
Aspect Mining for Large Systems
— Poster —

Silvia Breu
University of Cambridge

Computer Laboratory
Cambridge, UK
silvia@ieee.org

Thomas Zimmermann
Saarland University

Dept. of Computer Science
Saarbr̈ucken, Germany

tz@acm.org

Christian Lindig
Saarland University

Dept. of Computer Science
Saarbr̈ucken, Germany
lindig@cs.uni-sb.de

Abstract
As software evolves, new functionality sometimes no longer aligns
with the original design, ending up scattered across a program.
We find such cross-cutting concerns by applying formal concept
analysis to the program’s history: method calls added across many
locations are likely to be cross-cutting. Our approach scales up to
Eclipse.

Categories and Subject DescriptorsD.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement—Restructuring,
reverse engineering, and reengineering

General Terms Algorithms, Measurement, Documentation, Per-
formance, Design, Experimentation,

Keywords Analyzing Version Archives, Aspect-Oriented Pro-
gramming, Eclipse, Formal Concept Analysis, Java, Aspect Mining

1. Introduction
As object-oriented programs grow, new functionality sometimes no
longer aligns with the initially chosen design and modularization.
Every large program contains a small fraction of functionality that
resists clean encapsulation. Code for debugging, logging, or lock-
ing is hard to keep hidden using object-oriented mechanisms alone.
As a result, this code ends up scattered across many classes, which
makes it a maintenance problem. At the same time, this code is
largely orthogonal to surrounding (ormainline) code as it rarely
impacts control or data flow. This observation gave rise to aspect-
oriented programming (AOP) as a solution: cross-cutting function-
ality is factored out into so-called aspects and these are woven back
into mainline code during compilation.

However, for existing software systems to benefit fromAOP,
cross-cutting concerns must be identified first. Only then a system
can be re-factored into an aspect-oriented design. This identifica-
tion task is calledaspect mining. Previous approaches to aspect
mining applied static or dynamic program analysis techniques to
a single version of a program. As a result, they often have difficul-
ties to scale to large systems: Dynamic analysis depends on many
test cases and static analysis is hard to implement as an incremen-
tal analysis. We solve this problem by treating a system’s version

Copyright is held by the author/owner(s).

OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

history as mining ground for aspects. Our new approach analyzes
changes from one version to the next and thus is independent from
the total size of a system. And since it is static, it does not rely on
test cases but guarantees complete coverage. As a result, we were
able to mine aspects from Eclipse, a project with over 1.3 million
lines of code for which we analyzed over 40 000CVS transactions.

Our mining builds on the hypothesis that cross-cutting function-
ality (or aspects) emerge over time. We analyze where method calls
are added from one version of a system to the next. A method call
is likely to introduce an aspect if the same method call is added in
many method bodies (which we call locations). An aspect is even
more likely to be present when the same two, three, or more method
calls are added in many locations: calls tolock andunlock are a
typical example.

2. Preprocessing
Our approach can be applied to any version control system. How-
ever, we based our implementation onCVS since most open source
projects currently use it. First, we reconstructCVS commits with a
sliding time windowapproach [4]. A reconstructed commit consists
of a setR of revisions where each revisionr ∈ R is the result of a
single check-in.

Additionally, we compute method calls that have been inserted
within a commit operationR. A commit R is a set of changed
locations—in our case locations are method bodies but could be
classes or packages as well. For every locationl that was changed
in R we compute the setM(l) of added method calls by comparing
the abstract syntax tree ofl before and after commitR. As a result
we obtain a setT (R) = {(l, m) | l ∈ R, m ∈ M(l)} of new calls
from locationl to methodm. We call a setT (R) of new calls a
transaction; transactions serve as main input for our aspect mining.
Here is an example from the Eclipse project:{

(DefaultByteCodeVisitor. aaload(int), dumpPcNumber(1)),
(DefaultByteCodeVisitor. aastore(int), dumpPcNumber(1)),
(DefaultByteCodeVisitor. aload(int, int), dumpPcNumber(1))

}
Into three locations aaload, aastore, and aload a call to
methoddumpPcNumber(1) was inserted. In order to reduce com-
putational cost, we analyze only the differences between single re-
visions but not between the resulting programs before and after a
revision. Therefore we cannot resolve signatures for called meth-
ods. Instead we use their names (e.g.,dumpPcNumber) and number
of arguments (e.g., 1).

3. Mining Transactions
For our analysis, the history of a program is a sequence of transac-
tions. Each transaction is a set of added method calls(l, m) from



Methods

complex aspect
candidate

simple aspect
candidate

log
lock

unlock

Lo
ca

tio
ns

T

Figure 1. A transactionT ⊆ L×M is a relation between locations
L and methodsM. The maximal (rectangular) blocks ofT are
aspect candidates, which form a hierarchy.

locationl to methodm1. A transactionT is formally a relation and
can be depicted as a cross table between locationsL and methods
M—cf. Figure 1 .

