs of the framework, so that a problem can be located
easier and faster.

• Subversion. A Subversion repository stores all the source files of the different DDCHANGE
projects. The repository remembers all individual changes ever written to it. This allows
you for recovering older versions of the source code, or for examining the history of how
it changed. In this regard, you may think of a version control system as a sort of time
machine. The repository is able to answer questions like “What was the content if that file
last Wednesday, and who changed it since the last release?”.

In conjunction with the unit tests, the tools of the platform can be used to debug failure-
inducing changes on the projects itself. Appendix A.2 describes all projects stored in the
repository.

19One technique to test such code sections is to use Mock Objects—a “double agent” used to replay the behaviour
of objects. Some tests of DDCHANGE (for example, the unit tests for the Database component) use Mock
Objects to increase the code coverage.

55



4 The Framework

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Conditionals Statements Methods TOTAL

Clover-Coverage

78 %
84 % 86 % 84 %

Figure 4.8: Bar chart: Code coverage of DDCHANGE as computed by Clover. Note: Cover-
age measurement is not a replacement for good code review and good programming
practices.

• Bugtracker. The Bugzilla bug-tracking tool is used to collect, manage, and document
issues of the DDCHANGE projects. The public tracker allows developers at WEB.DE—
as well as all other users—for submitting failures, feature requests, and other tasks to a
central system. Bugzilla defines a Bug’s Life Cycle, that life cycle provides a well defined
workflow how to handle all requests. Using a bug tracker avoids that submitted issues are
forgotten, and improves communication between developers of DDCHANGE and its users,
just as among the developers.

No items prove the quality of DDCHANGE. However, they are an indication of the project’s
grade.

4.5 Extending the Framework

As described in Section 4.1, one of the main intentions of using a framework is to enhance
reusability. Thus, using DDCHANGE should leverage the domain knowledge and should im-
prove the programmer’s productivity. In the following sections, we will see how we can extend
the framework. You will not see any example code. However, we will sketch all required contri-
butions out.
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4.5.1 Other Version Control Systems

Currently, DDCHANGE supports the Subversion version control system as a source of changes.
Because many existing and especially long-standing projects use CVS instead of Subversion,
adding support for CVS could be a worthwhile contribution. DDCHANGE provides some classes
that ease the collection and creation of changes that can be applied in order to construct different
program versions (see Section 4.3.5).

The main class responsible for the creation of the changes is the
SubversionDeltaCreator. Thus, implementing an analogue class that uses CVS
instead of Subversion should be adequate. In fact, you have to provide an implementation of
IFileDeltaCreator, for example named CVSDeltaCreator, that creates the differ-
ences between two versions (or, dates). Using the provided classes DiffUtilities (see
Section 4.3.2) and FileDeltaChanged (see Section 4.3.5), that task can be done without
any changes on the framework. That is exactly how the Subversion related implementation
creates the changes: The diff utility class creates a patch from a computed unified diff, the delta
is constructed by passing that patch and a reference to the affected file.

There is a Java based CVS Client, called jCVS [End05]. Using that client library and the
classes provided by DDCHANGE that task should be realisable in about one day. Afterwards,
DDCHANGE would be able to create the initial set of changes using a CVS repository.

4.5.2 Other Tests

The general plan (see Section 3.4) uses unit tests in order to determine the failure-inducing
changes; the non-working unit test is the failure. Other testing techniques may be used to observe
other types of failures that can be debugged with the delta debugging algorithm.

Memory Leaks

Typical heap management problems in C/C++ are memory leaks20 and dangling pointers21. Be-
cause of the built-in garbage collection (a form of automatic memory management that reclaims
the memory used by objects that will never be accessed again) dangling pointers are history in
the Java programming language. Unfortunately, memory leaks can still occur in Java programs,
and this type of failure is hard to debug [Pat01]. The developer is still responsible for cleaning
up references after use. For instance, adding objects to a vector and forgetting their index may

20A memory leak will occur if an allocated part of the memory is not freed after that part is not used anymore.
Memory leaks can cause to stop the entire system from working correctly.

21In C and many other languages, removing an object from memory does not alter pointers that point to that object;
the pointer will point to the location in memory even though the memory now is used for other purposes. Using
such a dangling pointer and assuming it is still valid can cause unpredictable behaviour.
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result in an OutOfMemoryException. If such a failure occurs after you have changed your
program, DDCHANGE may help you.

One possibility to detect a memory leak is to write an unit test that fails throwing the exception
mentioned before. However, writing that unit test may be not sufficient. Memory leaks could
slowly fill the memory; your program gets slower by-and-by. To increase the intricacy of that
issue, imagine the failure will occur only if you use your application in conjunction with another
product. For instance, your web application gets slower using a particular web container. In
that case, you have to implement a builder (see Section 4.3.5) that deploys the application to
the web server (after compiling the changed sources) during the reconstruction of the program.
Furthermore, you will implement a unit test that fails whenever a request to the web application
overruns its time.

Compared to adding the access to CVS, this task may take a long time. However, think about
debugging such a failure by hand. You would have to bring in different changes, afterwards you
will deploy the application, and you will use your browser and a stopwatch in order to determine
time-outs—a tedious and costly task.

Acceptance Tests

In Section 4.3.4, we discussed the way DDCHANGE uses JUnit tests in order to reproduce a
failure, in the form of a failed unit test. Other tests are possible, for instance, so-called acceptance
tests. These tests are created from user stories (a description written by the customers as things
that the system needs to do for them); an acceptance test represents some result expected by
the user from the system. Thus, these tests verify application functionality and user acceptance.
They are also used as regression tests before a production release.

One tool used for creating acceptance tests is Selenium [HGW05], a test tool for web applica-
tions. Selenium tests run directly in a browser, just as real users do. It deploys automatically its
“Browser Bot”, the JavaScript automation engine, to a browser when you point it at the installa-
tion on your web server. This way, the web browser is controlled by Selenium doing the steps
that are defined in a user story. If the web application satisfies the requirements defined by the
user (or the customer), the test passes. Otherwise, it will fail.

Adding acceptance tests to DDCHANGE requires more effort than the other tasks seen before.
You have to implement a builder that deploys your web application to the server that runs Sile-
nium and a tester that gets its result from Silenium. However, using the hot spots provided by
DDCHANGE would be practicable. Using Selenium is an improvement compared with doing
acceptance tests with the help of some manually checked lists. It automates acceptance testing.
In addition, DDCHANGE could help you to automate the debugging of failed acceptance tests.
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DDCHANGE enables you to write tools that determine failure-inducing changes. As delineated
exemplarily above, contributing new features to DDCHANGE should not be too difficult. That
is not a proof for DDCHANGE’s enhancement of reusability. However, it should at least bring
forward new ideas as to how you could extend the framework.

In Chapter 5, we will regard two instances of the framework. The first one uses DDCHANGE
out-of-the-box, the second one contributes to the framework. Furthermore, we will see that the
amount of code required to implement these tools tends to be small, compared to the frame-
work.

4.6 Optimisations

As seen in Section 3.5, there is room for different optimisations. In the context of this work,
Bouillon’s implementation of the delta debugging algorithm was extended with a working cache
(see Section 4.2). Thus, the issue about the multi-tested configuration is solved. The one about
the incremental reconstruction is solved partly by the provided Ant compiler and the depend
mode (see Section 4.3.5). Further, we could use Eclipse’s batch compiler [Fou05d], a very
fast incremental compiler. That compiler is probably the fastest compiler available for the Java
programming language that includes full support for the new features of J2SE 5.0. In Section
5.2, we will see an Eclipse plug-in that uses DDCHANGE in conjunction with Eclipse’s compiler.
Compared to the Maven plug-in (described in Section 5.1) that uses the Ant compiler, the Eclipse
plug-in compiles the changed sources much faster. Thus, doing an incremental reconstruction
does not pose a big challenge—at least compiling Java sources can be done very fast.

In the following sections, we will discuss possible optimisations that concern history, grouping,
and primarily the restriction of the search scope. Most of the optimisations are based on other
work.

4.6.1 Restrict Search Scope

One possibility to speed up the process is the restriction of the search scope. Obviously, if we
can reduce the amount of changes in the initial configuration, the number of tests required by the
algorithm will be smaller, too.

Continuous Testing

The programmer is responsible for the initiation of the unit tests. In large projects, the pro-
grammer does not run always all the unit tests after she made a change. Most of the projects at
WEB.DE have a test coverage up to 100%, running all the unit tests is hence a time-consuming
process. Even on a very fast (compared to the developer’s workstation) server, running these tests
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lasts at least several minutes. Thus, if the programmer would run the unit tests two times per hour,
he would spent nearly half of this working day for running (and waiting for) unit tests.

Continuous Testing [SE04b] uses the idle time on a developer’s workstation to continuously run
unit tests in the background. Regressions can be detected faster than running the unit tests by
hand [SE04a]. As a consequence, the number of changes between a passing and a failing version
is smaller—restricting the search scope.

An implementation of continuous testing is available as Eclipse plug-in. That plug-in could
be used together with the plug-in described in this work, speeding up the process to determine
failure-inducing changes.

Change Impact Analysis

A simple method to determine the initial set of changes is to compute all the changes between the
passing and the failing program (unit test) version. However, that method collects all changes,
even changes that do not affect the run unit test. We could distinguish between changes that
affect or do not affect the run of the unit test. Chianti [RST+04] is such a tool that analyses the
change impact of Java programs.

