
Minimizing Reproduction of Software Failures

Martin Burger
Saarland University – Computer Science

Saarbrücken, Germany
mburger@cs.uni-saarland.de

Andreas Zeller
Saarland University – Computer Science

Saarbrücken, Germany
zeller@cs.uni-saarland.de

ABSTRACT
A program fails. What now? Taking a single failing run, we record
and minimize the interaction between objects to the set of calls rel-
evant for the failure. The result is a minimal unit test that faithfully
reproduces the failure at will: “Out of these 14,628 calls, only 2
are required”. In a study of 17 real-life bugs, our JINSI prototype
reduced the search space to 13.7 % of the dynamic slice or 0.22 %
of the source code, with only 1–12 calls left to examine.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Debug-
ging aids

General Terms
Algorithms

Keywords
Automated debugging, capture/replay

1. INTRODUCTION
When a program fails, a developer must debug it in order to fix

the problem. Debugging consists of two essential steps. The first is
reproducing the failure. Reproducing is essential because without
being able to reproduce the failure, the developer will have trouble
diagnosing the problem and eventually demonstrating that it has
been fixed. Reproducing failures depends on the knowledge about
the circumstances that lead to a failure; if these are little known
or hard to recreate, reproducing can be a tough challenge. The
second step in debugging is finding the defect. For this purpose,
one must trace back the cause-effect chain that leads from defect
to failure—a search across the program state and the program ex-
ecution to identify the cause of the problem. The search space can
easily involve millions of states, each consisting of thousands of
variables. This enormous size not only makes debugging tedious,
but also risky, as one cannot predict when a particular defect will
be found.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’11, July 17-21, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0562-4/11/05 ...$10.00.

The field of automated debugging aims to ease this search. Sta-
tistical debugging [20, 14] determines features of the execution that
correlate with failures, and thus gives hints on where to search first.
Delta debugging narrows down failure causes in input [32], pro-
gram state [31], or version histories [30] by means of automated
experiments. As of today, all these techniques can substantially re-
duce the search space, but require successful executions to compare
against—the higher the number of these executions and the more
similar they are, the higher the chance to isolate a failure cause in
the difference between failing and passing executions. In contrast,
the alternative of program slicing [28] requires only the failing exe-
cution. It eliminates those parts of the program that could not have
contributed to the failure; however, the remaining slice can still
contain thousands of locations not all of which are relevant.

This paper presents JINSI, taking a new twist on automated de-
bugging that aims to combine ease of use with unprecedented ef-
fectiveness. JINSI treats an execution as a series of object interac-
tions—e.g., method calls and returns—that eventually produce the
failure. JINSI can record and replay these interactions at will, thus
addressing the problem of reproducing failures. Taking a single
failing run, JINSI minimizes its object interactions to the amount
required for reproducing the failure, using a combination of delta
debugging and slicing on method calls. The result is a unit test in-
volving precisely those objects and calls required to reproduce the
failure. The reduction in search space is impressive: In an evalua-
tion of 17 real-life bugs in JAVA programs, JINSI reduces the source
code to an average of 13.7 % of the dynamic slice, or 0.22 % of the
original source code, with only 1–12 calls left to examine. On top
of that, the resulting unit test has a high diagnostic quality, explain-
ing exactly how the failure came to be.

The remainder of the paper is organized as follows. After giving
a motivating example (Section 2), we present the state of the art in
automated debugging (Section 3) as applied to this example. We
then make the following contributions:

1. We show how to minimize object interactions and thus exe-
cutions, using a combination of delta debugging and slicing
(Section 5). In contrast to the state of the art, our approach

(a) requires only one single failing run (and easily inte-
grates statistical approaches in the presence of multiple
runs);

(b) has a high diagnostic quality, the result being a single
unit test with related calls which pinpoints the circum-
stances under which the failure occurs;

(c) is fully automatic, not requiring any selection, annota-
tion, or other interaction with the programmer.

DateTimeZone America_Los_Angeles =
new DateTimeZoneBuilder()
.addCutover(-2147483648, ’w’, 1, 1, 0, false, 0)
.setStandardOffset(-28378000)
.setFixedSavings("LMT", 0)
.addCutover(1883, ’w’, 11, 18, 0, false, 43200000)
.setStandardOffset(-28800000)
.addRecurringSavings("PDT", 3600000, 1918, ...)
.addRecurringSavings("PST", 0, 1918, ...)
.addRecurringSavings("PWT", 3600000, 1942, ...)
.addRecurringSavings("PPT", 3600000, 1945, ...)
.addRecurringSavings("PST", 0, 1945, ...)
.addRecurringSavings("PDT", 3600000, 1948, ...)
.addRecurringSavings("PST", 0, 1949, ...)
.addRecurringSavings("PDT", 3600000, 1950, ...)
.addRecurringSavings("PST", 0, 1950, ...)
.addRecurringSavings("PST", 0, 1962, ...)
.addRecurringSavings("PST", 0, 1967, ...)
.addRecurringSavings("PDT", 3600000, 1967, ...)
.addRecurringSavings("PDT", 3600000, 1974, ...)
.addRecurringSavings("PDT", 3600000, 1975, ...)
.addRecurringSavings("PDT", 3600000, 1976, ...)
.addRecurringSavings("PDT", 3600000, 1987, ...)
.toDateTimeZone("America/Los_Angeles");

Figure 1: This code taken from the JODA TIME manual [6]
crashes JODA TIME when run in the western hemisphere.

DateTimeZone America_Los_Angeles =
new DateTimeZoneBuilder()
.addRecurringSavings("PDT", 3600000, 1987, ...)
.toDateTimeZone("America/Los_Angeles");

Figure 2: When fed with the execution in Figure 1, JINSI pro-
duces a unit test with just the relevant calls. Of the 23 calls,
only three suffice to reproduce the failure.

2. We evaluate the approach on 17 bugs, demonstrating

(a) the effectiveness of the approach, namely a reduction in
debugging search space to only 0.22 % of the source
code, or 1 line out of 450—a precision not only signif-
icantly above the state of the art, but also at a level at
which fault localization ceases to be a problem;

(b) a reduction to only 13.7 % of the dynamic slice, the
relevant benchmark for having only a single failing run;

(c) the scaleability of the approach, scaling to JAVA pro-
grams with 100,000 lines of code;

(d) the generality of the approach, providing a full diagno-
sis on 16 out of 17 bugs examined.

JINSI is easy to apply; all it takes is a single failing execution of
a JAVA program. Its implementation and the experimental data are
publicly available.

2. JINSI IN A NUTSHELL
To show how JINSI1 works, consider Figure 1, showing a piece

of code that interacts with the JODA TIME library, a replacement for
the JAVA date and time classes [6]; the example code, taken from
the JODA TIME documentation, illustrates how to create a complex
time zone. This code works just well when run in UTC. However,
when run west of Greenwich, this code crashes JODA TIME 1.6, the
latest release at the time of writing.

This bug is hard to reproduce, as it depends on the current time
zone. And it is hard to search for the defect: The 23 calls result in
a trace containing no less than 484,745 lines, covering 1,528 out of
26,534 JODA TIME source code lines.
1JINSI stands for “JINSI Isolates Noteworthy Software Interactions”.
“Jinsi” is also the Swahili word for “method”, which is the most
common interaction between objects.

software system

component

software system

event
log

component

JINSI

JINSI

0) unmodified software

1) capture on component level

2) capture on object level captured events

interactions

external
services

external
services

Figure 3: JINSI intercepts and records (1) the interactions be-
tween a component and its environment, and (2) all interactions
of objects within that component.