Simple Aspects When a transaction inserts calls to a logging
methodlog in 10 locations these calls show up in the cross table as
ablockof size1× 10 (given an appropriate order of locations). We
consider adding a call to be an aspect candidate when it cross-cuts
at least 8 locations. At each location where a call tolog was added,
calls to other methods may have been added as well. Still, aspects
where a call to a single method (likelog) is added are simple to
detect in a transaction by sorting calls(l, m) by the called method
m. We call thesesimple aspect candidates. Obviously a candidate
is more likely to be a genuine aspect when the number of locations
it cross-cuts is high.

Complex Aspects Some aspects come as pairs of function calls:
a call tolock for locking a resource is typically followed by a call
to unlock. Given an appropriate order of rowsand columns, the
addition of calls tolock andunlock in 10 locations also shows
up as a (2 × 10) block in the cross table. We call the addition of
calls to two or more methods acomplex aspectcandidate. Again,
we consider such a block only a candidate if it cross-cuts at least
8 locations. Unlike simple aspect candidates, it is not obvious
how to detect such complex aspect candidates in a transaction
efficiently.

4. Formal Concept Analysis
The problem of identifying all blocks is the subject of formal con-
cept analysis, an algebraic theory for binary relations [2], which
also provides efficient algorithms [3]. A maximal block in a trans-
actionT ⊆ L × M is a pair(L, M) of locations and methods
where the following holds:

L = {l ∈ L | (l, m) ∈ T for all m ∈ M}
M = {m ∈M | (l, m) ∈ T for all l ∈ L}

Formal concept analysis considers all blocks in a relation, not just
those exceeding certain limits. The definition of blocks in particular
allows for blocks with one empty component and subsumes simple
and complex aspect candidates. We therefore compute all blocks
and filter them later for aspect candidates.

Interestingly, blocks and therefore aspects form a lattice, de-
fined by the partial order(L, M) ≤ (L′, M ′) ⇔ L ≤ L′. How-
ever, typically the aspect candidates of a transaction are incompara-
ble. Figure 2 shows the lattice of blocks for such a transaction from
the Eclipse project.

1 We ignore changes and deletions of calls as we are only interested in
aspects emerging over time.

113

2 5

11 12

14

15 17 18

19

3 4 7 16 20 2122 6 8

9

10

23

24 25

26

0

27

Figure 2. Hierarchy of blocks from an Eclipse transaction. Block 6
is an aspect candidate, cross-cutting 14 locations.

Aspect Candidates in Eclipse 3.2M3

methods 1 2 3 ≥ 4
candidates 1878 363 88 24

Table 1. Aspect candidates mined from 43 270CVS transactions
for Eclipse 3.2M3. There are 88 candidates that added exactly 3
method calls.

5. Experience and Results
Because a cross table of sizen × n may have up to2n blocks,
concept analysis is potentially expensive. This has not been a prob-
lem so far: for 43 270 transactions in the EclipseCVS repository,
the average transaction adds 5.4 calls in 3.8 locations and has
3.7 blocks. However, the largest transaction had 1235 blocks. On
average, computing all blocks for a transaction took less than 1 sec-
ond.

The 43 270 transactions of the EclipseCVS archive constitute
159 448 blocks. From these we mined 2353 aspect candidates,
with the distribution shown in Table 1. We found 1878 simple and
363 + 88 + 24 = 475 complex candidates.

In [1] we had previously mined Eclipse for simple and com-
plex aspect candidates, albeit with a less general approach. There
we reported 31 unique complex candidates that cross cut at least
20 locations (out of which we found 6 to be true aspects and ad-
ditional 3 to be partial aspects). With our new approach we found
64 unique aspect candidates, including all 31 aspect candidates re-
ported in [1]. This confirms our two claims: formal concept anal-
ysis provides the right formal and algorithmic framework to mine
aspects, and aspects can be mined efficiently from large projects by
analyzing code additions over time.

References
[1] S. Breu and T. Zimmermann. Mining Aspects from Version History.

21st IEEE/ACM International Conference on Automated Software
Engineering (ASE 2006). IEEE Computer Society Press, 2006.
Accepted for publication.

[2] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical
Foundations.Springer, Berlin, 1999.

[3] C. Lindig. Fast concept analysis. In G. Stumme, editor,Working with
Conceptual Structures – Contributions to ICCS 2000, pages 152–161,
Germany, 2000. Shaker Verlag.

[4] T. Zimmermann and P. Weißgerber. Preprocessing CVS data for
fine-grained analysis. InProc. Intl. Workshop on Mining Software
Repositories (MSR), Edinburgh, Scotland, May 2004.