Chianti reports the change impact in terms of affected unit tests whose execution behaviour may
have been mutated by the changes. Furthermore, it determines a set of affecting changes that
were responsible for the test’s mutated behaviour—Chianti distinguishes between changes that
result and that do not result in another behaviour of the test run.

Chianti is implemented as an Eclipse plug-in. Just like the plug-in for continuous testing, we
could use Chianti together with the Eclipse instance of DDCHANGE in order to analyse whether
the combination of the change impact analysis with DDCHANGE could speed up the automated
debugging process. Using Chianti to restrict the search scope—we can ignore changes that do not
affect the unit test—could optimise the process. However, the change impact analysis seems to
be a time-consuming process. Therefore, the restriction of the search scope could be connected
with too high costs, annihilating the gain of time.

Change Classification

DDCHANGE currently uses only a small subset of all the information contained in the database:
the date of the passing and the date of the failing run. Because DDCHANGE (or rather the
two existing instances) will store all the test outcomes in the database if a complete test suite
(collection of test cases) is run, we could use that information, too. For instance, if only one
out of dozens tests fails and all other pass, there could be introduced “good” and “bad” changes
since all the tests were passing. We could use again the change impact analysis in order to
classify these changes.
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In fact, there is a method called Change Classification [SRRT05]. That work presents several
analyses that classify changes into three groups. Each group indicates the likelihood that the
contained changes contributed to a test’s failure; the groups are named red, yellow, and green.
The green changes are unlikely to be failure-inducing, the red ones are likely to be failure-
inducing, and the yellow are in-between. They use the change impact analysis in conjunction
with the property of the individual tests whether their outcome has not changed, changed from
passing to failing, or vice versa.

Again, that method is implemented as an Eclipse plug-in; we could study whether the compre-
hension of the changes’ group membership can speed up the debugging process. However, it
seems that the classification is a long-winded process—annihilating the gain of time.

4.6.2 Group Changes

As discussed before, restricting the search scope is one possibility to speed up the debugging
process. Another method is the grouping of the changes according to their scope.

Change Impact Analysis

Basically, the change impact analysis obtains a set of interdependent atomic changes, and de-
termines the changes’ effect on the call graph of the tests. Further, the analysis determines
dependencies between the atomic changes. For instance, if you add a method m in class C, the
change that introduces a call of m in another class depends on the method’s addition.

We could use that information in order to group related changes and to avoid unresolved test
outcomes. Introducing the method call without the method’s definition would result in a syntac-
tically incorrect program—an unresolved test outcome (remember: if nearly all tests are unre-
solved the number of tests can be quadratic with respect to the number of changes). However,
the change impact analysis may be connected with too high costs.

Another method to group changes is the analysis of the abstract syntax tree. Regarding that tree,
we can group the changes according to their scope, whether they change the same package, the
same class, or the same method (see Section 3.5).

4.6.3 History

The change classification uses information provided by the history of the run tests. Therefore,
we could also classify that method in the group of methods regarding the history. As described
in Section 3.5, another way regarding the history is the ordering of the changes according to their
chronological order. We could extend DDCHANGE with operations that order the changes this

61



4 The Framework

way. Because of time constraints, that optimisation was not implemented in the context of this
work.

4.6.4 Distributed or Parallel Debugging

The last optimisation described here is the distributed or parallel execution of the delta debugging
algorithm. The algorithm splits the initial set of changes into two, four, eight, and so on subsets.
Depending on the test outcome of a tested subset, the other subsets have to be tested. These tests
could be conducted in parallel. The algorithm would test the subsets of the actual granularity at
the same time on different processor units or even machines.

DDCHANGE provides some basic implementation required for this task. The remote tester (see
Section 4.3.4) could be used in order to execute the tests on different machines. We could im-
plement a pooled tester, similar to pooling for database connections. Different testers would be
running and waiting for incoming jobs on different machines.

Some existing libraries would ease the implementation of such a mechanism. For instance, the
Jakarta Commons Pool component [dt05d] provides a generic object-pooling API.

Using only remote testers would not be sufficient; the reconstruction has to be done in parallel,
too. The support for remote builders is currently missing. With view on the implementation of
the remote tester, remote builders should be realisable.

A detailed description of all tasks required to realise distributed debugging goes beyond the scope
of this work. However, DDCHANGE provides some basic implementations that are required to
enable distributed debugging.

4.7 Results

DDCHANGE, the platform’s core, is a framework that enables you to determine failure-inducing
changes. Contrary to a simple class library, DDCHANGE forces well-defined application archi-
tecture. An instance of DDCHANGE can hand most of the control flow, needed to determine
failure-inducing changes, over to the framework. Thus, in addition to reusability of code, DD-
CHANGE supports the reusability of design—allowing programmers to concentrate on the details
of their application. DDCHANGE tends to be a Black-Box-Framework; it provides interfaces for
components that can be plugged into the framework. That type of framework can be easier
extended than White-Box-Frameworks.

Being a framework, DDCHANGE should reduce cost and improve quality. The DDCHANGE
project uses some tools and techniques that indicate a good grade of quality. As we will see in the
next chapter, DDCHANGE reduces the source code required implementing a concrete instance,
an application that determines failure-inducing changes.
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In order to determine failure-inducing changes, we have to implement the general plan. As seen
in this chapter, DDCHANGE provides components that enable you to accomplish all the different
tasks defined in that plan. Moreover, DDCHANGE’s implementation is flexible and expandable.
For instance, you can implement your own methods to reconstruct the program and to conduct
the test that detects the failure. Using the default implementation of DDCHANGE, you are able
to implement a tool that determines failure-inducing changes in a Java program that is under test
by unit tests—without the needs to extend the framework.

DDCHANGE can be used to debug other type of failures, too. As described in this chapter,
DDCHANGE could be used in order to debug memory leaks and acceptance tests. Other types
are imaginable, that chapter provides all the basic information that is required to implement an
appropriate instance of the framework.

There is room for optional optimisations. You could restrict the search scope or group changes
according to their scope. All these optimisations could result in a speed-up of the process. How-
ever, the accuracy of the result would not be improved-on that score, DDCHANGE is complete.

The next chapter describes two tools using the framework described afore.
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This chapter introduces the practical application of the framework in the form of two concrete in-
stances, more precisely: two different plug-ins. These plug-ins allow the developer to determine
failure-inducing changes using hers familiar tool.

The chosen tools are well known to Java developers. The first one is Apache Maven (in the
following just Maven), a software project management and comprehension tool. WEB.DE uses
Maven in order to manage the complete life cycle of Java projects, from the initialisation (for
example checkout from a version control system) via the build to the point of the deployment to
different servers. In combination with CruiseControl, you can use DDCHANGE in the continuous
build process. The second tool is Eclipse and its highly regarded Java IDE. The Java developers
of WEB.DE use this tool in order to develop J2EE applications.

Moreover, many Java developers and open-source projects use Maven or Eclipse, or even both.
Thus, using these tools to realise concrete applications on top of the framework, we can reach
many Java developers. Just like the framework, the plug-ins are released under the Eclipse Public
License, an open-source license.

The following descriptions are written at first from the perspective of a developer that uses the
plug-ins. Succeeding sections discuss the architecture of the plug-ins and the customisations of
the framework. As we will see, the Maven plug-in uses DDCHANGE out-of-the-box, thus without
the need to add any extension to the framework. In contrast, the Eclipse plug-in contributes a new
builder to compile changed Java sources and another source to obtain the initial set of changes
from. However, you do not need much effort to implement these contributions that use the
framework to determine failure-inducing changes in Eclipse.

The included CD (see Appendix A.1) contains three movies showing the plug-ins in action.
Therefore, you can get a picture of them without even installing. However, if you have installed
Maven or Eclipse, it is very easy to install the plug-ins using the Maven repository and the
Eclipse local update site, respectively. As well as the movies, the repository and the update site
are located on the CD.

5.1 Maven Plug-In

The first plug-in is called DDCHANGE MAVEN, the plug-in for the tool of the same name. DD-
CHANGE MAVEN aims to integrate delta debugging on changes transparently with the soft-

65



5 The Tools

ware project. CruiseControl, a framework for a continuous build process, will call DDCHANGE
MAVEN to start the debug process as soon as a test fails.

Before we will discuss DDCHANGE MAVEN, we describe Maven and CruiseControl at a
glance.

5.1.1 About Maven

Maven is a software project management tool for the Java programming language. Based on
the concept of a project object model (POM), Maven can manage the build process, as well as
reporting and documentation of a project.

In the capacity of automated software build tool, Maven is comparable with the widely used
Ant tool1. However, Maven is more than just a slightly enhanced Ant. In fact, the two tools
have different objectives. Using Ant, the developer must understand how that tool applies to
her development and environment. For instance, if she wants to compile some Java code, she
will have to write a complex build file describing that task. With Maven, that build process
knowledge is captured in plug-ins. A Maven plug-in is a small operation out of the whole process
that relies on the POM. Thus, instead of writing a task with a specific set of parameters, the
developer provides some information about the project in general and the plug-in responsible for
the compilation uses that information; several plug-ins can share the same information.