Here is how JINSI helps in both reproducing and simplifying the
problem. The key idea of JINSI is sketched in Figure 3. JINSI wraps
around a component, e.g., the component building time zones, and
records its interactions with its environment and external services,
like the operating system’s time zone settings. JINSI then replays
these captured interactions and thus reproduces the original fail-
ure. In the motivating example, JINSI records all constructor and
method calls to the time zone builder and replays these interactions
to reproduce the problem at will—in any time zone.

We are now able to reproduce executions. But which parts of
the execution are actually relevant for the failure? Does the prob-
lem really depend on the exact sequence of calls on the time zone
builder? Do we need these 23 calls altogether? Would it be suffi-
cient to add only one recurring daylight saving time rule, instead of
all 16 rules? Such questions can be answered automatically—by
systematically simplifying the interactions between objects.

The basic idea of JINSI is to apply delta debugging to the cap-
tured interactions—more precisely, on the incoming method calls—
to systematically narrow down the sequence of failure-inducing
calls. Out of the 23 calls in Figure 1, delta debugging would omit
one call after another, and repeat execution again and again to check
whether the failure persists. In the end, a minimal subset remains
in which every call would be relevant to reproduce the failure. In
our example above, this minimal subset consists of just three calls
(Figure 2): invoking the time zone constructor, adding one sin-
gle recurring daylight saving time rule, and calling the converter
toDateTimeZone().

Applying JINSI to all objects of the failing stack trace yields a run
that covers only 193 lines instead of 1,528. JINSI determines that
out of these 193 lines, only 54 can possibly contribute to the failure.
JINSI thus has narrowed down the search space to 54 lines—that is,
3.6 % of the executed lines and 0.2 % of the JODA TIME source.

But even within these 54 lines, not all have the same relevance.
Of the three calls in Figure 2, the first and last one form a context:
We evidently need both the constructor and the crashing method to

have the failure occur. However, the second call, the one to method
addRecurringSavings(), is set within this context. Without
it, the test simply passes, which makes it very interesting: Obvi-
ously, the problem is related to daylight savings rules—and our
investigation would start right within this very method.

In the remainder of this paper, we will show how applying JINSI
iteratively pinpoints the defect.

3. BACKGROUND
How does JINSI compare to the state of the art? Using the mo-

tivating example in Figure 1, let us discuss the state of automated
debugging and how JINSI improves it.

3.1 Statistical Debugging
The basic idea of statistical debugging is to identify features of

the program execution that statistically correlate with failures. Im-
portant features include code coverage (i.e., code that is executed
only in a failing run is more likely to cause the failure), or func-
tion return values (i.e., erroneous function behavior tied to over-
all failures). To obtain significant results, statistical approaches
must consider thousands of executions—either from an extensive
test suite [20] or sampled in the field [14, 7]. This is in contrast to
JINSI, which requires only one single failing run.

But even given a large number of executions, the results may still
be imprecise. The best statistical approach so far, the CP model by
Zhang et al. [33] reduces the search space to 5 % or less for 50 % of
the test cases examined. While 5 % initially may sound impressive,
it still means a huge absolute number of lines to examine. Also,
these results are obtained from the so-called Siemens suite—a fre-
quently used benchmark in fault localization. The Siemens suite is
not only very small and has artificial bugs, it also comes with an
extremely extensive test suite, which is the main reason statistical
approaches fare relatively well.

As it minimizes object interaction, JINSI is not applicable to the
(non object-oriented) Siemens suite. For a simple comparison, we
applied the TARANTULA [19] approach to the bug in Figure 1, us-
ing JODA TIME’s test suite with 3,496 individual tests. We chose
TARANTULA for its simplicity and because it fared only marginally
worse than CP in [33]. Following down the ranking, the developer
has to inspect the 522 most suspicious lines until she finds the de-
fective line, or 2 % of the code.2 However, this is still almost ten
times as much than the total 54 lines (0.2%) identified by JINSI.
Even modern approaches combining test case generation with sta-
tistical debugging [1] would be challenged by this precision. In
addition, the locations returned by statistical approaches are scat-
tered across the code, whereas JINSI’s locations are related to each
other through the single, minimal unit test.

3.2 Program Slicing
A program slice [28] is a subset of the program execution that

is relevant for a specific state or behavior. Slices are based on
dependencies between statements: A statement S2 depends on a
statement S1, if S1 can influence the program state accessed by S2.
Starting from a statement, the transitive closure over all dependen-
cies forms a program slice. In debugging, computing the backward
slice for a failing statement returns all statements that could have
influenced the failure. While a static slice applies to all possible

2Applying TARANTULA took several hours; because of the tool we
used to collect coverage data, all the tests had to be run individually
in a fresh instance of the JVM, and more than 3 GB of coverage data
had to be collected and analyzed. In contrast, applying JINSI is a
matter of minutes (cf. Section 8.5).

runs, a dynamic slice just applies to the failing run and thus is more
precise.

Just like JINSI, dynamic slicing requires only one failing run; it
is thus the benchmark we compare against. As shown in our evalu-
ation (Section 8), a dynamic slice applied to the motivating exam-
ple contains only 512 suspicious lines out of 26,534 lines in total.
Thus, only about 2 % remain, already producing a remarkable im-
provement for the programmer who has to debug this failure. How-
ever, applying JINSI reduces the number of suspicious lines further
to only 193. Combining both techniques even results in only 54
lines—an amount that can be easily reviewed one by one. In con-
trast to the dynamic slice, the run minimized by JINSI is executable.
Thus, the programmer can use her familiar debugger to further in-
vestigate this bug.

3.3 Delta Debugging
Delta debugging is a technique to systematically narrow down

failure causes by means of automated experiments. It had been pre-
viously used, for instance, to isolate failure-inducing changes [30]
and to simplify failure-inducing input [32]. While generally effec-
tive, these techniques are not applicable to the motivating example,
as we lack a working older version or a controllable external in-
put; therefore, hybrid approaches combining delta debugging and
slicing [17] are also excluded.

An interesting alternative could be applying delta debugging to
program states [5], isolating differences in the state and the behav-
ior induced by the time zone change. However, manipulating states
in JAVA programs is a daunting task, as the program state is not un-
der direct control by the program. For instance, the JAVA run time
system makes it hard to change private object attributes directly;
the only unsanctioned method to manipulate objects is to invoke
methods. It is therefore unclear whether this approach would be
applicable on JAVA programs; on top, it again requires a (hopefully
similar) passing run.

Most of the precision of JINSI in fault localization comes from
applying delta debugging on object interaction. This was first at-
tempted for generated call sequences (i.e., generated test cases):
Lei and Andrews [21] were the first to apply delta debugging to
calls to minimize generated test cases; Leitner et al. [22] combine
this with static slicing to speed up minimization. In contrast to
these approaches, JINSI works on recorded calls, which is not only
applicable to all sorts of failures (instead of only generated ones),
but also more challenging: While applying delta debugging to gen-
erated call sequences simply means to twist the generator, applying
it to recorded interaction means one will have to care about miss-
ing initializations, missing targets, or missing parameters whenever
some object interaction is optimized away.

3.4 Capture/Replay
JINSI not only minimizes interactions, it also captures them from

failing executions. By design, JINSI records all interactions for a
given set of objects—because any of these interactions may be rel-
evant for the failure. Such complete record/replay was already a
feature of earlier prototypes [27, 25].

Test factoring [26] as well as test carving [16] also capture at
the method level to extract unit tests specific to a task. ADDA [4]
records events at the level of C standard library and file operation
functions. While test carving captures program state to create unit
tests, JINSI captures and minimizes interactions that reproduce fail-
ures.

