What Makes a Good Bug Report?

Nicolas Bettenburg*
nicbet@st.cs.uni-sb.de

_ Cathrin Weif3*
weiss@st.cs.uni-sb.de

*Department of Computer Science
Saarland University, Saarbriicken, Germany

ABSTRACT

The information in bug reports influences the speed at which bugs
are fixed. However, bug reports differ in their quality of informa-
tion. In order to determine the elements that developer widely use
to fix bugs and the problems frequently encountered, we conducted
a survey among APACHE, ECLIPSE, and MOZILLA developers.

The analysis of the 156 responses shows that steps to reproduce
and stack traces are most sought after, while inaccurate steps to re-
produce and incomplete information pose the largest hurdles. This
insight is helpful to design new bug tracking tools that guide re-
porters at providing more helpful information.

Our CUEZILLA prototype is such a tool and provides reporters
with feedback on the quality of new bug reports and recommends
to add missing elements. We trained CUEZILLA on a sample of
289 bug reports, rated by developers as part of the survey. In our
evaluation, CUEZILLA was able to predict the quality of 31-48% of
bugs reports accurately.

1. INTRODUCTION

Bug reports are vital for any software development. They allow
users to inform developers of the problems encountered while us-
ing a software. Bug reports typically contain a detailed description
of a failure and occasionally hint at the location of the fault in the
code (in form of patches or stack traces). However, bug reports
vary in their quality of content; often providing inadequate or in-
correct information. Thus, developers sometimes have to face bugs
with descriptions such as “Sem Web” (APACHE bug #12324563),
“wqqwqw” (ECLIPSE bug #145133), or “nuff said” (MOZILLA bug
#6069). It is no surprise that developers are slowed down by poorly
written bug reports because identifying the problem from such re-
ports takes more time.

In this paper, we extract the notion of quality of bug reports from
the perspective of developers. Several factors impact the quality of
bug reports such as length of description, formatting, and presence
of stack traces and attachments (such as screenshots). In order to
find out which factors matter most, we asked 867 developers from

$Contact authors are Rahul Premraj and Thomas Zimmermann.

Technical Report. Saarland University, Saarbriicken, Germany.
Published online on September, 16, 2007.
http://www.st.cs.uni-sb.de/publications/details/bettenburg-tr-2007/

~ Sascha Just*
just@st.cs.uni-sb.de

Rahul Premraj*s
premraj@cs.uni-sb.de

Adrian Schroter*
adrian@st.cs.uni-sb.de

Thomas Zimmermann+é
tz@acm.org

* Department of Computer Science

University of Calgary, Calgary, Alberta, Canada

the APACHE, ECLIPSE, and MOZILLA projects to:

1. Complete a survey on important information in bug reports
and the problems they faced with them. We received a total
of 156 responses to our survey (Section 2).

2. Rate the quality of bug reports from very poor to very good
on a five-point Likert scale [17]. We received a total of 1,248
votes for 289 randomly selected bug reports (Section 3).

By knowing what developers desire in bug reports, it becomes pos-
sible to provide real-time tool support to reporters for furnishing
such information. As expected, most developers regarded steps to
reproduce as the most helpful element in bug reports. Other impor-
tant elements included stack traces and test cases. As a first step
towards better tool support, we developed a prototype CUEZILLA
(see Figure 1) that gauges the quality of bug reports and suggests
additions to bug reports to make them better.

1. CUEZILLA measures the quality of bug reports. We trained
and evaluated CUEZILLA on the 289 bug reports rated by the
developers (Section 4).

2. CUEZILLA provides incentives to reporters. We automati-
cally mined the bug databases for facts such as “Bug reports
with stack traces are fixed sooner than other bugs” (Sec-
tion 5).

To summarize, this paper makes the following contributions:
1. asurvey on the quality of bug reports among 156 developers,
2. the CUEZILLA tool that measures bug report quality, and
3. an automatic approach to mine facts from bug databases.

We conclude this paper with threats to validity (Section 6), related
work (Section 7), and future research directions (Section 8).

Improve your Bug Report:

Bug reports that contain
stacktraces get fixed
sooner.

report by 20%, by adding a
stacktrace, a screenshot, or a
patch.

ﬁ Enhance the quality of your bug

Quality-Meter Did you know?

Figure 1: Mockup of CUEZILLA’s user interface. It recom-
mends improvements to the report (left image). To encourage
the user to follow the advice, CUEZILLA provides facts that are
mined from history (right image).

Contents of bug reports.

Q1: Which of the following items have you previously used when fixing bugs?

Q2: Which three items helped you the most?