Another difference in the objectives is the advancing of best practices. Ant is a very flexible tool,
you break down the build process down to many targets, and you can combine them in many ways
to build the project. That flexibility results in some uncontrolled growth because every individual
programmer uses her own targets to accomplish the same task. Maven attempts to enforce the
use of best practices by providing sensible default metadata—while it remains flexible. These
defaults contain standard locations for sources, documentation, and output, a common layout for
the project documentation and the possibility to fetch project dependencies (for example other
JARs) from shared repositories.

Maven goes further than Ant; it encapsulates the project knowledge in one area, including the
source code and the documentation. Maven handles more than the pure building. It handles
the release process, different testing techniques, the generation of reports, and more. Using
Maven’s plug-in mechanism, other products such as issue trackers, application servers and source
control systems can be integrated within Maven and consequently within the project’s uniform
process.

Plug-ins provide their functionality through so-called goals. They use the POM’s metadata to
complete their tasks. In some sense, they are comparable to pre-defined Ant targets. For instance,
one common plug-in is the jar plug-in. Its goal jar:deploy publishes a library by building

1Ant is a software tool for automating software build processes. It is similar to make but is primarily intended for
use with Java. It is written in the Java language and uses a file in XML format to describe the build process and
its dependencies.
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Figure 5.1: Typical lifecycle of a Maven project. That lifecycle covers the whole process from
the initialisation until the deployment.

the sources and running the unit tests. After all unit tests have passed, that plug-in packages the
class files into a JAR file and afterwards it deploys that JAR to a remote repository. To accomplish
that task, the goal reuses the java and the test plug-ins (among others).

Figure 5.1 illustrates the typical lifecycle of a Maven project; Maven covers the whole process—
from the initialisation until the deployment.

The integration of DDCHANGE within Maven would enrich the project’s life cycle and its knowl-
edge with automated debugging. The developer could continue to use Maven to manage hers
process. As soon as a unit test failed (unit tests are an inherent part of a project managed by
Maven), the new plug-in could start the determination of the failure-inducing changes.

5.1.2 About CruiseControl

CruiseControl is a framework for a continuous build process [FJK05]. That framework facilitates
the continuous integration in software engineering. Continuous integration is a process that
rebuilds and tests an application periodical and frequently.

Generally, every time there is a change in a revision control system or in a monitored file system,
the framework obtains the most recent version of the source code. Another mode is a periodical
update of the sources, for instance every night about midnight for so-called nightly builds. After
the update, the framework runs the unit tests, builds the complete application, and tests the
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application (other types of tests are possible, for example automated acceptance tests). Because
the framework integrates the software, that test is known as integration testing—a test to expose
failures in the interfaces and in the interaction between integrated components; the so-called big
bang integration2 can be avoided.

By the use of continuous integration of the changes of all developers, possible failures are discov-
ered earlier. The developers use unit tests to test small and self-contained parts of the application.
That way, only failures in these isolated parts are detected early, failures as consequences of the
interplay in the application are missed. The aim of integration testing is to test the application en
bloc: different, interdependent components of a complex system in interaction.

Compared to unit tests, integration testing is a long-winded process. If the developer builds and
tests the application after every change (even regarding not only the changes made by herself),
she would not be able to develop the source code further on. Instead, after the developer has
published her changes, she can concentrate on further development while CruiseControl con-
ducts the integration test on a dedicated server in the background. Only if there is a failure, the
framework interrupts the developer.

The online article of Martin Fowler and Matthew Foemmel [FF05] features a general survey on
that topic. Figure 5.2 illustrates the architecture and the lifecycle of the CruiseControl frame-
work. In principle, a developer commits her changes to a repository or a file system, CruiseC-
ontrol periodically checks that place. When CruiseControls detects a new version, it builds and
tests that version. The results (for instance, failed or passed build, failed or passed tests) are
published in some way. The developer can obtain the published results via Email, a web page, or
some other communication media.

Continuous integration and integration testing result in periodic and frequent automated tests.
Currently, the developer is notified about the failure if the integration fails. We will utilise DD-
CHANGE in order to get the automatically determined failure-inducing changes in addition to the
pure failure notification. As we will se, we can insert DDCHANGE MAVEN into CruiseControl’s
architecture and process, thus adding automated debugging to automated testing.

5.1.3 Usage

The first of the following sections describe exemplary the usage of DDCHANGE MAVEN. It cov-
ers the complete lifecycle, from the first passing run of the unit tests until the report generated
by DDCHANGE MAVEN, an HTML page included in the project’s documentation site. The dif-
ferent steps in the debugging process are initiated by calling certain Maven goals. The following
section summarises the most interesting configuration properties as provided by DDCHANGE
MAVEN. The last section outlines the integration with CruiseControl. We will describe the way
that is used by CruiseControl in order to call DDCHANGE MAVEN.

2That term is derived from the scientific theory that the universe emerged from an enormously dense and hot state.
Imagine that explosion and think about a last minute integration about to release an application.
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Figure 5.2: CruiseControl’s architecture. A commit to the repository by a developer starts
CruiseControl. After updating its sources, CruiseControl builds and tests using Ant,
Maven, or other tools. The results are processed using different publishers. For in-
stance, the developer responsible for the commit receives an email that contains a
build report.
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Run manually

In our example, we will use the “Apache Jakarta Commons Lang” [Tea05b] component, a well-
known class library for the Java programming language. That project uses Maven; thus, we need
not to write the meta data files, we can call the Maven goals without bigger effort. Further more,
the project utilises JUnit in order to test the individual classes in the library. We can modify the
sources and use the unit tests in order to check for introduced failures.

We will see how DDCHANGE MAVEN works based on running goals and the sample output
displayed by Maven on the console while running these goals. Because Maven outputs all the
run tests to the console, I removed most of the test classes for demonstration purposes. However,
that does not influence the result computed by DDCHANGE MAVEN, the output is shorter. As a
side effect, collecting of deltas is much faster because DDCHANGE MAVEN regards fewer class
files in the file system. The modified version of the library was committed to the Subversion
repository that hosts all the DDCHANGE projects. While the automatic debug process is running,
DDCHANGE MAVEN will obtain the initial set of changes from this repository.

After we have checked out the sources of the Commons Lang project, we make sure that all
the unit tests are passing. Thus, we run the test goal provided by Maven. That goal calls
different other goals before the unit tests are actually run. Among other things, some directories
are created. Because we have not compiled any sources so far (the class files are not contained in
the repository), the called java:compile goal compiles the main Java classes3, and the called
test:compile goal compiles the test classes. Finally, the unit tests are run. As you can see
in Figure 5.3, Maven runs 16 unit tests, all are passing.

Now, we know there is no failure (at least, the code covered by the run unit tests seems to be ok)
in the unchanged project. In order to establish the history that contains the test results, we have to
call the goal ddchange:store-reports. Running this goal, DDCHANGE MAVEN parses
the unit test reports generated by the test goal. These XML reports contain all the required
information about the run tests, including the test outcome and a possible stack trace. After
parsing the reports, DDCHANGE MAVEN stores the results in a database. See Figure 5.4 for
the complete output of Maven running ddchange:store-reports. Note the line saying
“Using internal database.”. Because we have not specified an external database, DDCHANGE
MAVEN launches an instance of HSQLDB (see Section 4.3.1). The database files are located
in the target folder of the project. That folder contains all producible files, including the class
files. Because the goal clean removes the target directory, you should at least specify another
directory for the database files.

After we have made some changes on the Java source files, we run the unit tests again in order
to check whether we have introduced some failure. Figure 5.5 shows the output of the second
run of the goal test. Now, one of the 16 unit test is failing, the SystemUtilsTest. We
have apparently modified the source code in the wrong way—introducing a failure. Instead of

3Maven encourages the use of a single source directory, but a separate directory hosts by default the unit tests.
That procedure eases the packaging of JAR files, which should not contain the test classes.
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mburger@jonagold:~/ddchange> maven test
 __  __
|  \/  |__ _Apache__ ___
| |\/| / _` \ V / -_) ' \  ~ intelligent projects ~
|_|  |_\__,_|\_/\___|_||_|  v. 1.1-beta-1

build:start:

java:prepare-filesystem:
    [mkdir] Created dir: /Users/mburger/ddchange/target/classes

java:compile:
    [echo] Compiling to /Users/mburger/ddchange/target/classes
    [javac] Compiling 70 source files to /Users/mburger/ddchange/
target/classes
    [javac] Note: Some input files use or override a deprecated API.
    [javac] Note: Recompile with -deprecation for details.

java:jar-resources:

test:prepare-filesystem:
    [mkdir] Created dir: /Users/mburger/ddchange/target/test-classes
    [mkdir] Created dir: /Users/mburger/ddchange/target/test-reports

test:test-resources:

test:compile:
    [javac] Compiling 1 source file to /Users/mburger/ddchange/
target/test-classes
    [javac] Note: /Users/mburger/ddchange/src/test/org/apache/
commons/lang/SystemUtilsTest.java uses or overrides a deprecated API.
    [javac] Note: Recompile with -deprecation for details.