The true power of capture/replay, however, comes as it is be-
ing combined with diagnostic features. The RECRASH tool [2]
records executions by recording parts of the program state at each

method entry—namely those objects that are reachable via direct
references. When the program crashes, it thus allows the developer
to observe a run in several states before the actual crash. This is
very efficient, but assumes that the stack trace actually contains the
code (and state) that caused the failure. This is not the case in our
motivating example, as the crucial time zone is obtained via a static
method call; the reproduced run thus still relies on the system’s cur-
rent time zone and will not reproduce the run east of Greenwich. By
capturing and replaying all interactions by design, JINSI can replay
and minimize the original failure.

A further advantage of JINSI over RECRASH is its ability to natu-
rally capture/replay non-crashing bugs. In this case, the developer
using RECRASH has to provide proper checkpoints manually; JINSI,
however, captures the required information without additional as-
sistance.

3.5 Own Previous Work
The current version of JINSI bases on earlier proof-of-concept

prototypes [24, 3], which again had been initially inspired by the
SCARPE prototype originally presented by Orso and Kennedy [25].
JINSI already applied delta debugging to minimize incoming calls
to some object, introducing and demonstrating the promise of delta
debugging on method calls. However, JINSI previously required
that the programmer select the object in question, providing a hint
on where the fault might be, and that the programmer provide a
predicate that determines whether a run is successful or not; also,
it was never demonstrated on more than a single real-life example
(COL-1 in this paper). In contrast, JINSI now is fully automatic,
requiring no hints by the programmer, and generates predicates au-
tomatically; it also works for non-crashing bugs, where a single
initial predicate (typically, a test oracle) is needed to distinguish
expected from observed behavior. Furthermore, JINSI’s precision is
greatly increased by including dynamic slicing both as a filter and
a strategy guide. Finally, JINSI is demonstrated on a wide range
of real bugs (Section 8), scaling up to problems of considerable
complexity.

4. REPRODUCING FAILURES
In the next sections, we shall walk through the individual steps

JINSI undertakes to minimize failure reproduction (Figure 4). The
very first task in debugging is to reproduce the problem in order to
examine it and eventually to check whether a fix is successful. To
reproduce a problem, JINSI reproduces object interaction: It cap-
tures and replays on the object level to reproduce the environment,
and on the method level to reproduce the problem’s history (i.e., the
program execution). The main advantage of this approach is that it
abstracts over all kinds of input (say, data, user interaction, net-
work events, or randomness) while keeping a uniform mechanism
to minimize the reproduction.

JINSI uses state-of-the art mechanisms for capturing and replay-
ing executions [24, 3, 25]; we thus just focus on the main concepts.

4.1 Capture
JINSI’s aim is to capture interactions between a suspicious com-

ponent (defined by a set of classes, called observed) and its envi-
ronment (called unobserved) as well as between all objects within
that component (i.e., instances of the component’s classes). For
this purpose, JINSI’s capture/replay technique identifies possible in-
teractions between these objects, correspondingly instruments the
class files, and captures their interactions at runtime (Figure 3).

Figure 5 shows how JINSI instruments an outgoing call that ob-
tains the default time zone similarly as it happens in our motivating
example. While capturing, JINSI records two events: one describ-

public class Observed {
private DateTimeZone timeZone;
public Observed() {
this.timeZone = (DateTimeZone)
JINSI.getReturnValue(this, DateTimeZone.class,

"getDefault", new Object[0]);
}
public String getTimeZoneName() {
return (String)
JINSI.getReturnValue(this, this.timeZone,

"toString", new Object[0]);
}

}

Figure 6: JINSI replaces outgoing method calls with calls to it-
self and returns proper values depending on the captured event.

ing the outgoing method call itself, including attributes needed for
replaying like the given parameters (their types and unique IDs, see
below); and one representing the returned time zone (or the excep-
tion, should one be thrown). When capturing data, the type of in-
formation ranges from simple primitive values to complex objects
like an object representing a time zone.

4.2 Replay
To reproduce the original failure, JINSI replays the previously

recorded interactions. For replay, JINSI completely replaces the
component’s environment. After instrumenting, the tool processes
the captured events and, for each event, either triggers some in-
coming interaction on the observed objects3, or consumes some
outgoing interaction originating from the observed component and
provides a proper return value. Interactions between observed ob-
jects are not intercepted; they happen naturally as a result of the
incoming interactions initiated by JINSI.

Figure 6 illustrates an instrumented component on the basis of
class Observed (Figure 5). JINSI has replaced the two outgo-
ing invocations with calls to JINSI.getReturnValue(...),
which returns a proper value depending on the concrete captured
event. For instance, while replaying an incoming constructor call,
JINSI consumes the replaced call to getDefault() and returns
a mocked instance of DateTimeZone. Since JAVA does not allow
to create instances without explicitly calling a constructor, JINSI
returns a mock object instead, which is just an empty hull repre-
senting an instance of proper type. When a subsequent incoming
call to method getTimeZoneName() is replayed, JINSI again
processes the originally captured outgoing call, and now returns
the captured String representing the time zone at capture time.4

Other types of interaction, like constructor calls and field ac-
cesses, are captured and replayed in a similar fashion. Unobserved
objects, which, for instance, may be passed as arguments, are re-
placed by mock objects that behave exactly as observed at capture,
while observed ones are re-created as soon as required [24]. JINSI
thus sequentially replays all interactions exactly as during the cap-
ture phase, thus reproducing the original failure.

5. SIMPLIFYING INTERACTIONS
After reproduction, the next task in debugging is to find out

which circumstances are relevant for the failure. Irrelevant circum-
stances can be ignored; relevant ones must be investigated. JINSI’s
aim is thus to simplify the execution such that only relevant ob-
ject interactions remain. For this purpose, it uses three techniques
(Figure 4): delta debugging, event slicing, and dynamic slicing.
3JINSI uses the JAVA reflection API for that purpose.
4This is in contrast to tools like RECRASH [2], which capture only
the objects on the heap, and which, in this example, return the cur-
rent time rather than the captured time.

(a) Complete Execution

o1
o2

o3

↯
(b) Capture/Replay

o2

o3

↯

Jinsi

(c) Event Slice

o2

o3

↯

Jinsi

(d) Delta Debugging

o2

o3

↯

Jinsi

(e) Dynamic Slice

o2

o3

↯

Jinsi

(f) Minimal Unit Tests

o2

o3

↯
o3

↯

o2

o3

↯

o1

Figure 4: JINSI captures and replays (b) a failing execution (a). Event Slices (c), Delta Debugging (d), and Dynamic Slices (e) all
minimize the relevant object interaction. Repeating the process while gradually incrementing the set of observed objects, JINSI
produces a set of unit tests at varying abstraction levels (f).

Original Code Constructor with outgoing calls instrumented by JINSI

import org.joda.time.DateTimeZone;

public class Observed {
 private DateTimeZone timeZone;

 public Observed() {
 this.timeZone = DateTimeZone.getDefault();
 }

 public String getTimeZoneName() {
 return this.timeZone.toString();
 }
}

public Observed() {
 IEventId id = JINSI.outgoingMethodCall(this, DateTimeZone.class,
 "getDefault", new Object[0]);
 try {
 this.timeZone = DateTimeZone.getDefault();
 }
 catch(RuntimeException e) {
 JINSI.outgoingThrowable(id, e);
 throw e;
 }
 JINSI.outgoingMethodReturn(id, this.timeZone);
}

Figure 5: JINSI captures outgoing method calls by inserting several probes. In this way, JINSI records all information required for
later replay of the call to DateTimeZone.getDefault().