Q product Q hardware 0 observed behavior 0 screenshots

0 component Q operating system Q expected behavior Q code examples
Q version O summary Q steps to reproduce Q error reports
Q severity Q build information O stack traces Q test cases

Problems with bug reports. Q3: Which of the following problems have you encountered when fixing bugs?
Q4: Which three problems caused you most delay in fixing bugs?

You were given wrong:
Q product name

U component name

Q version number

Q hardware

U operating system

Q observed behavior

Q expected behavior

There were errors in:
Q code examples

Q steps to reproduce
O test cases

0 stack traces

The reporter used: Others:
0 bad grammar Q duplicates
Q unstructured text 0 spam

Q prose text

Q too long text

U non-technical language
Q no spellcheck

0 incomplete information
Q viruses/worms

Comments.

Q5: Please feel free to share any interesting thoughts or experiences.

Figure 2: The questionnaire presented to APACHE, ECLIPSE, and MOZILLA developers.

2. SURVEY ON BUG QUALITY

To collect facts on how developers use the information in bug re-
ports and what problems they face, we conducted an online survey
among the developers of APACHE, ECLIPSE, and MOZILLA.

2.1 Survey Design

For any survey, the response rate is crucial to draw generalizations
from a population. Keeping a questionnaire short is one key to
a high response rate. In our case, we aimed for a total time of
five minutes, which we also advertised in the invitation email (“we
would much appreciate five minutes of your time”).

Selection of Participants.

Each examined projects’ bug database contains several hundred de-
velopers that are assigned to bug reports. Of these, we selected
only experienced developers for our survey since they have a bet-
ter knowledge of fixing bugs. We defined experienced developers
as those assigned to at least fifty bug reports in their respective
projects. Table 1 presents for each project the number of develop-
ers contacted via personalized email, the number of bounces, and
the number of responses and comments received. The response
rate was highest for MOZILLA at 25%. Our overall response rate
of 19.3% is comparable to other Internet surveys in software engi-
neering, which range from 14% to 20% [22].

The Questionnaire.
Keeping the five minute rule in mind, we chose the following ques-
tions that we grouped into three parts (see also Figure 2):

Contents of bug reports. Which items have developers previously
used when fixing bugs? Which three items helped the most?

Such insight aids in guiding reporters to provide or even fo-
cus on information in bug reports that is most important to
developers. We provided sixteen items selected on the ba-
sis of Eli Goldberg’s bug writing guidelines [10]; or being
standard fields in the BUGZILLA database.

Responders were free to check as many items for the first
question (Q1), but at most three for the second question (Q2),
thus indicating the importance of items.

Table 1: Number of developers, bounces, and responses.
Project

Developers Bounces Responses Comments

APACHE 194 5 34 (18.0%) 12
ECLIPSE 365 29 51 (15.2%) 15
MOZILLA 313 29 71 (25.0%) 21
Total 872 63 156 (19.3%) 48

Problems with bug reports. Which problems have developers en-
countered when fixing bugs? Which three problems caused
most delay in fixing bugs?

Our motivation for this question was to find prominent obsta-
cles that can be tackled in the future by more cautious, and
perhaps even automated, reporting of bugs.

Typical problems are when reporters accidentally provide in-
correct information, for example, an incorrect operating sys-
tem.! Other problems in bug reports include poor use of lan-
guage (ambiguity), bug duplicates, and incomplete informa-
tion. Spam recently has become a problem, especially for the
TRAC issue tracking system. We decided not to include the
problem of incorrect assignments to developers because bug
reporters have little influence on the triaging of bugs.

In total, we provided twenty-one problems that developers
could select. Again, responders were free to check as many
items for the first question (Q3), but at most three for the
second question (Q4).

Comments. What are the thoughts and experiences of developers
with the quality of bug reports?

Parallelism between Questions.

In the first two parts of the survey, constituent questions share the
same items but have different limitations (select as many as you
wish vs. the three most important). We will briefly explain the ad-
vantages of this parallelism using Q1 and Q2 as examples.

'Did you know? In ECLIPSE, 205 bug reports were submitted for
“Windows” but later re-assigned to “Linux”.

Table 2: Importance of items by project. The topmost bar refers to the 33 responses by APACHE developers, the middle bar to the

44 responses by ECLIPSE developers, and lowest bar to the 69 responses by MOZILLA developers.

Contents of bug reports.

observed behavior
(32%, 25%, 39%)

expected behavior
(24%, 5%, 28%)

steps to reproduce
(60%, 88%, 88%)

stack traces

screenshots
(15%, 39%, 18%)

code examples
(23%, 23%, 7%)

error reports
(13%, 13%, 12%)

test cases

E product hardware
(4%, 0%, 8%) (0%, 0%, 0%)
% component operating system

(5%, 0%, 6%) (0%, 0%, 8%)
E version summary

(28%, 2%, 8%) (4%, 6%, 20%)
E severity build information

(0%, 0%, 0%) (0%, 6%, 9%)

AR

nomm

(61%, 75%, 36%) (67%, 34%, 59%)

Problems with bug reports.