test:test:
    [junit] Running org.apache.commons.lang.SystemUtilsTest
    [junit] Tests run: 16, Failures: 0, Errors: 0, Time elapsed: 
0,885 sec
BUILD SUCCESSFUL
Total time   : 16 seconds 
Finished at  : Freitag, 25. November 2005 14:38:55 CET

mburger@jonagold:~/ddchange>

Figure 5.3: Maven’s output running test goal: Running the 16 unit tests the first time, all tests
are passing.
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mburger@jonagold:~/ddchange> maven ddchange:store-reports
 __  __
|  \/  |__ _Apache__ ___
| |\/| / _` \ V / -_) ' \  ~ intelligent projects ~
|_|  |_\__,_|\_/\___|_||_|  v. 1.1-beta-1

build:start:

ddchange:prepare-filesystem:
    [delete] /Users/mburger/ddchange/target/ddchange not found.
    [mkdir] Created dir: /Users/mburger/ddchange/target/ddchange
    [mkdir] Created dir: /Users/mburger/ddchange/target/ddchange/
classes
    [mkdir] Created dir: /Users/mburger/ddchange/target/ddchange/
database
    [mkdir] Created dir: /Users/mburger/ddchange/target/ddchange/
reports
    [mkdir] Created dir: /Users/mburger/ddchange/target/ddchange/
sources
    [mkdir] Created dir: /Users/mburger/ddchange/target/ddchange/
test-classes
    [mkdir] Created dir: /Users/mburger/ddchange/target/ddchange/
test-sources
    [echo] Copy the test resources...

ddchange:store-reports:
    [echo] Running test result collector.
    [echo] Name of project in database: commons-lang-2.1:commons-
lang-2.1
Using internal database.
Saved 16 results to database.
BUILD SUCCESSFUL
Total time   : 21 seconds 
Finished at  : Freitag, 25. November 2005 14:41:00 CET

mburger@jonagold:~/ddchange>

Figure 5.4: Maven’s output running ddchange:store-reports goal: DDCHANGE
MAVEN stores the test results of the previously run tests in an internal database.
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debugging this failure by hand, we will use DDCHANGE MAVEN to automatically debug the
failure.

Running the goal ddchange:diff4 DDCHANGE MAVEN determines the failure-inducing
changes. It initialises the builder (more precisely, the Java compiler), launches the internal
database, starts the RMI registry, parses the new unit test reports, collects the changes between
the passing and the current version of the project, and starts the remote tester. Having completed
the initialisation phase, DDCHANGE MAVEN processes the initial set of 20 changes. After run-
ning the delta debugging algorithm, DDCHANGE MAVEN has determined exactly one failure-
inducing change. Finally, it stops the launched services. Figure 5.6 shows the output of that
process. If there would be more than only one failing test, DDCHANGE MAVEN will debug all
of them one after another.

While generating the project’s documentation site, DDCHANGE MAVEN integrates its report on
failure-inducing changes; the goal site generates the whole site. See Figure 5.7 for the index
generated by DDCHANGE MAVEN. Because there is one failing unit test, DDCHANGE MAVEN
included one report—one individual report for each processed failing unit test. The individual
reports are stored in the XML format to ease further processing. The report includes XSLT5 and
CSS6 files—using a browser that supports the processing of these style sheets, you can view the
reports as a nicely formatted XHTML page. That report contains a description of the failed test
and the date of the last passing run, a statistic of the delta debugging run, a list of all changes (the
difference between the passing and the current version), and the failure-inducing changes.

The screenshot on Figure 5.8 shows an extract of the report transformed by a web browser.
DDCHANGE MAVEN required seven tests to determine the failure-inducing change. The first
test verifies the empty set of changes. Applying no changes on the passing version, the test has
to pass. The second test verifies the complete set, applying all changes the test has to fail. The
following five tests check different subsets. In addition to the test outcomes, the statistic contains
information about the runtime of the different phases (applying the deltas, building, running
the unit test, and so on). For instance, with the help of that information, you can analyse the
time-consumption of different builders.

The most important part of the report is the failure-inducing change, as shown in Figure 5.9
(again, an extraction of the transformed report). As we can see, that change changes the con-
structor of class SystemUtils. As noted in the constructor’s documentation, its visibility has
to be public. We made it private, a best practise when writing utility classes7. Fortunately, the

4In earlier publications, the variant of the delta debugging algorithm that isolates was called diff. Because the book
[Zel05] was published while the end game of this work, DDCHANGE uses still the old names of the different
variants.

5XSLT is an XML-based language used for the transformation of XML documents. DDCHANGE MAVEN uses
that transformation to create an XHTML page from the XML report.

6Cascading Style Sheets (CSS) is a language used to describe the presentation of a document written in a markup
language. The transformed XHTML report is styled in this way.

7An utility class typically defines only static methods. Thus, an instantiation is (often) not desired by the program-
mer.
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mburger@jonagold:~/ddchange> maven test
 __  __
|  \/  |__ _Apache__ ___
| |\/| / _` \ V / -_) ' \  ~ intelligent projects ~
|_|  |_\__,_|\_/\___|_||_|  v. 1.1-beta-1

build:start:

java:prepare-filesystem:

java:compile:
    [echo] Compiling to /Users/mburger/ddchange/target/classes

java:jar-resources:

test:prepare-filesystem:

test:test-resources:

test:compile:

test:test:
    [junit] Running org.apache.commons.lang.SystemUtilsTest
    [junit] Tests run: 16, Failures: 1, Errors: 0, Time elapsed: 
1,208 sec
    [junit] [ERROR] Test org.apache.commons.lang.SystemUtilsTest 
FAILED

BUILD FAILED
File...... /Users/mburger/.maven/cache/maven-test-plugin-1.6.2/
plugin.jelly
Element... fail
Line...... 181
Column.... -1
There were test failures.
Total time   : 11 seconds
Finished at  : Freitag, 25. November 2005 14:45:31 CET

mburger@jonagold:~/ddchange>

Figure 5.5: Maven’s output running test goal a second time: Running all the unit tests after we
have applied some changes, one of the tests is failing.

74



5.1 Maven Plug-In

mburger@jonagold:~/ddchange> maven ddchange:diff
 __  __
|  \/  |__ _Apache__ ___
| |\/| / _` \ V / -_) ' \  ~ intelligent projects ~
|_|  |_\__,_|\_/\___|_||_|  v. 1.1-beta-1

build:start:

ddchange:diff:
ddchange:prepare-filesystem:
    [echo] Copy the test resources...

ddchange:debug-internal:
    [echo] Running Delta Debugging algorithm 'diff'
    [echo] Name of project in database: commons-lang-2.1:commons-
lang-2.1
Going to initialize builder...
Using internal database.
Going to start rmiregistry...
Going to debug test case: org.apache.commons.lang.SystemUtilsTest
Going to debug test: testConstructor
Latest passing run in database: Fri Nov 25 14:40:32 CET 2005
Going to collect deltas on sources...
Found 19 deltas in /Users/mburger/ddchange/target/ddchange/sources
Going to collect deltas on test sources...
Found 1 deltas in /Users/mburger/ddchange/target/ddchange/test-
sources
Going to revert sources to last passing version...
Going to revert test sources to last passing version...
Going to start remote tester...
Appending to the classpath: junit-3.8.1.jar
Appending to the classpath: commons-lang-2.1.jar
Appending to the classpath: ddchange-framework-test-0.1.4.jar
Going to debug 20 deltas...
Failure-inducing deltas: 1
Going to stop remote tester...
Going to stop internal database...
Going to stop rmiregistry...

BUILD SUCCESSFUL
Total time   : 2 minutes 15 seconds
Finished at  : Freitag, 25. November 2005 14:49:41 CET

mburger@jonagold:~/ddchange>

Figure 5.6: Maven’s output running ddchange:diff goal: DDCHANGE MAVEN determines
one failure-inducing change out of 20.
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Figure 5.7: Screenshot: Index of documentation site. The project reports contain the one gener-
ated by DDCHANGE MAVEN.

unit test SystemUtilsTest checks the visibility.

The example described above is a relatively small and simple one. First, the difference between
the passing and the failing program version consists of only 20 changes. Debugging manually
this small number of changes is not too hard. Second, the Commons Lang library is a pure
class library. Thus, the individual classes do not interact a lot with each other; the failing unit
test points out quite well the possible location of the defect. However, we can demonstrate the
usage and the capability of DDCHANGE MAVEN. If we would increase the number of changes,
the algorithm would compute the same result, requiring a longer time—we would not gain more
insight.

Configuration

You can use DDCHANGE MAVEN out-of-the-box; it provides sensible default configuration val-
ues. If you do not specify an external database, DDCHANGE MAVEN will use an instance of
the HSQLDB database, the database files will be stored in the target folder of your project. DD-
CHANGE MAVEN uses the username and the password stored on your computer and auto-detects
the client type while accessing the Subversion repository. Thus, unless you want to use an ex-
ternal database and you do not want to store your Subversion password on your computer, you
need not to configure any property of DDCHANGE MAVEN—all settings are optional.
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Figure 5.8: Screenshot: Report on statistics. The algorithm required seven tests in order to deter-
mine the failure-inducing changes.
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Figure 5.9: Screenshot: Report on changes. The failure-inducing change modifies the visibility
of the constructor.

However, DDCHANGE MAVEN provides a number of configurable properties. Amongst others,
you can configure the database access (username, password, type of database, hostname, and
so on), the Subversion client adapter type (auto-detect, javahl, and JavaSVN), and whether the
compiler scrubs the destination folder or not.

As well as any other Maven plug-in, you can configure DDCHANGE MAVEN using the
project.properties file. A complete list of all settings is contained in the DDCHANGE
MAVEN project documentation site on the included CD (see Appendix A.1). The CD also con-
tains a list of all goals provided by the plug-in. For instance, you need not create any tables
in your database. The goal ddchange:export-schema exports the required schema to the
specified database (creates tables).