5.1 Delta Debugging
JINSI applies delta debugging [32] to automatically isolate the

failure-inducing interactions by systematically testing subsets of
the initial sequence—until a set is found where every remaining
interaction is relevant for reproducing the failure. During this pro-
cess, JINSI systematically suppresses subsets of incoming interac-
tions and assesses the result: if the original failure occurs, the test
fails (meaning that the suppressed interaction was not relevant); if
it does not, the test succeeds (meaning that the suppressed interac-
tion was relevant). This process is repeated until only the relevant
interactions remain.

To assess the result of a test, JINSI needs a predicate that de-
termines whether the failure in question is reproduced (failing out-
come), or does not occur anymore (passing outcome). If something
different happens (for instance, because JINSI suppressed an actu-
ally indispensable constructor call), the test is classified as unre-
solved. To check whether the simplified run reproduces the original
failure, JINSI compares the exception thrown. In our example, an
ArithmeticException is thrown because adding a time off-
set caused an integer overflow (see Figure 7). As long as a simpli-
fied, smaller subset reproduces the same exception5, the failure in
question is reproduced and delta debugging can continue to further
minimize this set. A different exception results in an unresolved
outcome.

For non-crashing failures, JINSI provides alternate predicates on
both further externally observable properties and internal program
state: for instance, output on the console, and properties on at-
tributes of objects like “Attribute name of object with id 13 has
value "UTC".” This enables JINSI to also debug failures other than
crashes caused by exceptions, as we will see in Section 7.

5.2 Event Slicing
The effort for delta debugging depends on the number of unre-

solved outcomes. If every test fails, it converges in logarithmic

5We consider two exceptions to be the “same” if they have the same
type, message, and location.

Exception in thread "main" java.lang.ArithmeticException:
 Adding time zone offset caused overflow
at ZonedDurationField.getOffsetToAdd(ZonedChronology.java:357)
at ZonedDurationField.getDifference(ZonedChronology.java:339)
at BaseChronology.get(BaseChronology.java:260)
at BasePeriod.<init>(BasePeriod.java:100)
at Period.<init>(Period.java:441)
at PrecalculatedZone.create(DateTimeZoneBuilder.java:1439)
at toDateTimeZone(DateTimeZoneBuilder.java:398)
at JINSI.TestDriver.main(TestDriver.java:37)

Figure 7: Running the code from the API example (Figure 1),
JODA TIME crashes with an ArithmeticException caused
by an integer overflow.

time; if all tests are unresolved or passing, it requires quadratic
time [32].

To speed up the delta debugging process, JINSI applies a slic-
ing technique before it uses delta debugging (see Figure 4), a tech-
nique inspired by the work of Leitner et al. [22]. However, instead
of applying slicing to the program code, JINSI slices the captured
sequence of interactions. Basically, by following back data depen-
dencies on the captured sequence of interactions recorded as events,
we establish a list of possibly relevant interactions that describes
the constructions and usages of all objects that are involved in the
interactions that reproduce the failure. For example, starting at the
incoming method call that throws the exception causing a crash, we
put all objects involved in this interaction in an initial set. This in-
cludes the callee object and all non-primitive arguments. We then
transitively include all events where objects in the initial set are in-
volved. We thus obtain those interactions that can actually affect
the execution of the last interaction—the ones that make the pro-
gram fail.

In the motivating example, applying the event slice to the 14,629
incoming interactions takes 24 seconds6 and 1,940 interactions re-
main. The downstream delta debugging needs 38 seconds and 39
tests to minimize these interactions until the two failure-inducing

6All times were measured on a MacBook machine with a 2.1 GHz
Intel Core 2 Duo processor and 4 GB memory.

PeriodType o89 = (PeriodType) JINSI.getMock(89);
new Period(-9223372036854775808L, -2717640422000L, o89);

Figure 8: After three iterations, JINSI isolates an interaction
that pinpoints the defect.

ones remain (see Figure 8). Without event slicing, delta debugging
would have taken 102 tests and two minutes. With event slicing,
JINSI needs less than one minute for the entire process.

5.3 Dynamic Slicing
After applying event slicing and delta debugging to the cap-

tured program run, JINSI eventually applies dynamic slicing using
Hammacher’s dynamic slicer for JAVA [18]. While delta debug-
ging computes the minimal sequence of interactions that reproduce
the failure, the subsequently applied dynamic slice computes all
statements that possibly could have influenced the failure within
the minimal run. In this way, JINSI reduces the number of lines to
be inspected by the developer still more. For instance, in the mo-
tivating example, the minimized run covers 193 lines, whereas the
slice within this run contains only 54 lines.

6. PINPOINTING THE DEFECT
In order to help the developer debug a failure and finally fix the

defect, JINSI requires a suspicious set of classes to start with. If a
program crashes, JINSI by default starts with the topmost class on
the stack and automatically follows all the objects on that stack;
one after another, the corresponding classes are added to the set
of observed classes. This iterative process stops when the bottom-
most stack element is reached, providing the developer with failure
reproductions at various abstraction levels. Figure 1, for instance,
shows the JODA TIME failure at the highest abstraction level, which
is useful to understand the failure. To actually fix the failure, it
is wiser to start at the lowest abstraction level—that is, the top-
most class on the stack (ZonedDurationField in Figure 7)—
and adding more and more involved classes (ISOChronology7,
Period, . . .) as one proceeds towards the bottom.

This iteration strategy will pinpoint the defect in JODA TIME af-
ter only three iterations8. Examining the minimized unit test after
adding the Period class shows that only two interactions are re-
quired to reproduce the failure (Figure 8): The Period constructor
fails on the given parameters. Why does this happen? Because the
given parameters stand for a time that does not exist in a time zone
west of Greenwich. And how can a time given in seconds not exist?
Because when daylight savings time ends, local time shifts by one
hour—in North America, 1:59am is followed by 3am, for instance.
On this day, 2:30am is indeed an illegal time.

To fix the defect, we must call the Period constructor with le-
gal values—namely, force the local time zone to UTC. Figure 9
shows how the JODA TIME developers fixed the bug, by passing a
fourth argument to the Period constructor that fixes the chronol-
ogy to UTC.

To debug the issue with JINSI, the developer would only have
to examine three minimized unit tests until she had reproduced the

7ISOChronology is the concrete instance at location
BaseChronology.java:260 (Figure 7).
8Although there are five elements on the stack trace starting at
class Period, there are only three different objects involved:
frames Period.init and BasePeriod.init belong to the
same instance of class Period, frame BaseChronology.get
belongs to the instance of class ISOChronology, and the
uppermost two frames belong to the same instance of class
ZonedDurationField.

class DateTimeZoneBuilder$PrecalculatedZone {
static PrecalculatedZone create(...) {
// ..
p = new Period(trans[i], trans[i + 1],

- PeriodType.yearMonthDay());
+ PeriodType.yearMonthDay(),
+ ISOChronology.getInstanceUTC()); // <- FIX

// ..

Figure 9: To fix JODA TIME, the time zone is set explicitly; thus,
the code does not depend on the system’s time zone anymore.

o1.m()

o2.n()

o3.o()

Stack of Exception↯ p
1

2

3

Observed Objects

… …

p p

C
al
ls

JI
N
SI

Figure 10: For crashing bugs, JINSI starts with observing the
topmost target object (o1) on the call stack, successively ex-
panding the set of objects from caller to caller. Predicate p
stays in the topmost method, identifying the crash, and thus
minimizing the interaction that leads to the crash.

original failure and execute the defective code. Each of these min-
imized unit tests consists of two lines or less, and execute only
54 lines overall. JINSI cannot fix the bug on its own, which is left
to the programmer; but the amount by which the search space is
reduced considerably eases debugging.