You were given wrong: There were errors in:

product name
(0%, 0%, 10%)

component name

(0%, 11%, 18%)
version number
(26%, 33%, 17%)
hardware

(100%, 0%, 33%)
operating system
(50%, 12%, 17%)
observed behavior
(45%, 50%, 50%)

expected behavior
(35%, 11%, 21%)

code examples
(41%, 20%, 11%)

[| steps to reproduce
(78%, 86%, 82%)
E test cases

(30%, 33%, 44%)

stack traces
(100%, 0%, 20%)

gt

The reporter used:

nommmmm

Others:

bad grammar duplicates

(18%, 19%, 12%) E (12%, 7%, 12%)
unstructured text spam

(38%, 12%, 32%) E (0%, 0%, 0%)
prose text M incomplete information
(0%, 0%, 25%) 1 (72%, 90%, 70%)

viruses/worms
(0%, 0%, 0%)

too long text

(27%, 22%, 31%)
non-technical language
(14%, 16%, 20%)
no spellcheck

(0%, 0%, 0%)

Il

1. Consistency check. When fixing bugs, all items that helped a
developer the most (selected in Q2) must have been used pre-
viously (selected in Q1). If this is not the case, i.e., an item
is selected in Q2 but not in Q1, the response is regarded as
inconsistent. Responses from one APACHE, seven ECLIPSE,
and three MOZILLA developers failed the consistency check
and were removed from our analysis.

2. Importance of items. We can additionally infer the impor-
tance of individual items. For instance, for item i, let Q1(i)
be the number of times it was selected in question Q1; and
Q2(i) for question Q2. Then the importance of item i corre-
sponds to the likelihood that item i is selected in Q2, when it
is selected in Q1.

Q2(i)
Q1(i)

Importance(i) =

2.2 Survey Results

In this section, we discuss our findings from the survey responses.
To recall, we received a total of 156 responses, of which 11 were
removed for being inconsistent. The results of our survey are sum-
marized in Tables 2 and 3. In these tables, responses for each item
are annotated as bars (me=——), which can be broken down into
their constituents and interpreted as below (again, explained with
Q1 and Q2 as examples):

m——1 All consistent responses for the project

m— Number of times that ifem was selected in Q1

- Number of times that item was selected in Q1 and Q2

= Number of times that item was selected in Q1 but not Q2

The colored part (mm+=) denotes the count of responses for an
item in question Q1; and the black part (mm) of the bar denotes the
count of responses for the item in both question Q1 and Q2. The
larger the black bar is in proportion to the grey bar, the higher is the
corresponding item’s importance in the developers’ perspective.

In Table 2, three such bars are grouped together for each item.
The topmost bar presents results for APACHE developers; the mid-
dle bar for ECLIPSE developers; and the lowest bar for MOZILLA
developers. The width of each bar accounts for the number of con-
sistent responses received for the individual project. In the table,
the importance for all three projects is listed after every item in
parentheses (left: APACHE; middle: ECLIPSE; right: MOZILLA).

Similarly, in Table 3, we present the results taking all responses
from the three projects for each information item. Each bar is then
interpreted in the same manner as described above.

Contents of Bug Reports.

We see from Tables 2 and 3 that the most widely used items across
projects are steps to reproduce, observed and expected behavior,
stack traces, and test cases. Screenshots are used only by ECLIPSE
and MOZILLA developers, while code examples and error reports
are mostly used by APACHE and ECLIPSE developers. Rarely used
contents include version, summary, and operating system, while
hardware appears to be most seldom used across all projects.

For the importance of items, steps to reproduce stands out for
all three projects. Next in line are stack traces and test cases, both
of which help narrowing down the search space for defects. Ob-
served behavior, albeit weakly, mimics steps to reproduce the bug,
which is why it may be rated important. To our surprise, screen-
shots were not rated high, possibly because they are helpful only
for a subset of bugs, e.g., GUI errors.

Table 3: Average importance of items across all projects (percentage values in parantheses)

Contents of bug reports.

===——1 product (4%) == hardware (0%)
===— component (3%) === operating system (2%)
=—— version (12%) =—— summary (10%)

== severity (0%) == build information (5%)

mm—— observed behavior (32%)
m——— expected behavior (19%)
s Steps to reproduce (78%)
mm— stack traces (57%)

me=—=—1 screenshots (24%)
m=——— code examples (17%)
i===— error reports (12%)
w7 test cases (53%)

Problems with bug reports.