If you want to include the DDCHANGE MAVEN report in you project documentation site, you
have to add a report element with the text content ddchange-maven-plugin to your
project.xml file. Running the site goal, Maven will include all reports on failure-inducing
changes.

Run by CruiseControl

As described above, DDCHANGE MAVEN can be run manually in order to determine failure-
inducing changes automatically. If a test fails, the developer will have to execute the appropriate
Maven goals. In Section 5.1.2, we introduced CruiseControl; that framework enables us to build
and test the software project as soon as a developer commits some changes to the repository.
Such a build can be costly; some projects require more than one hour in order to build and
test the complete product. Therefore, CruiseControl can be run dependent on time instead of
dependent on individual commits. Large projects, for example the Eclipse project, use so-called
nightly builds for their continuous build process.
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The integration process provided by CruiseControl is suitable for running the delta debugging
process as soon as a failure occurs. You can start the process using the <onfailure> publisher
(see Figure 5.2). This publisher can execute the <execute> publisher, a publisher that executes
again a command as part of the publishing phase. In this way, DDCHANGE MAVEN will run
completely on its own.

Once launched, DDCHANGE MAVEN will run the delta debugging algorithm on the server that
processes the integration build. Finally, it will write the determined failure-inducing changes to
report files in the XML format. CruiseControl provides other publishers that can transform the
XML files to HTML (<xsltlogpublisher>) and that can send the reports to the developers
(<email>).

The debugging process can be a long-running task, depending on the number of failed tests
and the number of changes that have to be analysed by DDCHANGE MAVEN. Especially if you
run CruiseConrol on every commit, you probably want to avoid starting the debugging process a
second time while another process is running. For these purposes, DDCHANGE MAVEN provides
a special configuration property. You can specify a lock file that will be deleted as soon as the
debugging process is finished.

Describing all aspects of the CruiseControl configuration in order to initiate the debugging pro-
cess goes beyond the scope of this work. See [FJK05] for more information about CruiseControl
and for a configuration reference. Using the publisher mentioned above, you will have the ability
to automatically start the automatic debugging.

5.1.4 Architecture

Compared to the framework (that consists of about 100 classes) the Maven plug-in is very small.
Most of the functionality is defined in 17 classes, and most of them are smaller utility classes. In
the following sections, we will discuss the main concepts at a glance.

Integration with Maven

The heart of DDCHANGE MAVEN is the plugin.jelly file, a file written using Jelly, an XML-based
scripting language [Fou05a]. That file defines the plug-in’s goals and is required by every Maven
plug-in. To minimise the amount of Jelly code, the goals run directly JavaBeans8. Jelly uses the
methods defined in the Bean to set the configuration values and to run the different goals. The
default configuration values are defined in the file plugin.properties and can be overwritten by
the user.

8A JavaBean is a special class that follows certain conventions about method naming, constructors, and so on.
These conventions enable tools or other classes to access the fields in a well-defined way. A JavaBean has to be
in accordance with the JavaBeans API Specification [Ham97].
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Furthermore, the Jelly script file registers the report with Maven for inclusion on the project’s
documentation site. The Jelly Stylesheet Library (JSL), a tag library that implements an XSLT-
like declarative XML based processing engine, is used in order to include the report files.

The JavaBean Classes

DDCHANGE MAVEN contains three concrete JavaBean classes. The class SchemaExporter
is run by the goal that exports the schema, the class ReportCollector by the goal that
stores the unit test results in the database, and the class DebuggingEntryPoint by the goals
that initiate the debugging process. The three classes extend a hierarchy of two other Beans,
named PluginPropertiesBean and PluginPropertiesBeanExtended. The first
one defines the setters and getters for the configuration values. The default value for all properties
is null and their type is String. The second one extends the first one and adds convenience
methods to deal with the properties. These methods allow getting a property as another type than
String, for example as File. The methods further check for valid configuration values. If the
method returns a File object, it checks whether the file exists; if not, it will throw an exception.
Thus, the first Bean in the hierarchy adds unwise setters and getters; the second one adds checks
for the concrete properties and their values. If you want to add a property, you should first add
the getter and the setter to the first Bean. If you require some checks on the values, you can
extend the second one.

Because the three Beans run by the goals extend the Beans responsible for all settings, they can
use all properties defined in the upper class hierarchy. You need not to add the methods for new
properties to the different Beans, and all Beans can profit directly from the new properties and
their implemented checks. For instance, the methods that set and returns the properties for the
database connection are defined once and can be used in all of the concrete Beans.

The class DebuggingEntryPoint does not extend directly the class
PluginPropertiesBeanExtended. Instead, it extends the class
AbstractEntryPoint, that class extends again the Bean responsible for the proper-
ties. See Figure 5.10 for a UML diagram of the class hierarchy. The class SchemaExporter
extends directly the first Bean in the hierarchy, because it requires only simple string values.

The class AbstractEntryPoint parses the test reports and checks them for failed tests.
If there is any failed test, it will initialise two compilers, one that compiles the main sources
and another one that compiles the unit test sources. Using a MultiBuilder, DDCHANGE will
compile all required classes. Finally, that Bean will initialise a DAO and will launch the internal
database instance, if required. The initialised builder and DAO can be obtained via provided
getter methods.

Because Maven uses the Ant compile task in order to compile the Java source files of the project
and the DDCHANGE framework provides an Ant compiler that can be used programmatically,
the Bean only needs to call the associated setters to transfer the Maven compile settings to the
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PluginPropertiesBean

SchemaExporter

ReportCollectorAbstractEntryPoint

DebugginEntryPoint

PluginPropertiesBeanExtended

Figure 5.10: UML class diagram of the JavaBean class hierarchy. These Beans defines the func-
tionality of DDCHANGE MAVEN. The diagram shows no methods.

81



5 The Tools

Ant compiler. Thus, all compile settings provided by Maven can be used with DDCHANGE
MAVEN.

The class DebuggingEntryPoint iterates over the failed tests, collects the changes using the
Subversion component of DDCHANGE, and runs the selected algorithm, for instance isolation or
minimisation—DDCHANGE MAVEN provides different goals for the different variations of the
delta debugging algorithm. Finally, it writes the computed results including the statistics to the
XML report files.

Most of the plug-in’s code consists of the Bean classes and several utility classes that provides
methods to launch a database instance, to parse the test reports, and so on. As you have seen, the
architecture of DDCHANGE MAVEN is rather uncomplicated and compact.

5.1.5 Adaptations to the Framework

The Maven plug-in is an example for the out-of-the-box feature of DDCHANGE. No adaptations
to the framework were required in order to implement DDCHANGE MAVEN. As described above,
this plug-in uses the provided Ant compiler. That fact has two advantages. First, we need not to
implement a compiler. Second, all Maven settings relating to the compilation of the Java sources
are supported by the plug-in.

In principle, DDCHANGE MAVEN consists of the Jelly script file that builds the bridge between
the Maven goals and the executed code, and different JavaBeans that implement the functionality
of the provided goals. The Beans revert to small utility classes that encapsulate the calls to the
framework. The main Bean that runs the algorithm instantiates and initialises all required classes
and finally calls the tip of the iceberg (see Section 4.3.5).

5.2 Eclipse Plug-In

The platform’s second concrete application instantiated from the framework is a plug-in for
Eclipse, called consequently DDCHANGE ECLIPSE . In contrast to the Maven plug-in, this plug-in
integrates the delta debugging algorithm directly with the developer’s IDE for the Java program-
ming language.9

In the following section, we will introduce Eclipse at a glance. The succeeding sections describe
the usage, the architecture and finally the adaptations to the framework, by analogy with the
description of the Maven plug-in.

9DDCHANGE MAVEN can be used of course on the workstation by calling the goals manually. However, it
was developed in order to be run during the continuous integration.
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5.2.1 About Eclipse

In the context of this work, the Eclipse’s nature being an SDK (software developer kit) for the
Java programming language is the most relevant aspect of Eclipse. However, Eclipse provides
much more than only being an IDE:

“Eclipse is an open source software development project dedicated to providing a
robust, full-featured, commercial-quality, industry platform for the development of
highly integrated tools. It is composed of three projects, the Eclipse Project, the
Eclipse Tools Project and the EclipseTechnology Project[...]” [Fou05c]

Eclipse is an open-source, platform-independent software framework. Based on that platform
you can deliver so-called rich-client applications (as opposed to thin-client browser-based appli-
cations). So far (until version 2.x), that platform was generally used to develop IDEs (Integrated
Development Environments). The main representative was the Java IDE called Java Develop-
ment Toolkit (JDT). The JDT is also used to develop Eclipse itself. Starting with version 3.0, the
concept of rich-client applications was introduced, now Eclipse can be used for other types of
client application as well.

The Eclipse Project mentioned in the quote above is the interesting one for us:

“The Eclipse Project is an open source software development project dedicated to
providing a robust, full-featured, commercial-quality, industry platform for the de-
velopment of highly integrated tools. It is composed of three subprojects, Platform,
JDT - Java development tools, and PDE - Plug-in development environment.[...]”
[Fou05c]

The Eclipse SDK is the combination of the three Eclipse Project subprojects into a single down-
load. Together, these projects provide a development environment that allows the developer to
create tools that integrate into the Eclipse Platform.