7. SELECTING OBSERVED OBJECTS
A central feature of JINSI is its ability to automatically select the

objects to be observed—and thus, the objects whose interaction is
to be minimized. JINSI starts with the object in which the failure
occurs, and gradually extends the set of objects along cause-effect
chains that lead to the failure. This way, JINSI ensures that both the
failing object as well as the object that causes the failure is included
in the diagnosis. This section discusses the two general strategies
used by JINSI.

7.1 Crashing Bugs
In a crashing bug, an exception is thrown from the topmost ob-

ject on the call stack; such bugs tend to be easier to be debugged
because the stack trace frequently provides good hints about the
defect location. For crashing bugs, JINSI uses the stack trace as a
cause-effect chain; it starts observing the topmost object and mini-
mizes its incoming interaction using the presence (or non-presence)
of the same crash as a predicate for minimization (Figure 10). In the
following steps, the set of objects is gradually expanded to include
more and more callers. JINSI thus minimizes the interactions into
the failing object (o1), then the interactions into its caller (o2), then
the interactions into the caller of the caller (o3), and so on. The
result is a cause-effect chain of interactions in which every chain
element is minimized.

7.2 Non-Crashing Bugs
In a non-crashing bug, a failure comes to be as some incor-

rect output—or, more generally, an incorrect or “infected” program
state. Such infections are usually much harder to debug because the
infection is discovered only at the end of the execution. In such a
situation, the programmer must identify the source of the infection
chain, progressing backwards along the origins of values.9

9Such a situation can also happen with crashing bugs, although this

o1 o2 o3 on
↯

Object Data Dependencies

Observed Objectsp
1

p
2

p'
3

4

…

… p'''...…

Data Dependency

p'

Figure 11: For non-crashing bugs, JINSI progresses along the
dynamic backward slice, minimizing individual subslices of ob-
ject interaction to obtain a minimized cause-effect chain.

This is where a dynamic backward slice is most helpful, as it
contains precisely those values that could have influenced the fail-
ure; and this is also what JINSI uses to track back the infection
chain. JINSI starts with a given predicate on object state (typically,
a failing test oracle) and determines the dynamic backward slice
from that object. It then progresses along the backward slice using
a sliding window approach (Figure 11): First, the interaction into
the last object on the slice (o1) is minimized. Then, the interaction
into the objects o1 depends upon (o2) is minimized. Then, the in-
teraction into the next level of dependency (o3) is minimized, and
so on. Again, we obtain a cause-effect chain of interactions along
the data dependencies in which every chain element is minimized.

7.3 Generating Predicates
Non-crashing bugs pose a special challenge to minimization, as

the set of involved objects can potentially grow very large. If we
were to apply a similar strategy as for crashing bugs (i.e., includ-
ing more and more caller objects), we would eventually include all
objects on the dynamic slice, which results in a huge number of
interactions. Instead, we go for a stepwise minimization: Rather
than minimizing the entire set on the dynamic slice, we minimize
each element on the chain—that is, for every object, only the object
itself as well as the objects it directly depends upon. Our observed
set thus would contain, for instance, o2 and o3, but not o1; as well
as o3 and o4, but not o1 or o2.

Removing the initial failing object from the set of observed ob-
jects brings another challenge, though: We lose the original pred-
icate deciding on success or failure, and thus have no predicate
anymore to minimize against. JINSI therefore generates alternative
predicates (shown as p′, p′′, and so on in Figure 11).

A predicate needs to distinguish passing and failing runs. Since
we start with a single failing run, where do we get the passing runs
from? The answer is simple: Delta debugging yields similar pass-
ing runs as a by-product.10 These synthetic passing runs are the
base for the subsequent predicate generation.

As in [31], JINSI extracts memory graphs for both the single fail-
ing run and all the produced passing runs, and afterwards com-

was not the case in the bugs we observed.
10This is due the 1-minimality of the algorithm [32]—no single in-
teraction can be removed without removing the failure.

let dyn_slice be the dynamic slice of the failing run
let pred be the initial predicate given by test oracle
let obs_init be the initial observed object given by test oracle
observed← {obs_init}
while obs_next← next_by_distance(dyn_slice) do

observed← observed ∪ {obs_next}
captured← capture(observed)
1_min← dd(captured, pred)
state_f ← mem_graph(1_min, obs_next)
let pred be an empty predicate
for all interactions int in 1_min do

subset← 1_min \ {int}
if outcome(subset) is passing then

state_p← mem_graph(subset, obs_next)
diff ← mem_diff(state_p, state_f)
if diff is not empty then

pred_on_diff ← predicate(diff)
pred← pred ∧ pred_on_diff

end if
end if

end for
if pred is not empty then

observed← {obs_next}
end if

end while

Figure 12: For non-crashing bugs, JINSI takes advantage of the
data-flow information provided by the slicer to select observed
objects, and of the 1-minimality of the delta debugging algo-
rithm to generate predicates. For simplicity, we only show how
the algorithm would work on linear data dependencies. In fact,
the slicer yields a data dependence graph, and JINSI extends the
algorithm by a breadth-first search.

putes differences using these graphs. Finally, JINSI derives proper
predicates from these differences. In this way, JINSI automatically
derives predicates like “Attribute name of object with id 13 has
value "UTC".”, or “The list with id 13 contains 5 (instead of 4)
elements.” These predicates then are being minimized against, and
again, the end result is a cause-effect chain along the dependencies,
with the predicates as inbetween oracles. Figure 12 formalizes the
algorithm used by JINSI to debug non-crashing bugs.

8. EXPERIMENTAL EVALUATION
In this section, we investigate how well our approach works in

practice. Our measure for success is the search space for the defect,
as expressed by lines of source code to examine. The benchmark
we compare against is dynamic slicing, since it is the one other
technique which requires only one single failing run like JINSI.11

The dynamic slice contains all lines that possibly could have con-
tributed to the failure; it is this set that we want to minimize.

8.1 Subjects
To evaluate the effectiveness of JINSI, we have applied it to six

different JAVA subjects listed in Table 1. The subjects are divided
into three groups according to their context:

Standard subjects. This set consists of two subjects used by other
researchers before: BST by Artzi et al. in evaluating RE-
CRASH [2] and by Csallner and Smaragdakis in evaluating

11If additional runs are available, statistical debugging can be used
on the statements isolated by JINSI, thus providing an additional
ranking of the few remaining statements and increasing precision
further. This straight-forward extension is part of our future work.

Table 1: Subjects used in the case studies.
Subject Description

BST Subject used by Artzi et al. [2] and Csallner et
al. [8].

NANOXML XML parser; part of the SIR Repository [12]; used
by [10, 9, 15]

COLUMBA Feature-rich email client with graphical user inter-
face as used before in [3].

VENDING
MACHINE

Proof of concept that demonstrated JINSI’s feasi-
bility in [24].

JAXEN Universal JAVA XPATH engine. Used by SUN in
several products [23].

JODA TIME Replacement for the JAVA date and time classes.
More than 100k downloads [6].

Check ’n’ Crash [8]. NANOXML is a common subject as
part of the Software-artifact Infrastructure Repository [12]
(SIR) and used by many research groups for evaluation pur-
poses [10, 9, 15].

Previous work. We use two examples from earlier work on JINSI:
VENDING MACHINE [24], a proof-of-concept program, and
COLUMBA [3], a complex email client consisting of several
components using a graphical user interface—in contrast to
the other subjects.