You were given wrong: There were errors in:

=———= product name (3%) =—— code examples (24%)
=—— component name (9%) s steps to reproduce (82%)
s=——— version number (25%) m——— test cases (35%)

——— hardware (44%) ——— stack traces (40%)

=——— operating system (26%)
m=—— observed behavior (48%)
=—— expected behavior (22%)

e=—— bad grammar (16%)

m==—— unstructured text (27%)
= prose text (8%)

m=—— too long text (26%)

=—— non-technical language (16%)
=— no spellcheck (0%)

The reporter used: Others:

== duplicates (10%)

=——— spam (0%)

incomplete information (77%)
——— viruses/worms (0%)

Interesting surprises in these results are the relative low impor-
tance of items such as expected behavior, code examples, summary
and mandatory fields such as version, operating system, product,
and hardware. As pointed out by one of the MOZILLA developers,
not all projects need the information that is provided by mandatory
fields:

“That’s why product and usually even component informa-
tion is irrelevant to me and that hardware and to some degree
[OS] fields are rarely needed as most our bugs are usually
found in all platforms.”

In any case, we advise caution when interpreting these results:
items with low importance in our survey are not totally irrelevant
because they still might be needed to understand, reproduce, or
triage bugs.

Problems with Bug Reports.
Among the problems experienced by developers, incomplete in-
formation was, by far, most commonly encountered. Other com-
mon problems include errors in steps to reproduce and test cases;
bug duplicates; and incorrect version numbers, observed and ex-
pected behavior. Another issue that developers often seemed chal-
lenged by is the fluency in language of the reporter. Most of these
problems are likely to lead developers astray when fixing bugs.
The most severe problems were errors in steps to reproduce
and incomplete information. In fact, in question Q5 many develop-
ers commented on being plagued by bug reports with incomplete
information:

“The biggest causes of delay are not wrong information, but
absent information."

Other major problems included errors in fest cases and observed
behavior. A very interesting observation is that developers do not
care too much about duplicates. Possibly, developers can easily
recognize duplicates, and sometimes even benefit by a different bug
description. As commented by one developer:

“Duplicates are not really problems. They often add useful
information. That this information were filed under a new
report is not ideal thought.”

The low occurrence of spam is not surprising: in BUGZILLA and
JIRA, reporters have to register before they can submit bug reports,
which successfully prevents spam. Lastly, errors in stack traces are
highly unlikely because they are copy-pasted into bug reports, but
this can be a severe problem.

Developer Comments.

We received forty-eight comments in the survey responses. Most
comments stressed the importance of clear, complete, and correct
bug descriptions. However, some revealed additional problems:

Different knowledge levels. “In OSS, there is a big gap with the
knowledge level of bug reporters. Some will include exact
locations in the code to fix, while others just report a weird
behavior that is difficult to reproduce.”

Violating netiquette. “Another aspect is politeness and respect.
If people open rude or sarcastic bugs, it doesn’t help their
chances of getting their issues addressed.”

Complicated steps to reproduce. This problem was pointed out
by several developers: “If the repro steps are so complex that
they’ll require more than an hour or so (max) just to set up
would have to be quite serious before they’ll get attention.”
Another one: “This is one of the greatest reasons that I post-
pone investigating a bug. . . if I have to install software that 1
don’t normally run in order to see the bug.”

Misuse as a debate system. “Bugs are often used to debate the
relative importance of various issues. This debate tends to
spam the bugs with various use cases and discussions there-
within, making it harder to locate the technical arguments
often necessary for fixing the bugs. Some long-lived high-
visibility bugs are especially prone to this.”

Also, some developers pointed out situations where bug reports get
preferred treatment:

Human component. “Another import thing is that devs know you
(because you have filed bug reports before, you discussed
with them on IRC, conferences, ...)”

Another interesting related comment: “Well known reporters
usually get more consideration than unknown reporters, as-
suming the reporter has a pretty good history in bug report-
ing. So even if a “well-known" reporter reports a bug which
is pretty vague, he will get more attention than another re-
porter, and the time spent trying to reproduce the problem
will also be larger.”

Keen bug reporters. A developer wrote about reporters who iden-
tify offending code: “I feel that I should at least put in the
amount of effort that they did; it encourages this behavior.”

50000000
T T T T /

@ c ® ua 8| rosex D onew
=

o T T e anrancement

Based upon
5

ratings

Score 1.8000

(o0
~

>

skip

Results for last

Rate this bug report

Figure 3: Screenshot of Rating Bugs’ Quality Interface

Bug severity. “For me it amounts to a consideration of ‘how seri-
ous is this?’ vs ‘how long will it take me to find/fix it?’. Se-
rious defects get prompt attention but less important or more
obscure defects get attention based on the defect clarity.”