That Platform can be extended by writing and contributing plug-ins to it. A plug-in is the smallest
unit of Platform function that can be developed and delivered separately. All of the Platform’s
functionality is provided by such plug-ins, except for the Platform Runtime component (a relative
small kernel). The Eclipse white paper [OTI01] provides a good overview on the architecture,
the technical articles on the Eclipse Corneer [EC05] provides further information that go into
detail.

The main advantage of this lightweight software component framework is the expandability and
the reusability of new and existing plug-ins, respectively. For instance, the JDT provides plug-ins
to launch Java programs, to run JUnit tests and to use Eclipse’s incremental Java compiler. All
these provided features support some of the steps of the general plan (see Section 3.4). Thus,
Eclipse is a second tool that is suited for a tool that determines failure-inducing changes.

83



5 The Tools

5.2.2 Usage

The Java Development Toolkit (JDT) integrates the JUnit testing framework very tightly. You
can run your unit tests at the push of a button; Eclipse runs them and provides direct feedback
via its user interface (UI). You can inspect the test results in the so-called JUnit view10 (see the
left side of Figure 5.11 for an example of this view showing a failure).

The JDT provides a mechanism that enables us to observe the running JUnit tests. DDCHANGE
ECLIPSE uses that mechanism and starts the debugging process as soon as a unit test fails. In
the following, we exemplarily describe the usage of the plug-ing. The following sections will
describe the architecture, including the mechanism mentioned above.

Example Run

In this example, we will use again the “Apache Jakarta Commons Lang” project and the same
failure as in Section 5.1.3. Thus, you should be familiar with the basic conditions. Using the
Maven goal eclipse you can automatically generate the Eclipse project files. Afterwards, you
can import that project into Eclipse without further effort.

If one or more unit tests run in the JDT fail, DDCHANGE ECLIPSE will show a dialog that lists
all failed tests. You can choose one test to debug or cancel the process. Figure 5.11 shows a
detail of a screenshot showing the described dialog. The test method testConstructor in unit test
SystemUtilsTest failed. Therefore, DDCHANGE ECLIPSE opened the dialog.

After we have selected and confirmed the failed test, DDCHANGE ECLIPSE immediately starts
the debugging process. At first, the plug-in makes a copy of your project; all changes are applied
on that copy. If DDCHANGE ECLIPSE would crash or would not shut down properly, only the
copy of your project may be corrupt, not your original project. Afterwards, it collects all the
changes between the passing and the current version of your project. Instead of using a version
control system, DDCHANGE ECLIPSE utilises the local history of Eclipse.

Each time you edit and save a file, Eclipse saves a local copy of that file. You can replace the
current file with a previous edit or even restore deleted files. Each entry in the local history
is uniquely represented by the date and time the file was saved. The local history lacks many
features of a version control system; however, it provides all features required for our purposes—
we can get the content of former versions. In contrast to typical version control systems, the local
history is restricted in space. By default, the local history maintains changes not older than seven
days, it keep not more than 50 entries per file, and the maximum size of individual states must
not exceed one megabyte. Therefore, the local history is appropriate for a relative small number
of changes.

10A view is one of the main visual entities that appear in the workbench; the term workbench refers to the desktop
development environment. The views provide some context of the shown editor, another one of the main visual
entities.
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Figure 5.11: Screenshot: As soon as a test failed, DDCHANGE ECLIPSE prompts a test to debug.
You can cancel that prompt, if you do not want to start the determination of the
failure-inducing changes.

After DDCHANGE ECLIPSE has computed the initial set of changes, it launches the remote tester
and starts the delta debugging algorithm. As you can see in Figure 5.12, the whole debugging
process runs in the background. You can continue your work while waiting for the determined
failure-inducing changes.

DDCHANGE ECLIPSE cannot report the actual progress of the debugging process, because we
do not know how many tests are required ahead of the computed result. The plug-in provides
a text console that indicates some progress information about the process. Figure 5.13 shows a
snapshot of this information.

As soon as the debugging process is completed, DDCHANGE ECLIPSE shows the result in its
own view. The view shows two trees, the first one contains the initial set if changes, the second
one the failure-inducing ones. The view allows you to browse all changes by expanding the
individual nodes in the tree; the changes are organised according to the affected files. Figure 5.14
shows the failure-inducing changes determined while debugging the same failure as in Section
5.1.3. This time, the algorithm determined two instead of one change, because we have used
simplification instead of isolation. If you double-click the tree containing the failure-inducing
changes, DDCHANGE ECLIPSE will revert all appendant changes. In this case, you can re-run
the failed test and it will pass—we have found the defect in the code.

You can inspect the individual changes by double-clicking. DDCHANGE ECLIPSE will open a
dialog that shows the content of the change (See Figure 5.15). A minus sign indicates a removed

85



5 The Tools

Figure 5.12: Screenshot: DDCHANGE ECLIPSE runs in the background, you can continue with
your work while the plug-in determines the failure-inducing changes.

Figure 5.13: Screenshot: DDCHANGE ECLIPSE provides a text console that shows the progress
of the algorithm.
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Figure 5.14: Screenshot: The view “Failure-inducing changes” shows both the initial set of
changes and the failure-inducing ones. The tree contains two changes because
the simplification was used. If you double-click the tree labeled “Failure-inducing
changes”, DDCHANGE ECLIPSE will revert all appendant changes.

line, a plus sign an added line. You can open the file in its associated editor (the editor will jump
to the location of the change), or you can revert the shown change.

DDCHANGE ECLIPSE integrates tightly the delta debugging algorithm with the Java Develop-
ment Toolkit. As soon as a unit test fails, you can start the debugging process. The whole process
runs in the background, you can continue with your work.

5.2.3 Architecture

In the following, we will discuss the architecture of DDCHANGE ECLIPSE at a glance. The tool
consists of several plug-ins, these plug-ins form a so-called feature. Thus, DDCHANGE ECLIPSE
is not a single plug-in, it is in fact a feature. In the context of this work, the most interesting plug-
ins are the core and the ui plug-ins. The first one implements the core functionality, the second
one the user interface. This allows running the headless core functionality without loading the
user interface classes. Furthermore, the feature consists of two additional plug-ins and one more
project. We will describe the two plug-ins mentioned at first in more detail than the other ones.

Before we start with DDCHANGE ECLIPSE’s architecture in detail, we will touch on the way of
contributing new functionality to the Eclipse platform.
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Figure 5.15: Screenshot: You can examine carefully the individual changes. In this dialog, you
can open the file in the associated editor (DDCHANGE ECLIPSE will jump to the
changed lines), you can revert the shown change, or you can simple close the dialog.

Contributing to Eclipse

The basic concepts of Eclipse plug-ins are discussed not in detail here, various books including
[GB03], [CR04], and [AL04] explicate the fundamental principles and patterns used in order
to develop plug-ins and features for the Eclipse platform. However, in order to understand the
architecture of DDCHANGE ECLIPSE, we will look at the most important terms and concepts.

As mentioned above, you will contribute to Eclipse using plug-ins. A plug-in, comparable to
an object, is an encapsulation of behaviour and data. It interacts with other plug-ins to form a
running program. The most important part of a plug-in is the manifest file. That XML file defines
at least the basic description (name, id, and version number). The manifest may also define what
Java code it provides (one way how the plug-in may implement its functionality, another way is
HTML code to provide some documentation) and what other plug-ins it requires. The manifest
allows lazy loading; the implementation code is loaded when the functionality is required. For
instance, the Java classes of DDCHANGE ECLIPSE are loaded not before a unit test failed, about
to the dialog that prompts a unit test to debug.

Another important aspect of plug-ins are their (optional) extension points. The mechanism of
extensions and extension points allows loose coupling of the plug-ins. A metaphor used often
to explain that mechanism is “electrical outlets”. The power point is the extension point; the
plug the extension. The extension point declares a contract, other plug-ins must accept that
contract in order to use or extend the provided functionality. The contract consists mostly of
XML declarations and Java interfaces.
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The important term explained at last here is a feature; it groups and describes different function-
ality (plug-ins) that makes up a product. That mechanism allows the feature to be installed and
updated using the update sites. Eclipse’s update manager locates and installs a new feature from
such a site.

In addition to the books mentioned above, [GBM03] and [SHNM04] provides useful information
about developing user interfaces for the Eclipse platform.

The Core Plug-In

The key tasks of the core plug-in is observing of run JUnit tests and starting the automatic
debugging process. Furthermore, it uses other mechanisms that collect changes and build the
changed Java source files. In this section, we will focus on aspects that mainly concern Eclipse
in general. In Section 5.2.4, we will discuss the adaptations to the framework.

The JDT contains a JUnit plug-in that encapsulates the JUnit testing framework. That plug-in
runs the unit tests and defines an extension point that allows you to observe the runs. The inter-
face ITestRunListener defines a reporting scheme; this listener is notified when test runs
are started and ended. DDCHANGE ECLIPSE uses three implementations of that interface. The
first one, the AbstractTestRunListener, is an abstract listener that collects all individ-
ual test results while a unit test or a test suite is run. After the complete test run has ended, it
calls the abstract method testRunEnded(). The concrete subclasses can obtain all collected
test results using the getJUnitTestResults() method, or all failed test results calling the
method getJUnitFailedTestResults().