Industrial-size subjects. We applied JINSI on two industrial-size
subjects. Both JAXEN and JODA TIME are large JAVA li-
braries actively maintained and used by a large number of
users.12

All subjects are object-oriented programs implemented in JAVA.
While the JINSI approach is applicable to all object-oriented lan-
guages, its basic premise of minimizing object interaction requires
an object-oriented execution model. These circumstances constrain
the available subjects. For example, JINSI is not applicable to sub-
jects like the non-object-oriented Siemens test suite.

Based on the above subjects, we applied JINSI on a total of 17 in-
dividual issues (Table 2), consisting of 14 crashing and three non-
crashing bugs, which we selected as follows: BST contains three in-
dividual crashing bugs used both by Artzi et al. as well as Csallner
and Smaragdakis. COLUMBA and VENDING MACHINE were used
to demonstrate JINSI on one crashing bug in each subject. These
bugs therefore predefine five issues for our evaluation. For the
remaining nine (crashing) issues, we chose three bugs from each
JAXEN, JODA TIME, and NANOXML that all met the following cri-
teria: (1) the issue had to be caused by a defect in JAVA code (and
not in the build system, for instance); (2) the bug’s symptom had to
be a crash, i.e. a thrown exception; (3) the issue had to be reported
by a user (because we wanted real, post-release failures); (4) we
had to be able to reproduce the error (which is not the case for many
JAXEN and JODA TIME bug reports, which do not include version
information). Finally, we added three non-crashing bugs we found
(NAN-3, NAN-5, and NAN-6) to explore JINSI’s performance on
non-crashing bugs.

Given these constraints, we sequentially checked the issue track-
ers of JAXEN and JODA TIME and applied JINSI to the first available

12JODA TIME was downloaded 126,536 times as of 2010-07-30 [6];
JAXEN is used by SUN in several products [23].

three issues that met the criteria above; for NANOXML, we have se-
lected issues randomly from four different versions as stored in SIR.
All this ensures a selection independent from expected results.

8.2 Experiment Setup
To measure the effectiveness of our approach, we applied JINSI

on each of the 17 issues listed in Table 2. The basic idea is that the
less code is executed, the smaller the search space and the easier
it is for the developer to understand and fix the problem. To mea-
sure the total size of each corresponding program, we first counted
the physical source lines of code [29], shortened SLOC. To count
the number of lines executed by the original failing run, we applied
COBERTURA [13], an open-source coverage tool. Hammacher’s
dynamic slicer for JAVA [18] provided the lines in the dynamic
slice. As slicing criterion, we chose the location where the ex-
ception had been thrown. For the minimized run, we again applied
COBERTURA to get the number of executed lines. Finally, we in-
tersected the dynamic slice with the line coverage of the minimized
run to get the suspicious lines the programmer would be interested
in most. These numbers can be found in the left part of Table 3.

For two issues, we can not provide a complete set of numbers.
Firstly, we could not apply JINSI to issue BST-3 because of current
limitations of our approach (see Section 8.6). Secondly, for issue
COL-1, we were not able to obtain a dynamic slice due to limita-
tions in the dynamic slicer that cause a crash of the program being
sliced. Therefore, we can neither compare the dynamic slice to the
minimized run, nor intersect the two of them.

8.3 Search Space Reduction
For our motivating example (JOD-3), the total number of source

code lines is 26,53413 (100 %), whereof 1,528 lines (5.76 %) are
executed during the failing run; the dynamic slice contains 512 lines
(1.93 %), already producing a remarkable reduction of the search
space. However, the minimized run as computed by JINSI accesses
only 193 lines (0.73 %)—moreover, the intersection between the
minimized run and the dynamic slice contains 54 lines (0.20 %)
only. The numbers for the other issues are similar; in all but one
case (JAX-3), the final intersection is smaller than the dynamic
slice alone. In 12 cases, the minimized run executes less lines than
contained in the dynamic slice; in these cases, JINSI outperforms
dynamic slicing even without being intersected with the slice itself.

To quantify the overall search space reduction, let us take a look
at the totals shown in the last row in Table 3. Simple line coverage
narrows down the number of relevant lines to 16,870/229,643 =
7.3% of the source code. A dynamic slice reduces these covered
lines to 3,714/(16,870− 6,318) = 35.2%, or 3,714/(229,643−
94,863) = 2.8% of the source code14. Intersecting the dynamic
slice with the minimized run produced by JINSI reduces the set of
relevant lines to (515 − 5)/3,714 = 13.7% of the dynamic slice
alone—in total, 3.1 % of the executed lines, or 0.22 % of the source
code. JINSI thus reduces the search space to a handful of code lines.

In our evaluation, JINSI reduces the search space to 3.1 % of the
executed lines, or 0.22 % of the source code.

8.4 Size of Resulting Unit Tests
Further results concern the number of levels of abstraction to be

examined by the developer, the total number of interactions and the

13The SLOC varies between the individual issues of the very same
project as each issue is related to a different version.

14We omit COL-1 from the total as the slicer crashed; hence the
subtrahends.

Table 2: Issues used in the case studies.
Issue Project-Specific Issue ID Version Description

BST-1 n/a n/a BSTNode.setData(...) crashes on given char array.
BST-2 n/a n/a BSTNode.setData(...) crashes on given Object instance.
BST-3 n/a n/a StringCoding.encode(...) fails on given charset name.
NAN-1 SP_HD_1 1 Parsing XML document fails.
NAN-2 XE_HD_2 2 Parsing XML document fails.
NAN-3 XEL_HD_2 3 Obtaining named children from XML tree fails.
NAN-4 XEL_HD_6 3 Removing child from XML tree fails.
NAN-5 CR_HD_2 5 XML entities are not handled correctly.
NAN-6 XER_HD_1 5 Output contains unexpected artifact.
COL-1 n/a 1.4 Importing an address book fails with nondescript error dialog.
VME-1 n/a n/a Vending machine erroneously stays in enabled state.
JAX-1 29 r375 XPATH function normalize-space on empty argument ’’ fails.
JAX-2 111 r1170 Selecting node on empty document crashes.
JAX-3 156 r1216 Changing a node-set does not update the position or node size.
JOD-1 1788282 r1256 Parsing valid French date using French locale fails.
JOD-2 2487417 r1377 Converting date in Brazilian time zone fails.
JOD-3 2889499 r1493 Building complex time zone does not work on Western hemisphere.
BST = BST, NAN = NANOXML, COL = COLUMBA, VME = VENDING MACHINE, JAX = JAXEN, JOD = JODA TIME.

number of the relevant ones per level, as well as the runtime behav-
ior of the whole debugging process. These numbers can be found in
the right part of Table 3. For the motivating example (JOD-3), the
total number of abstraction levels is 6, whereof 3 have to be exam-
ined by the developer until the bug is found. The number of interac-
tions denotes the number of incoming interactions on the individual
levels and therefore the size of the generated minimized test driver.
For instance, in JOD-3 on the last level, 14,628 incoming interac-
tions are captured and reproduce the original failure—but only two
are actually relevant to reproduce the failure (Figure 8). In contrast
to the captured but not minimized test drivers that contain up to
14,628 interactions, none of the 39 levels in total to be examined
produces a test driver containing more than twelve interactions (and
frequently much less). Paired with its faithful reproduction of fail-
ures, this reduction of search space makes JINSI highly effective in
reducing the debugging effort.

In our evaluation, test drivers produced by JINSI contained at
most twelve interactions that faithfully reproduce the failure; for

crashing bugs, the maximum number is eight interactions.