3. RATING BUG REPORTS

After completing the questionnaire, developers were asked to par-
ticipate in a voluntary part of our survey. We presented randomly
selected bug reports from their projects and asked them to rate the
quality of these reports. Being voluntary, we did not mention this
part in the invitation email.

Rating Infrastructure.

The rating system was inspired by Internet sites such as RateMy-
Face [23] and HotOrNot [11]. We drew a random sample of 100
bugs from the projects’ bug database, which were presented one-
by-one to the participants in a random order. They were required to
read through the bug report and rate it on a five-point Likert scale
ranging from very poor (1) to very good (5) (see Figure 3 for a
screenshot). Once they rated a bug report, the screen showed the
next random report and the average quality rating of the previously
rated report on the left. On the right, we provided a skip button,
which as the name suggests, skips the current report and navigates
to the next one. This feature seemed preferable to guesswork on
part of the developers, in cases where they lacked the knowledge
to rate a report. Developers could stop the session at any time or
choose to continue until all 100 bugs had been rated.

These quality ratings by developers served two purposes:

1. They allow us to verify the results of the questionnaire on
concrete examples, i.e., whether reports with highly desired
elements are rated higher for their quality and vice versa.

2. These scores were later used to evaluate our CUEZILLA tool
that measures bug report quality (Section 4).

Rating Results.

The following number of votes for bug reports were received for
the samples of 100 bugs from each project: 229 for APACHE, 397
for ECLIPSE, and 560 for MOZILLA. Figure 4 plots the distribution
of the ratings, which is similar across all projects, with the most
frequent ratings being 3 (average) and 4 (good).

Table 4 lists the bug reports that had the highest and lowest aver-
age ratings in the ECLIPSE sample. Some bugs reports were found
to be of exceptional quality, such as bug report #31021 for which
all three responders awarded a score of very good (5). This report

Bug Report Votes Rating
Tree - Selection listener stops default expansion (#31021) 3 5.00
JControlModel "eats up" exceptions (#38087) 5 4.8
Search - Type names are lost [search] (#42481) 4 450
150M1 withincode type pattern exception (#83875) 5 440
Toolltem leaks Images (#28361) 6 433
Selection count not updated (#95279) 4 225
Outline view should [...] show all project symbols (#108759) 2 2.00
Pref Page [...] Restore Defaults button does nothing (#51558) 6 1.83
[...]<Incorrect /missing screen capture> (#99885) 4 1.75
Create a new plugin using CDT. (#175222) 7 157

Table 4: Developers rated the quality of ECLIPSE bug reports.

L - Projects
o Apache (229)
A Eclipse (397) A
+ Mozilla (560)
Q VAN
(2]
g &
T
14
k]
o
g « 4
8
o
g N
& A
S 4+
A o
o -
T T T T T
1 2 3 4 5

Ratings by Developers

Figure 4: Distribution of ratings by developers

presents a code example and adequately guides the developer on its
usage, and observed behavior.

120030205

Run the following example. Double click on a tree item and
notice that it does not expand.

Comment out the Selection listener and now double click on
any tree item and notice that it expands.

public static void main(String[] args) {
Display display = new Display();
Shell shell = new Shell(display);
[...] (21 lines of code removed)
display.dispose();

(ECLIPSE bug report #31021)

On the other hand, bug report #175222 with an average score of
1.57 is of fairly poor quality. Actually, this is simply not a bug
report and has been incorrectly filed in the bug data base.

I wand to create a new plugin in Eclipse using CDT. Shall it
possible. I had made a R&D in eclipse documentation. I had
get an idea about create a plugin using Java. But i wand to
create a new plugin (user defined plugin) using CDT. After
that I wand to impliment it in my programe. If it possible?.
Any one can help me please...

(ECLIPSE bug report #175222)

Concordance between Developers.

We also investigated the concordance between developers on their
evaluation of the quality of bug reports. It seems reasonable to
assume that developers with comparable experiences have compat-
ible views on the quality of bug reports. However, there may be
exceptions to our belief or it may simply be untrue. We statistically
verify this by examining the standard deviations of quality ratings
by developers (0raing) for the bugs reports. Larger values of oraging
indicate higher differences between developers’ view of quality for
a bug report. Of these, 289 bugs rated across all three projects, only
23 (which corresponds to 8%) had oragng > 1.5.

These results show that developers generally agree on the quality
of bug reports. Thus, it is feasible to use their ratings to build a
tool that learns from bug reports to measure the quality of new bug
reports. We present a prototype of such a tool in the next section.