The class DatabaseTestRunListener extends AbstractTestRunListener; it per-
sists all collected test results as soon as the complete test run has finished. It schedules the job (see
below) TestResultPersistenceJob, a job that uses the DAO provided by DDCHANGE to
store all collected results in an internal database (see Section 4.3.1). DDCHANGE ECLIPSE uses
an instance of HSQLDB, the database files are stored in the plug-in’s state location. Because the
plug-in uses only the local history, an internal database is sufficient.

The last one extending AbstractTestRunListener is the class TestRunListener.
After the complete test run has finished, it obtains all failed test results and will schedule the job
DDchangeJob if there is at least one failed test; this job starts the automatic debugging process.
The job class is comparable to the class DebuggingEntryPoint of DDCHANGE MAVEN
(see Section 5.1.4). It copies the project, obtains the initial set of changes from the local history,
initialises the builders, launches the remote tester, and initiates the algorithm. Afterwards, it
reports the determined failure-inducing changes.

In contrast to DDCHANGE MAVEN (it debugs successive all failed tests), DDCHANGE ECLIPSE
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debugs only one failed test11. The plug-in defines an extension point; part of it is the interface
IDDchangeStartCallBack. That interface defines one method. The method’s single ar-
gument is an array of failed test results; its implementation has to return one of the contained
results to specify the test to be debugged.

DDCHANGE ECLIPSE defines a second extension point in order to allow clients for observ-
ing the debugging process and for obtaining the final result. The contract of this exten-
sion point is mainly defined (besides the XML declaration in the manifest) in the interface
IDDchangeRunListener. It extends IDeltaDebuggingListener, DDCHANGE’s lis-
tener interface for observing the execution of the delta debugging algorithm (see Section 4.3.5).
The extended interface defines methods to communicate additional events to the clients. For in-
stance, if DDCHANGE ECLIPSE could not find a passing test result in the database, it will notify
all listeners.

The Eclipse platform supplies a concurrency infrastructure, as support for scheduling and in-
teracting with background activity. DDCHANGE ECLIPSE uses that infrastructure to process
possible long-running tasks; for instance, the run of the algorithm. It schedules these tasks and
the infrastructure executes the tasks (in terms of the API so-called jobs) in a well-defined man-
ner. Because DDCHANGE ECLIPSE uses that background tasks-jobs API, the whole debugging
process can be run without seizing the user interface—the developer can continue with her work
while the tool labours in the background.

The database and the RMI registry are also launched via jobs. Because the core plug-in is loaded
when, and only when, its functionality is required the first time (a unit test is run), the database
and the registry are not launched during the start-up of the Eclipse platform. DDCHANGE
ECLIPSE’s plug-in runtime class12 schedules several jobs that are responsible for launching the
services.

The UI Plug-In

The UI plug-in supplies the user interface of DDCHANGE ECLIPSE. It uses several concepts and
patterns that are common practice when implementing user interfaces for Eclipse products and
plug-ins, respectively. They include views, actions, toolbars, tree viewers, content providers,
decorators, and more. See [GBM03] and [SHNM04] for more information about these concepts
and patterns. Describing these terms and the related implementations does not really fit in the
context of this work.

11That restriction was caused by time limitations. Displaying only one computed result in the UI can be accom-
plished with less effort than showing the results of several debugged tests. However, you could extend the
plug-in to debug more than one test.

12The class org.eclipse.core.runtime.Plugin is the abstract superclass of all plug-in runtime class
implementations; it defines life cycle methods in order to react to the life cycle requests automatically issued by
the platform.
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The most interesting aspect of the user interface is the communication with the core. The UI
plug-in solely uses the extension points defined by the core; thus, it contributes different ex-
tensions to the core plug-in. First, its implementation of the IDDchangeStartCallBack
provides the dialog that prompts a test to debug (see Figure 5.11). That callback returns
the chosen test to the core, which starts debugging that test afterwards. The second exten-
sion to the core consists of two implementations of the IDDchangeRunListener. The
implementing class DDChangeConsole provides the text console that shows some infor-
mation about the running process (see Figure 5.13). The implementing content provider
DDchangeContentProvider feeds the tree view of the changes with the initial set and
the determined result (see Figure 5.14).

That is a short description of the second main plug-in of DDCHANGE ECLIPSE. However, the UI
is certainly not the most interesting part of the platform.

Other Plug-Ins and Projects

The DDCHANGE ECLIPSE feature is made up of more than the core and the UI plug-in—
additional plug-ins and projects form the feature. The following list describes these other parts
briefly.

• Logging plug-in. The logging plug-in adds a configurable logging facility using Apache’s
Log4j. It contains several implementations of Log4j’s AppenderSkeleton, an abstract su-
perclass with common functionality that is required by classes that output log statements
in some way. Using that plug-in, you can use the Log4j logging mechanism while also
redirecting the log statements to Eclipse’s plug-in logging framework. See [Mar04] for
the basic idea. This way, the log statements (especially warnings and errors) of the DD-
CHANGE framework are redirected to the workbench user interface.

• Feature plug-in. The feature plug-in is required to brand the DDCHANGE ECLIPSE fea-
ture. In this way, the “About Eclipse SDK Features” dialog lists the DDCHANGE ECLIPSE
feature and its plug-ins along with version information.

• Feature project. That project hosts the definition of the DDCHANGE ECLIPSE feature. Its
feature.xml file describes the feature and composes the core, the UI, the logging, and the
feature plug-in to a downloadable tool.

• Update site project. The update site project hosts the DDCHANGE ECLIPSE feature. You
can export and upload all required files to a webserver. The Eclipse update manager can
be used do install and update the feature in a comfortable and user-friendly way from a
website.
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5.2.4 Adaptations to the Framework

As already mentioned, DDCHANGE ECLIPSE makes some adaptations to the DDCHANGE frame-
work. It does not use the Subversion component to compute the initial set of changes, and it uses
another builder to compile the changed Java source files. Eclipse’s local history is the source for
the changes, and Eclipse’s incremental compiler compiles the changed sources. The following
two sections describe these contributions in more detail.

Local History

DDCHANGE ECLIPSE contributes the access to Eclipse’s local history (see Section 5.2.2 for a
short introduction). That contribution consists of different classes that enable the core plug-in to
collect and create deltas (see Section 4.3.5 for a detailed description of that concept).

The class AbstractResourceDeltaCollector extends the framework’s
AbstractDeltaCollector and implements Eclipse’s IResourceVisitor inter-
face. That interface defines a visitor that descends resource trees. Resources are Eclipse’s
abstraction of projects, folders, and files that a user is working with. Thus, the new abstract
collector is comparable to the framework’s FileDeltaCollector.

The concrete collector class LocalHistoryDeltaCollector extends the
AbstractResourceDeltaCollector and collects changes by visiting a resource
tree and calling its LocalHistoryDeltaCreator for every visited resource. That
creator accesses Eclipse’s local history to create the changes for a given resource. It im-
plements the new IResourceDeltaCreator interface; an interface comparable to the
IFileDeltaCreator.

The core plug-in provides further an own abstraction for deltas on resources, an interface named
IResourceDelta. That interface is comparable to the framework’s IFileDelta, it is an
representation of a change that alters a resource. The implementation LocalHistoryDelta
defines a change that obtains its patch from the local history. It contains a patch computed by the
framework’s Difference component and can be applied to resources.

The architecture of the classes that enable DDCHANGE ECLIPSE to collect and to create changes
from the local history follows closely the architecture as discussed in Section 4.3.5. The main
differences: they descend a tree of resources instead of a tree of files, and they obtain the former
version of the resources from the local history instead from a Subversion repository. As you can
see, the implementation of that new feature is quite straightforward.

Using the local history instead of a Subversion repository has several advantages. First, every
developer can use DDCHANGE ECLIPSE without the need to install or setup a (remote) reposi-
tory. Second, the access to the local history is much faster than the access to the repository over
a network. Even a remote repository in the local network (LAN) is slower than the local history.
That feature speeds up the computing of the initial set of changes noticeably.
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Incremental Compiler

DDCHANGE ECLIPSE does not use the framework’s Ant compiler (see Section 4.3.5). The core
plug-in implements an IBuilder that uses Eclipse’s incremental compiler. That compiler is
probably the fastest compiler available for the Java programming language that includes full
support for the new features of J2SE 5.0 (see Section 4.6).

The new compiler has two main advantages. First, it is fast. Second, we can retain the user’s
settings for the project. These settings include source and target directories, JARs and class
folders on the build path, compiler compliance level, and much more. If we would use the Ant
compiler, we would have to translate all these settings—and some of them are unique to the
Eclipse compiler. Thus, using Eclipse’s compiler is probably the best, or even only, choice.
Fortunately, the implementation of the new builder did not cost much effort. The class contains
about 130 lines of source code including JavaDoc.

5.3 Results

One possible measurement for the effort that will be (or, was) required to develop a program is
the SLOC (source lines of code). If we compare the SLOC required to develop the framework
and the two plug-ins, it will tend to result in the conclusion that developing tools (in general,
instances of the framework) on top of the framework requires much less costs than developing
the framework—or even developing the different tools from scratch. The SLOC value (includ-
ing comment lines, especially JavaDoc) of the DDCHANGE framework is about 34.000, of DD-
CHANGE MAVEN and DDCHANGE ECLIPSE in each case about 8.000. Thus, the framework
consists of about 4 times more SLOC than the two individual plug-ins (see Figure 5.16).