8.5 Performance
The last two columns show the runtime behavior of JINSI. The

second last column shows the total runtime of the debugging pro-
cess. This includes capture and minimization, as well as the up-
stream instrumentation.15 In the last column, the total number of
tests run by delta debugging is shown. For the motivating example,
JINSI reduces the 26,534 lines in total to only 54 and requires only 4
minutes and 58 seconds for the whole process. In all cases but one,
JINSI needs only a few minutes to compute the minimal test driver.
For NAN-6, the process takes long because at one minimization
stage, the number of unresolved test outcomes is high, triggering
the delta debugging worst case complexity of O(n2) [32].

An interesting instance is issue COL-1 where the process with-
out the upstream event slicing takes 3 hours and 46 minutes. In this
case, the delta debugging algorithm would have to run 4,578 tests
instead of only 4 that execute up to 14,008 incoming interactions

15We assume the availability of the dynamic slice, whose computa-
tion takes 30 s to 11 min. Computing the intersection is a relatively
cheap operation that takes only a few seconds.

to compute the minimal set. However, as we have seen in Sec-
tion 5.2, JINSI applies event slicing before delta debugging. In this
example, the event slice contains only two interactions—the two
relevant ones. The downstream delta debugging can not minimize
further and runs 4 tests, taking 3 seconds. In total, including com-
puting the event slice, the whole process takes 68 seconds—instead
of almost 4 hours. Like Leitner et al. [22], we thus found that while
delta debugging consistently produces the best results, a prepro-
cessing with slicing can dramatically improve performance.

In our evaluation, JINSI needs at most 37 minutes to compute the
minimal test drivers;

for crashing bugs, it needs at most five minutes.

8.6 Limitations and Threats to Validity
While conducting the experiments, we encountered some limita-

tions of our approach:

JAVA reflection. NANOXML instantiates some (hard coded) classes
using factory methods. Because JINSI currently does not sup-
port automatic instrumentation of reflection, we manually re-
placed these instances by direct constructor calls. This can
easily be addressed in a future revision of JINSI.

String as primitive. Due to hard-coded assumptions in the JAVA
virtual machine, JINSI can not instrument class String as it
would be needed for capture / replay. As a workaround, JINSI
thus treats strings like primitive values. In issue BST-3, a
String instance was on the stack and JINSI would have had
to include this object as observed. Because of the restrictions
mentioned above, it was not possible to apply JINSI to this is-
sue. Again, future revisions of JINSI may implement specific
workarounds for String classes.

Fixed location not in minimized run. In issue JAX-3, the loca-
tion where the actual fix was applied is not executed by the
minimized run—although it is executed by the original run.
While JINSI provides an alternative way to reproduce the fail-
ure in question, the bug was actually fixed by adding func-
tionality not to the code executed by the minimized run, but
to a method omitted by the delta debugging algorithm. In-
terestingly enough, the dynamic slice does not contain this

Table 3: Results of the experimental evaluation.
Original Run Minimized Run Levels Interactions Runtime

Issue Type SLOC Line Dynamic Line Inter- Total To ex- Total Relevant Time Tests
Coverage Slice Coverage section amine [min:s]

BST-1 C 38 5 3 2 1 2 1 2 2 0:10 4
BST-2 C 38 14 3 11 1 2 1 2 2 0:10 4
BST-3 C 38 1 1 n/a 1 3 n/a n/a n/a n/a n/a
NAN-1 C 1,891 130 43 42 42 3 2 5–6 4–5 0:50 38
NAN-2 C 2,540 98 15 13 2 2 1 5 2 0:26 14
NAN-3 N 3,118 498 199 18 8 9 3 1–98 1–4 0:57 217
NAN-4 C 3,101 501 252 31 18 3 1 90 8 0:29 151
NAN-5 N 3,278 584 304 218 79 11 4 2–99 2–12 2:21 508
NAN-6 N 3,295 594 313 154 75 11 7 2–566 2–12 37:16 2707
COL-1 C 94,863 6,318 crash 5 5 29 1 14,008 2 1:08 4
VME-1 C 185 121 63 23 10 2 1 32 7 0:15 68
JAX-1 C 13,226 2,533 1,224 37 19 6 3 6–1,919 2–3 3:40 416
JAX-2 C 12,983 861 255 7 3 7 2 3–4 2–3 0:53 20
JAX-3 C 12,957 16 4 12 4 2 2 5–6 3–4 0:26 39
JOD-1 C 25,748 1,613 150 946 48 3 3 4–8 3–5 1:15 60
JOD-2 C 25,810 1,455 373 248 145 4 4 80–123 2–3 4:29 190
JOD-3 C 26,534 1,528 512 193 54 6 3 45–14,628 1–2 4:58 243
Total 229,643 16,870 3,714 1,960 515
SLOC = physical source lines of code [29]. In totals, missing values (“crash” or “n/a”) are counted as zero. C = crashing, N = non-crashing.

location either. Generally speaking, when a fix contains new
statements only, the programmer has a large choice of loca-
tions that may or may not be included in a minimized execu-
tion, and it is hard to exactly predict this location.

Object orientation. JINSI leverages the abstraction levels as nat-
urally defined by object-oriented programming. Therefore,
JINSI currently can be applied to object-oriented programs
only. However, JINSI may also exploit different means of
encapsulation. For instance, JINSI could use the abstraction
levels given by the logical boundaries in modular program-
ming. However, because abstraction when using modules
usually is not as fine-grained as when using objects, the re-
sult of the minimization process may not be as precise as
when applying JINSI to object-oriented programs.

All these limitations pose threats to the external validity of our re-
sults: There likely are programs or bugs on which JINSI will not
perform as well as in our sample, and any generalization from the
results of our experimental evaluation is to be taken with a grain
of salt. Our sample size is small; in total we investigated seven
subjects with 17 different issues—it is time-consuming to find real
bugs by manually analyzing bug reports, to download and to com-
pile old versions, and finally to reproduce the original failure. Our
selection process creates a bias towards well documented and pub-
licly available issues; also, it is obviously slanted towards crashes
of object-oriented systems. However, this evaluation documents
every single problem we have applied JINSI upon, with consistent
and promising results. Furthermore, by randomly choosing various
issues instead of applying JINSI to many issues of one single sub-
ject, we increased the heterogeneity of our sample set. We concen-
trated on defects that cause an exception as error indication. JINSI
also can use other types of predicates as shown for the three issues
NAN-3, NAN-5, and NAN-6; future experiments should include
more types of bugs.

Other possible threats include construct validity, which concerns
the appropriateness of our measures; here, the size of the program

should well correlate with the effort needed for its examination—
we assume the developer is able to fix a bug the more efficiently the
less code remains and the shorter the execution becomes. Finally,
internal validity may be threatened by defects in JINSI or our eval-
uation setting; we have addressed this threat through careful testing
and further counter it by making JINSI and all the experimental data
publicly available.

9. CONCLUSIONS AND CONSEQUENCES
During debugging, JINSI brings lots of benefits at little cost. Its

requirements are trivial: all it takes is one single failing run that is
observed by JINSI. The resulting minimized unit test is easy to un-
derstand, and encompasses all steps that are relevant to reproduce
the failure. In terms of precision, JINSI combines best-of-breed
techniques to dramatically improve upon the state of the art. By
reducing the search space to a handful of code lines, JINSI eases
debugging to the point where it ceases to be a problem.

Besides general improvements to stability, efficiency, and usabil-
ity, our future work will focus on the following topics:

Universal strategies. Right now, JINSI provides a general strategy
along the dynamic slice for non-crashing bugs and a spe-
cial (but very common) strategy along the stack for crashing
bugs. At a higher abstraction level, all bugs are equal; and
consequently, we are working into merging the two strate-
gies into one.