4. PREDICTING BUG REPORT QUALITY

Now that we know what is important in bug reports, we proceed
to show how such knowledge can be applied. Humans can ben-
efit from cues while undertaking tasks, which was demonstrated
in software engineering by Passing and Shepperd [21]. They ex-
amined how subjects revised their cost estimates of projects upon
being presented checklists relevant to estimation.

Our conjecture is that bug reporters can provide better reports
with similar assistance. As a first step towards assistance, we de-
veloped a prototype tool — CUEZILLA, that measures the quality
of bug reports in real-time; and provides suggestions to reporters
on how to enhance the quality. For example, “Have you thought
about adding a screenshot to your bug report?”

This section presents details on how CUEZILLA works and then,
reports results of its evaluation at measuring quality of bugs re-
ports. In order to create recommendations, CUEZILLA first repre-
sent each bug report as a feature vector (Section 4.1). Then it uses
supervised learning to train models (Section 4.2) that measure the
quality of bug reports (Section 4.3). These models can also quan-
tify the increase in quality, when elements are added to bug reports
(Section 4.4).

4.1 Input Features

Our CUEZILLA tool measures quality of bug reports on the basis
of their contents. From the survey, we know the most desired fea-
tures in bug reports by developers. Endowed with this knowledge,
CUEZILLA first detects the features listed below. For each feature
a score is awarded to the bug report, which is either binary (e.g.,
attachment present or not) or continuous (e.g., readability).

Itemizations. In order to recognize itemizations in bug reports,
we checked whether several subsequent lines started with an
itemization character (such as —, *, or +). To recognize enu-
merations, we searched for lines starting with numbers or
single characters that were enclosed by parenthesis or brack-
ets or followed by a single punctuation character.

Keyword completeness. We reused the data set provided by Andy
Ko et al. [15] to define a quality-score of bug reports based on
their content. In a first step, we removed stop words, reduced
the words to their stem, and selected words occurring in at
least 1% of bug reports. Next we categorized the words into
the following groups:

— action items (e.g., open, select, click)
— expected and observed behavior (e.g., error, missing)
— steps to reproduce (e.g., steps, repro)

— build-related (e.g., build)
— user interface elements (e.g., toolbar, menu, dialog)

In order to assess the completeness of a bug report, we com-
puted for each group a score based on the keywords present
in the bug report. The maximum score of 1 for a group is
reached when a keyword is found.

In order to obtain the final score (which is between 0 and 1),
we averaged the scores of the individual groups.

For the following features, in addition to the description of the bug
report, we analyze the attachments that were submitted by the re-
porter within 15 minutes after the creation of the bug report.

Code Samples. We identify C++ and JAVA code examples using
technqiues from island parsing [19]. Currently, our tools can
recognize declarations (for classes, methods, functions, and
variables), comments, conditional statements (such as i f and
switch), and loops (such as for and while).

Stack Traces. We currently can recognize JAVA stack traces, GDB
stack traces, and MOZILLA talkback data. Stack traces are
easy to recognize with regular expressions: they consist of a
start line (that sometimes also contains the top of the stack)
and trace lines.

Patches. In order to identify patches in bug reports and attach-
ments we again used regular expressions. They consist of
several start lines (which file to patch) and blocks (which are
the changes to make) [18].

Screenshots. We identify the type of an attachment using the file
tool in UNIX. If an attachment is an image, we recognize it
as a screenshot. If the file is recognized as ASCII text, we
process the file and search for code examples, stack traces,
and patches (see above).

After cleaning the description of a bug report from source code,
stack traces, and patches, we compute its readability using the GNU
style tool.

Readability. The style tool “analyses the surface characteristics of
the writing style of a document” [7], which means it does not
use grammatical correctness to assess how difficult a text is to
read. In contrast it looks for the number of syllables per word
and the length of sentences. Readability measures are used
by Amazon.com to inform customers about the difficulty of
books and by the US Navy to ensure readability of technical
documents [14].

In general, the higher a readability score the more complex
a text is to read. Several readability measures return val-
ues that correspond to school grades. These grades tell how
many years of education a reader should have before reading
the text without difficulties. For our experiments we used
the following seven readability measures: Kincaid, Auto-
mated Readability Index (ARI), Coleman-Liau, Flesh, Fog,
Lix, and SMOG Grade.

4.2 Evaluation Setup

Out of the 300 bug reports in the sample, developers rated 289 bug
reports at least once. These reports were used to train and evaluate
CUEZILLA by building supervised learning models. We used the
following three models:

*This paper has a SMOG-Grade of 13, which requires the reader to
have some college education. Publications with a similar SMOG-
grade are often found in the New York Times.

