Automated Debugging in Eclipse

Martin Burger - Karsten Lehmann - Andreas Zeller
Department of Computer Science
Saarland University
Saarbriicken, Germany

{mburger, lehmann, zellery@st.cs.uni-sb.de

ABSTRACT

Your program fails. What is the cause of this failure? In this demo,
we present two delta debugging plug-ins for the Eclipse environ-
ment which isolate failure causes in the program history and in the
program’s execution.

Categories and Subject Descriptors

D.2.5 [Software Engineering: Testing and Debugging-gebug-
ging aids, diagnostics, testing tools, tracjig.2.6 [Programming
Environments]: Integrated environments; D.2.Distribution,

Maintenance, and Enhancemerit Version control

General Terms
Experimentation, Reliability

Figure 1: A memory graph

Keywords 5

Programming environments, testing, debugging, version control, 2. HQW DOES IT WORK?))))

program comprehension. The plugins do not use program analysis to |s_olate failure causes; in
fact, they do not analyze the source or machine code at all. Instead,

1. INTRODUCTION they rely on two principles:

Your program fails. What is the cause of this failure? In this demo, cases as DifferencesA cause is always a difference between a

we present two delta debugging plug-ins for the Eclipse environ- world where the effect occurs and a world where the effect

ment which isolate failure causes in the program history and in the does not occur. Hence, one can narrow down causes from the

program’s execution: differences between these two worlds. In our case, these two

worlds are the two differing program versions (DDchange) or
program runs (DDstate). For versions, We use standard dif-
ferencing techniques to extract and compare them. For runs,
we extract the program state meemory graphgFigure[1),
encompassing values and structures in a single representa-
tion which can be compared using standard graph compari-
son techniques.

DDchange: failure-inducing changes.The DDchangeplugin is
useful if an old (working) version of the unit is available.
By systematic tests, it narrows down the set of code changes
until it has isolated the failure-inducing change: "The fail-
ure was caused by a change to output.cpp at line 197 on June
30th™.

DDstate: failure-inducing program states. The DDstate plugin)) . .
requires an passing test run of the unit. By narrowing down Narrowing through Experimentation. The difference between ac-

the differences between program states, it isolates the vari- tual program versions or program states may still be too large
ables and statements that cause the failure: "At input.java in to be useful. Therefore, delta debugging narrows down that

line 307, this.buffer became NULL, and therefore, the pro- difference systematically—by creating artermediatever-
gram crashed.” sion which takes half of the differences into account. In

practice, this means either a version where half of the code

Both plug-ins are fully automatic; all that is needed is an automated changes are applied (DDchange), or a “mixed” state consist-
test, such as JUnit. As soon as a JUnit test fails (and a passing ver- ing of both “passing” and “failing” values (DDstate). The
sion pr run is available), the appropriate plugin kicks in and pro- plugins construct these intermediate versionseaueriment
duces a diagnosis within minutes. how the program then behaves. Every time the program still

fails, or still passes, the difference is reduced by 50%; even-
Copyright is held by the author/owner. tually, only a minimal failure-inducing difference remains—

OOPSLA'050ctober 16-20, 2005, San Diego, California, USA. the change which made the program fail (DDchange) or the
ACM 1-59593-193-7/05/0010. variable(s) whose value(s) causes the failure to occur (DDstate).

184

Ang/StringUtils java - One line Was added. One line was deleted. 0] X[f|
File Edit Source Refactor MNavigate Search Project |The change on the Followmg Flle is failure-inducing: src/org/apache/commons/lang/Stringltils, java J