Ranking locations. In the presence of passing runs, one could take
advantage of statistical debugging in order to identify the
most defect-prone locations even in the set minimized by
JINSI. Where runs are missing, they could be generated auto-
matically [1].

Automatic fixes. Rather than just simplifying interactions, JINSI
could also use delta debugging to isolate the difference be-
tween a passing and a failing run. Such differences would
improve diagnostic quality even further; in fact they could
even be turned into candidates for automatic fixes [11].

JINSI and all material required for reproducing the experiments
are available for download. For details, see

http://www.st.cs.uni-saarland.de/jinsi/

Acknowledgments. This work was supported by grants Ze-
509/2-1 and Ze509/4-1 from Deutsche Forschungsgemeinschaft.
The key idea of minimizing object interaction was conceived to-
gether with Alessandro Orso, who provided valuable feedback all
throughout the project. Valentin Dallmeier, Gordon Fraser, Cle-
mens Hammacher, David Schuler, Kevin Streit, and Andrzej Wa-
sylkowski provided helpful comments on earlier revisions of this
paper.

10. REFERENCES
[1] S. Artzi, J. Dolby, F. Tip, and M. Pistoia. Directed test

generation for effective fault localization. In ISSTA ’10,
pages 49–59. ACM, 2010.

[2] S. Artzi, S. Kim, and M. D. Ernst. ReCrash: Making
software failures reproducible by preserving object states. In
ECOOP ’08, pages 542–565, Berlin, Heidelberg, 2008.
Springer-Verlag.

[3] M. Burger and A. Zeller. Replaying and isolating failing
multi-object interactions. In WODA ’08, pages 71–77, New
York, NY, USA, 2008. ACM.

[4] J. Clause and A. Orso. A technique for enabling and
supporting debugging of field failures. In ICSE ’07, pages
261–270, Washington, DC, USA, 2007. IEEE Computer
Society.

[5] H. Cleve and A. Zeller. Locating causes of program failures.
In ICSE ’05, pages 342–351, New York, NY, USA, 2005.
ACM.

[6] S. Colebourne. Joda Time—Java date and time API.
http://joda-time.sourceforge.net/.

[7] B. L. Computer, B. Liblit, A. Aiken, M. Naik, and A. X.
Zheng. Scalable statistical bug isolation. In PLDI ’05, pages
15–26. ACM Press, 2005.

[8] C. Csallner and Y. Smaragdakis. Check ’n’ crash: combining
static checking and testing. In ICSE ’05, pages 422–431,
New York, NY, USA, 2005. ACM.

[9] C. Csallner and T. Xie. DSD-crasher: A hybrid analysis tool
for bug finding. In ISSTA ’06, pages 245–254. ACM, 2006.

[10] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight defect
localization for Java. In ECOOP ’05, number 3586 in
Lecture Notes in Computer Science, pages 528–550.
Springer, July 2005.

[11] V. Dallmeier, A. Zeller, and B. Meyer. Generating fixes from
object behavior anomalies. In ASE ’09, Auckland, New
Zealand, November 2009.

[12] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled
experimentation with testing techniques: An infrastructure
and its potential impact. Empirical Softw. Engg.,
10(4):405–435, 2005.

[13] M. Doliner. Cobertura. http://cobertura.sourceforge.net/.
[14] A. Z. Ee, A. X. Zheng, M. I. Jordan, B. Liblit, and A. Aiken.

Statistical debugging of sampled programs. In Advances in
Neural Information Processing Systems 16, pages 9–11. MIT
Press, 2003.

[15] S. Elbaum, H. N. Chin, M. B. Dwyer, and J. Dokulil.
Carving differential unit test cases from system test cases. In
SIGSOFT ’06/FSE-14, pages 253–264, New York, NY, USA,
2006. ACM.

[16] S. Elbaum, H. N. Chin, M. B. Dwyer, and M. Jorde. Carving
and replaying differential unit test cases from system test
cases. IEEE Trans. Softw. Eng., 35(1):29–45, 2009.

[17] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating faulty
code using failure-inducing chops. In ASE ’05, pages
263–272, New York, NY, USA, 2005. ACM.

[18] C. Hammacher. Java slicer.
http://www.st.cs.uni-saarland.de/javaslicer/.

[19] J. A. Jones and M. J. Harrold. Empirical evaluation of the
Tarantula automatic fault-localization technique. In ASE ’05,
pages 273–282, New York, NY, USA, 2005. ACM.

[20] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In ICSE ’02, pages
467–477, New York, NY, USA, 2002. ACM.

[21] Y. Lei and J. H. Andrews. Minimization of randomized unit
test cases. In ISSRE ’05, pages 267–276, Washington, DC,
USA, 2005. IEEE Computer Society.

[22] A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer.
Efficient unit test case minimization. In ASE ’07, pages
417–420, New York, NY, USA, 2007. ACM.

[23] B. McWhirter. JAXEN — Universal Java XPath engine.
http://jaxen.codehaus.org/.

[24] A. Orso, S. Joshi, M. Burger, and A. Zeller. Isolating relevant
component interactions with JINSI. In WODA ’06, pages
3–10, New York, NY, USA, 2006. ACM.

[25] A. Orso and B. Kennedy. Selective Capture and Replay of
Program Executions. In WODA ’05, pages 29–35, St. Louis,
MO, USA, may 2005.

[26] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic
test factoring for Java. In ASE ’05, pages 114–123, New
York, NY, USA, 2005. ACM.

[27] J. Steven, P. Chandra, B. Fleck, and A. Podgurski. jRapture:
A capture/replay tool for observation-based testing. In ISSTA
’00, pages 158–167, New York, NY, USA, 2000. ACM.

[28] F. Tip. A survey of program slicing techniques. Journal of
programming languages, 3(3):121–189, 1995.

[29] D. A. Wheeler. SLOCCount — count source lines of code
(SLOC). http://www.dwheeler.com/sloccount/.

[30] A. Zeller. Yesterday, my program worked. Today, it does not.
Why? In ESEC/FSE ’99, pages 253–267, London, UK,
1999. Springer-Verlag.

[31] A. Zeller. Isolating cause-effect chains from computer
programs. In SIGSOFT ’02/FSE-10, pages 1–10, New York,
NY, USA, November 2002. ACM Press.

[32] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Trans. Softw. Eng.,
28(2):183–200, 2002.

[33] Z. Zhang, W. K. Chan, T. H. Tse, B. Jiang, and X. Wang.
Capturing propagation of infected program states. In
ESEC/FSE ’09, pages 43–52, New York, NY, USA, 2009.
ACM.

http://www.st.cs.uni-saarland.de/jinsi/

	1 Introduction
	2 JINSI in a Nutshell
	3 Background
	3.1 Statistical Debugging
	3.2 Program Slicing
	3.3 Delta Debugging
	3.4 Capture/Replay
	3.5 Own Previous Work

	4 Reproducing Failures
	4.1 Capture
	4.2 Replay

	5 Simplifying Interactions
	5.1 Delta Debugging
	5.2 Event Slicing
	5.3 Dynamic Slicing

	6 Pinpointing the Defect
	7 Selecting Observed Objects
	7.1 Crashing Bugs
	7.2 Non-Crashing Bugs
	7.3 Generating Predicates

	8 Experimental Evaluation
	8.1 Subjects
	8.2 Experiment Setup
	8.3 Search Space Reduction
	8.4 Size of Resulting Unit Tests
	8.5 Performance
	8.6 Limitations and Threats to Validity

	9 Conclusions and Consequences
	10 References