Table 5: The results of the classification by CUEZILLA (using
stepwise linear regression) compared to the developer rating.

Observed
Measured very poor poor medium good very good
very poor [< 1.8] 0 0 4 0 0
poor [1.8,2.6] 0 2 11 1 1
medium [2.6,3.4] 1 0 29 6 2
good (3.4,4.2] 0 0 17 12 4
very good [> 4.2] 0 0 4 5 1

— Generalized linear regression,
— Stepwise linear regression, and

— Support vector machines (SVM)

Each models uses the scores from the features described in (Sec-
tion 4.1) as input variables; and tries to predict the averaged devel-
oper ratings as output variable. We evaluated CUEZILLA using the
following two setups:

Within project. To test how well models predict within a project,
we used the leave-one-out cross-validation technique. This
means that for a given project, the quality of each bug report
is predicted using all other bug reports to train the model.

Across projects. We also tested if models from one project can be
transfered to others. To exemplify, we built a model from all
rated bug reports of project A, and applied it to predict the
quality of all rated bugs in project B.

Table 5 shows the results for ECLIPSE bug reports and stepwise
linear regression using leave-one-out cross-validation. The column
names in the table indicate the average rating of the bug report by
developers (Observed); the row names denote the quality measured
by CUEZILLA (Measured). The ranges within the square brackets
next to the row names indicate the equidistant mapping of predicted
values to the Likert scale.

The counts in the diagonal cells, with a dark gray background,
indicate the number of bug reports for which there was complete
agreement between CUEZILLA and developers on their quality. In
Table 5, this is true for 44% of the bug reports. In addition, we also
look at predictions that are off by one from the developer ratings.
These are the cells in the tables that are one row, either to the left
or right of the diagonal. Using perfect and off-by-one agreements,
the accuracy increases to 87%.

4.3 Results of Experiments

Evaluation within Projects.

Results from predicting the quality of bug reports using other bug
reports from the same project (with leave-one-out cross-validation)
are presented in Table 6. The first number is the percentage of bug
reports with perfect agreement on the quality between CUEZILLA
and the developers, while the number in the parentheses indicates
the percentage for off-by-one accuracy.

Of the three models used, support vector machines appear to pro-
vide more number of perfect agreements than other techniques. In
case of off-by-one agreements, stepwise linear regression outper-
forms the two other models. But on the whole, all three models
seem to perform comparably across the projects. The figures also
show that a higher proportion of perfect agreements were made for
ECLIPSE bug reports than for APACHE and MOZILLA.

Table 6: Leave-one-out cross-validation within projects.
APACHE ECLIPSE MOZILLA
Support vector machine 28% (82%) 48% (91%) 37% (82%)

Generalized linear regression 28% (82%) 40% (87%) 29% (80%)
Stepwise linear regression 31% (86%) 44% (87%) 34% (85%)

Table 7: Validation across projects.

Testing on

APACHE ECLIPSE MOZILLA
Tra l n in g APAC HE E E E (Z:'[};gfvlse
SVM
et B B B 0
SVM
voua [E] B 8

Evaluation across Projects.

In Table 7, we present the results from the across projects evalu-
ation setup. The bars in the table can be interpreted in a similar
fashion as before in Tables 2 and 3. Here, the bars have the follow-
ing meanings.

m—— Number of unique bugs rated by developers
- Number of perfect agreements
= Number of off-by-one agreements

The accuracy of CUEZILLA is represented by the black bar (mm) and
the off-by-one accuracy by the overall shaded part (wm=). In order
to facilitate comparison, Table 7 also contains the results from the
within project evaluation.

The results in Table 7 show that models trained from one project
can be transferred to other projects without much loss in predic-
tive power. However, we can observe more variability in prediction
accuracy for stepwise and generalised linear regression. It is inter-
esting to note that models using data from APACHE and MOZILLA
are both good at predicting quality of ECLIPSE bug reports. One
can infer from these results that CUEZILLA’s models are largely
portable across projects to predict quality, but they are best applied
within projects.

4.4 Recommendations by CUEZILLA

The core motivation behind CUEZILLA is to help reporters file bet-
ter quality bug reports. For this, its ability to detect the presence
of information features can be exploited to tip reporters on what
information to add. This can be achieved simply by recommend-
ing additions from the set of absent information, starting with the
feature that contributes to the quality further by the largest margin.
These recommendations are intended to serve as cues or reminders
to reporters of the possibility to add certain types of information;
likely to improve bug report quality.

The left panel of Figure 1 illustrates the concept. The text in the
panel is determined by investigating the current contents of the re-
port, and then determining that would be best, for instance, adding
a code sample to the report. As and when new information is added
to the bug report, the quality meter revises its score.