As we have seen in this chapter, we can concentrate on the concrete tool while developing it.
In the case of DDCHANGE MAVEN, the framework supplies the whole infrastructure in order to
determine failure-inducing changes. The Maven plug-in uses the framework out-of-the-box, at
the same time it provides various configuration parameters and remains therefore flexible. On
the other hand, DDCHANGE ECLIPSE uses only the core of the framework and contributes a
new builder and a new source for the changes. Moreover, it is delivered with a user interface;
nevertheless, not much more SLOC were required to develop that plug-in. Using the tip of the
iceberg, you can determine failure-inducing changes while supplying your own builder, tester,
and the initial set of changes.

The two plug-ins complement one another. DDCHANGE ECLIPSE runs on the developer’s ma-
chine, as an extension of her familiar IDE. As soon as a unit test fails, she can debug that failure
using the new plug-in. DDCHANGE MAVEN can be integrated with the continuous build process.
As soon as a failure occurs, the developer is notified about the failure and a possible cause.

Compared to the Maven plug-in, the Eclipse plug-in has some advantages. It is tightly integrated
within the IDE, and because it uses the local history and a fast incremental compiler, it computes
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Figure 5.16: Bar chart: Comparison of the source lines of code required to develop the frame-
work, the Maven plug-in, and the Eclipse plug-in.

the same result much faster. Another advantage of the usage of the local history is the simplicity
related to the effort in order to install and setup the tool. The developer needs not to use a
repository. He need just to install the plug-in, afterwards he can start using it. Using Eclipse’s
update manager and the provided update site, the installation process can be done with a few
mouse clicks.

However, DDCHANGE ECLIPSE analyses mainly local changes unless the developer updates fre-
quently hers local working copy. Once installed in the continuous build process (for example
using CruiseControl), DDCHANGE MAVEN determines the failure-inducing changes regarding
the committed changes of all developers, without the need for interaction with one of the de-
velopers. And because CruiseControl runs much faster on a server than on a workstation, the
speed issue carries little weight. To make a long story short: DDCHANGE MAVEN can enrich
the project’s life cycle and its knowledge with automated debugging. Furthermore, it can add
automated debugging to automated testing.
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This chapter draws a general conclusion about the platform. The different chapters on the frame-
work and on the tools contain more specific results as well as possible topics for further work.

The study has shown that automation of determining failure-inducing code changes at different
stages in common development processes is enabled by using (1) a framework, (2) the delta
debugging algorithm as main part of the strategy, (3) and two instances in form of plug-ins.
Thus, developers can have a recourse in automated debugging without the need to adapt their
familiar process—startup costs are low.

Since debugging of changes that introduced a failure is exhausting and time-consuming (as
well as often frustrating), automating that debugging process may increase efficiency and im-
prove productivity—the platform developed and presented in this work may save both time and
money.

You can use the platform’s core, the DDCHANGE framework, to develop with a modicum of effort
new tools that enables to determine failure-inducing changes automatically. Furthermore, the
platform contains innately two concrete tools. The Eclipse plug-in, DDCHANGE ECLIPSE, is able
to determine these changes on local workstations, integrated with the programmer’s familiar IDE.
Complementary, the Maven plug-in, DDCHANGE MAVEN, can be integrated seamlessly with
the continuous build process on a central server; it enriches automated testing with automated
debugging. Using these tools, you can debug completely automatically many failures that occur
in day-to-day business.

Because the two plug-ins are available for prominent development tools, a great many developers
can use them. Furthermore, the plug-ins, as well as the framework, are released under an open-
source license, allowing everyone to study, change, and improve the design.

Just as any other study, this one leaves some open issues and areas that lead to future work.

• We act on the assumption that the platform can save both time and money. However,
we cannot currently prove that assumption. A evaluation could negate or confirm it. For
instance, we could use WEB.DE’s issue tracker and the Subversion repository in order
to acquire information about fixed bugs. If we know the amount of time spent for the
correction of a bug, we can use DDCHANGE to determine the failure-inducing changes
and check whether the computed result pinpoints the bug faster, or not.
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• The platform determines the failure-inducing changes. We could optimise that process in
different ways in order to speed it up. First, the restriction of the search space promises
a reduction of the runtime. Second, we could conduct the tests in parallel on several
machines.

• We could use other tests than unit tests to debug other types of failures. For example, we
could use acceptance tests or debug memory leaks. Memory leaks are often especially
hard to debug, automated debugging of such failures would improve further the debugging
process.

This work can lead to intense simplifications in the common development process—remember
Occam’s Razor: “Keep it simple”.
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A.1 Included CD

Enclosed you will find a CD that contains additional documents. The most interesting parts may
be the JavaDoc API documentation of the framework, the complete source code of the framework
and the tools, the movies that show the tools in action, and, last but not least, the framework and
tools ready for use.

• Documentation site for the framework. The project information was generated by Maven
from the project’s sources and the metadata about the project. That information is pro-
vided as a web site. It is browsable off-line direct from the CD. The following reports are
contained in the site:

– Changes. A changes report showing the differences between different releases of the
framework.

– Checkstyle. A Checkstyle report so code violations can easily be found and corrected.
Checkstyle implements a static code analysis in order to help programmers write Java
code that adheres to a coding standard. See the website of Checkstyle [Tea05a] for
more information about that tool.

– Clover. Report of Clover, a code coverage analysis tool. It discovers sections of code
that are not being adequately exercised by the unit tests. See the website of Clover
[Ltd05a] for more information about that tool.

– FindBugs. FindBugs is a tool to find bugs in Java programs. It looks for instances of
so-called bug patterns—code instances that are likely to be errors. See the website
of FindBugs [Hov05] for more information about that tool.

– JavaDocs. The JavaDoc API documentation in HTML format. That comprehensive
documentation of the framework contains public, protected, and private packages,
classes, interfaces, fields, and methods.

– JavaDoc Report. Report on the generation of JavaDoc.

– JavaDoc Warnings Report. Formatted report of JavaDoc warnings.

– Unit Tests. JUnit report based on the framework’s unit tests. See the website of JUnit
[GB05] for more information about that tool.
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– Source Xref. A set of browsable cross-referenced sources.

– Test Xref. A set of browsable cross-referenced test sources.

– Project License. Displays the primary license for the project.

– Simian Report. Simian (Similarity Analyser) identifies duplication in Java source
code. See the website of Simian [Ltd05b] for more information about that tool.

The directory maven-sites contains the sites.

• Tutorials on How to Use the Software. Animated Macromedia Flash demonstrations that
show DDchange Eclipse and DDchange Maven in action. See how the tools work even
without installing them. Can be viewed with a Flash enabled browser.

The directory flash-movies contains the movies embedded in simple HTML files.

• Source Code. All files required to build the framework and the tools.

The directory source-code contains all sources, including the project metadata files
and the Java sources.

• Maven Repository. A structured storage of the project artefacts. The local repository
contained in the CD hosts all JARs and can be used by Maven to build the sources. Includes
the Maven plug-in, too.

The directory maven-repository hosts the local Maven repository.

• Eclipse Update Site. DDchange releases for Eclipse 3.1.x are hosted at the update site.
Add this local update site as “Local Site” in Eclipse’s update manager (which you can find
in the Help menu).

The directory eclipse-site hosts the local Eclipse update site.

• PDF Version of Thesis. Electronic version of this work as Portable Document Format
(PDF).

The directory thesis contains the PDF file.

A.2 Subversion Repository

The repository located on https://devel.netbeyond.de/svn/mburger/
university/DDchange/ stores the different projects. In the following you will find
a short description of these projects.

• ddalgorithm. The implementation of the delta debugging algorithm as described in Section
4.2.
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• ddchange-bughunting. A project used for bug hunting. Contains code that reproduces
reported bugs.

• ddchange-eclipse-core. The core of DDCHANGE ECLIPSE. Provides the main functional-
ity via so-called extension points. The user interface uses these extension points in order
to interact with the core.

• ddchange-eclipse-feature. The DDCHANGE ECLIPSE feature. A feature bundles sev-
eral plug-ins into one downloadable package. This feature is hosted by the DDCHANGE
ECLIPSE update site (see below).

• ddchange-eclipse-feature-plugin. A plug-in used solely in order to brand the DDCHANGE
ECLIPSE feature.

• ddchange-eclipse-logging. Eclipse plug-in based on [Mar04]. Adds configurable logging
facility using Log4j.

• ddchange-eclipse-ui. The user interface of DDCHANGE ECLIPSE.

• ddchange-eclipse-updatesite. Update site project. The update site hosts the DDCHANGE
ECLIPSE feature.

• ddchange-framework-core. DDCHANGE, the framework as described in Chapter 4. The
Test component is hosted in the following project.

• ddchange-framework-test. The Test component of DDCHANGE as described in Section
4.3.4. This component is separated from the core project, because it contains the remote
tester. These classes have to be in the classpath of the program to be debugged. To min-
imise the amount of additional classes, this component was separated.

• ddchange-maven-plugin. DDCHANGE MAVEN, the instance of DDCHANGE that utilise
Maven.

• ddchange-sample-commons-lang-2.1. The slightly modified version of the “Apache
Jakarta Commons Lang” project as used for the examples in Chapter 5.

• ddchange-sample-project. Contains small examples that were used during the development
process of this work.
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