
Automated Debugging in Eclipse

Martin Burger · Karsten Lehmann · Andreas Zeller
Department of Computer Science

Saarland University
Saarbrücken, Germany

{mburger, lehmann, zeller}@st.cs.uni-sb.de

ABSTRACT
Your program fails. What is the cause of this failure? In this demo,
we present two delta debugging plug-ins for the Eclipse environ-
ment which isolate failure causes in the program history and in the
program’s execution.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—debug-
ging aids, diagnostics, testing tools, tracing; D.2.6 [Programming
Environments]: Integrated environments; D.2.7 [Distribution,
Maintenance, and Enhancement]: Version control

General Terms
Experimentation, Reliability

Keywords
Programming environments, testing, debugging, version control,
program comprehension.

1. INTRODUCTION
Your program fails. What is the cause of this failure? In this demo,
we present two delta debugging plug-ins for the Eclipse environ-
ment which isolate failure causes in the program history and in the
program’s execution:

DDchange: failure-inducing changes.The DDchangeplugin is
useful if an old (working) version of the unit is available.
By systematic tests, it narrows down the set of code changes
until it has isolated the failure-inducing change: ”‘The fail-
ure was caused by a change to output.cpp at line 197 on June
30th”’.

DDstate: failure-inducing program states. The DDstate plugin
requires an passing test run of the unit. By narrowing down
the differences between program states, it isolates the vari-
ables and statements that cause the failure: ”At input.java in
line 307, this.buffer became NULL, and therefore, the pro-
gram crashed.”

Both plug-ins are fully automatic; all that is needed is an automated
test, such as JUnit. As soon as a JUnit test fails (and a passing ver-
sion pr run is available), the appropriate plugin kicks in and pro-
duces a diagnosis within minutes.

Copyright is held by the author/owner.
OOPSLA’05,October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

Figure 1: A memory graph

2. HOW DOES IT WORK?
The plugins do not use program analysis to isolate failure causes; in
fact, they do not analyze the source or machine code at all. Instead,
they rely on two principles:

Causes as Differences.A cause is always a difference between a
world where the effect occurs and a world where the effect
does not occur. Hence, one can narrow down causes from the
differences between these two worlds. In our case, these two
worlds are the two differing program versions (DDchange) or
program runs (DDstate). For versions, We use standard dif-
ferencing techniques to extract and compare them. For runs,
we extract the program state asmemory graphs(Figure 1),
encompassing values and structures in a single representa-
tion which can be compared using standard graph compari-
son techniques.

Narrowing through Experimentation. The difference between ac-
tual program versions or program states may still be too large
to be useful. Therefore, delta debugging narrows down that
difference systematically—by creating anintermediatever-
sion which takes half of the differences into account. In
practice, this means either a version where half of the code
changes are applied (DDchange), or a “mixed” state consist-
ing of both “passing” and “failing” values (DDstate). The
plugins construct these intermediate versions andexperiment
how the program then behaves. Every time the program still
fails, or still passes, the difference is reduced by 50%; even-
tually, only a minimal failure-inducing difference remains—
the change which made the program fail (DDchange) or the
variable(s) whose value(s) causes the failure to occur (DDstate).

184



1) A JUnit test fails.
2) Delta Debugging 

determines the failure-
inducing code changes.

Figure 2: The DDchange plugin

Delta Debugging is the first program comprehension approach
to exploit these principles; full details of the approach are avail-
able [1].

3. ECLIPSE PLUGINS
Figure 2 shows an early version of theDDchangeplugin in ac-

tion. As soon as a test fails,DDchangeretrieves an older (passing)
version from the version archive and isolates the failure-inducing
difference; all this takes place automatically.DDstatedoes a sim-
ilar job, but displays the failure-inducing variables and statements
in the failing run instead. Note that a cause, as isolated by these
plug-ins, need not be an error—but a cause can provide an excel-
lent starting point when it comes to fix the program.

We expect that automated diagnosis techniques will have many
further benefits in program comprehension and we welcome demo
participants to bring in their own ideas and join in the discussion.

4. DOWNLOAD
The delta debugging plugins are available for download from:

http://www.st.cs.uni-sb.de/eclipse/

5. ACKNOWLEDGMENTS
Delta Debugging research is funded by Deutsche Forschungsge-
meinschaft, grant Sn 11/8-1. The development of theECLIPSE
plug-ins was made possible by anIBM ECLIPSE innovation grant.
We thank Ken Bauer for organizing the OOPSLA 2005 demonstra-
tions.

6. REFERENCES
[1] A. Zeller. Why Programs Fail: A Systematic Guide to

Debugging. Morgan Kaufmann, October 2005.

185

http://www.st.cs.uni-sb.de/eclipse/

	Introduction
	How Does it Work?
	Eclipse Plugins
	Download
	Acknowledgments
	References -9pt 