J D\' =] |J B |J Ty &4y &y - |J One line was added, One line was deleted: B
blic static String deletelhit String st il
ﬁ Y, Delta Debugging Wiew X o éﬁ.-fn‘;sﬂieer"éﬂﬁrei E ﬁeulsiii’ﬁgﬁﬁréi??f ot
int sz = str,length(): 1
& ([& @ Hinimize Failure-Inducing Code Changes - for (int i=0; i<sz; i++) {
[@ = ¥} testDeleteSpace{ora,apaghe.commons, lang, St | | |* for (int i=getZero(): i<sz: i++) { .
S - X if{ICharacter, isWhitespace(str,charft(i))) {
2 = [Constants. java buffer,append(str,charAt(i)): i
The file Constanfs,java was added to ¥
35 = [Stringltils, java
£l 7 lines were added, g/Stringutils java - 7 lines were addec, \ ol x|

One line was added, One line was del The change on the following Flle is failure-inducings sr‘c/org/apache/com)\ons/lang/Str‘mgUtlls LJjava

7 lines were added:

return (str != null & str,length() > 0):

2) Delta Debugging
determines the failure-
inducing code changes.

/%K
¥ Breturn zero
*/

1) A JUnit test fails.

private static int getZerof) {
return Constants,ZERO:

+ + + + + + +

JL

/KK
o i = % Checks if a (trimmed) String is null or empty,

Hinimize Code Changes |

_ g/Constantsjava - The file Constants jdva was added to projec Q| X] | |
The change on the following Fl le is failure-inducing: src/org/apachefcommons/lang/Constants,java [
RunsE65 Erzorsiio Failuresiyt The file Constants,java was added to project commons-lang-1_copy_524288:
Failure Trace 3= %

% Created on Dec 3, 2003
*

Jjunit,framework ,ComparisonFailure; deletellhi * To change the template for this generated file go to

at junit,framework,Assert,assertEquals{Asse * llindow - Preferences - Java - Code Generation - Code and Commehts
at org,apache,commons, lang, StringUtilsTrimE x4 .

at sun,reflect NativeMethodAccessorInpl, inv packasefoezapacheteopaots Hlatc”

at sun,reflect NativeMethodAccessorImpl,inv Vi3

at sun,reflect,lelegatingMethodAccessorImpl * RBauthor mburger

at java,lang.reflect,Method, invoke{Method. j L

e T S e * To change the template for this generated type comment go to

* lindow - Preferences - Java - Code Generation - Code and Comments

at junit,framework,TestCase,runBare(TestCas */
at junit,framework,TestResult$l,protect(Tes public class Constants {
5 | public static final int ZERD = 13
Package Explorer lHierarchy |JUnit lDeltaDebugging... ¥ I
org,apache,commons, lang, Stringlti, , ,ommons, lang - commons-lang-1/src |I|lritable |Smart Insert |54 3 32

Figure 2: The DDchange plugin

Delta Debugging is the first program comprehension approach 4. DOWNLOAD

to exploit these principles; full details of the approach are avail- The delta debugging plugins are available for download from:
able [1].

http://www.st.cs.uni-sb.de/eclipse/

3. ECLIPSE PLUGINS
Figure[2 shows an early version of tB®changeplugin in ac- 5. ACKNOWLEDGMENTS
tion. As soon as a test fail§Dchangeretrieves an older (passing) Delta Debugging research is funded by Deutsche Forschungsge-
version from the version archive and isolates the failure-inducing meinschaft, grant Sn 11/8-1. The development of EHo:IPSE
difference; all this takes place automaticalyDstatedoes a sim- plug-ins was made possible by &M ECLIPSE innovation grant.
ilar job, but displays the failure-inducing variables and statements We thank Ken Bauer for organizing the OOPSLA 2005 demonstra-
in the failing run instead. Note that a cause, as isolated by thesetions.
plug-ins, need not be an error—but a cause can provide an excel-
lent starting point when it comes to fix the program. 6. REFERENCES
We expect that automated diagnosis techniques will have many
further benefits in program comprehension and we welcome demo
participants to bring in their own ideas and join in the discussion.

[1] A. Zeller. Why Programs Fail: A Systematic Guide to
Debugging. Morgan Kaufmann, October 2005.

185

http://www.st.cs.uni-sb.de/eclipse/

	Introduction
	How Does it Work?
	Eclipse Plugins
	Download
	Acknowledgments
	References -9pt