Our evaluation of CUEZILLA shows much potential for incorpo-
rating such a tool in bug tracking systems. CUEZILLA is able to
measure quality of bug reports within reasonable accuracy. How-
ever, the presented version of CUEZILLA is an early prototype and
we plan to further enhance the tool and conduct experiments to
show its usefulness. We briefly discuss our plans in Section 8.

S. INCENTIVE FOR REPORTERS

If CUEZILLA tips reporters on how to enhance quality of their bug
reports, one question comes to mind — “What are the incentives
for reporters to do so?” Of course, well described bug reports
help comprehending the problem better; consequently increasing
the likelihood of the bug getting fixed. But to explicitly show evi-
dence of the same to reporters, CUEZILLA randomly presents rele-
vant facts that are statistically mined from bug data bases. In this
section, we elaborate upon how this is executed, and close with
some facts found in the bug data bases of the three projects.

Data Preparation.

To reduce the complexity of mining the several thousand bug re-
ports filed in bug data bases, we sampled 50,000 bugs from each
project. These bugs had various resolutions, such as FIXED, DU-
PLICATE, MOVED, WONTFIX, and WORKSFORME. Then, we com-
puted the scores for all items listed in Section 4.1 for each of the
150,000 bugs. To recall, the scores for some of the items are con-
tinuous values, while others are binary.

Relation between Contents and Resolutions.

A bug being fixed is a mark of success for both, developers and
reporters. But what items in bug reports increase the chances of
the bug getting fixed? We investigate this on the sample of bugs
described above for each project.

First, we grouped bug reports by their resolutions as: FIXED,
DUPLICATE, and OTHERS. The FIXED resolution is most desired
and the OTHERS resolution—that includes MOVED, WONTFIX and
like—are largely undesired. We chose to examine DUPLICATE as a
separate group because this may potentially reveal certain traits of
such bug reports. Additionally, as pointed above, duplicates may
provide more information about the bug to developers.

Then, for binary valued features, we then performed chi-square
tests (p < .05) on the contingency tables of the three resolution
groups and the individual features for each project separately. The
tests’ results indicate whether the presence of the features in bug
reports significantly determine the resolution category of the bug.
For example, the presence of stack traces significantly increases the
likelihood of a FIXED desirable resolution.

On the other hand, for features with continuous valued scores,
we performed an Kruskal-Wallis test (p < .05) on the distribution
of scores across the three resolution groups to check whether the
distribution significantly differ from one group to another. For ex-
ample, bug reports with FIXED resolutions have significantly lower
SMOG-grades than reports with OTHERS resolutions; indicating
that reports are best written using simple language constructs.

Relation between Contents and Lifetimes.

Another motivation for reporters is to see what items in bug re-
ports help making the bugs’ lifetimes shorter. Such motivations are
likely to incline reporters to furnish more helpful information. We
mined for such patterns on a subset of the above 150,000 bugs with
resolution FIXED only.

For items with binary scores, we grouped bug reports by their
binary scores, for example, bugs containing stack traces and bugs
not containing stack traces. We compared the distribution of the
lifetimes of the bugs and again, performed a Kruskal-Wallis test
(p < .05) to check for statistically significant distributions. This
information would help encourage reporters to include items that
can reduce lifetimes of the bugs.

In the case of items with continuous valued scores, we first dis-
cretized the lifetime of bugs into three pairs: [< 1 hour, > 1 hour];

[1 hour — 1 day, > 1 day]; and [1 day — 1 week, > 1 week], and then
binned the bugs into the respective categories by lifetimes. We then
compared the distribution of the item scores across all three pairs
to using the Kruskal-Wallis test (p < .05) to reveal statistically sig-
nificant patterns. Again, differences in distributions could be used
to motivate users to aim at achieving scores for their reports that
are likely to have lower lifetimes.

Results.

This section lists some of the key statistically significant patterns
found in the sample of 150,000 bug reports. These findings can be
presented in the interface of the bug tracking systems, as demon-
strated in the right figure in Figure 1. Our key findings from the
investigation are listed below:

Did you know

e Bug reports containing stack traces get fixed sooner.
(APACHE/ECLIPSE/MOZILLA)

e Bug reports that are easier to read have lower lifetimes.
(APACHE/ECLIPSE/MOZILLA)

e Including code samples in your bug report increases the
chances of it getting fixed. (MOZILLA)

Each of these findings suggest a way for reporters to increase the
likelihood of their bugs to either get fixed at all, or get fixed faster.
Keen reporters are likely to pick up on such cues since this can
lessen the amount of time they have to deal with the bug.

6. THREATS TO VALIDITY

For our survey we identified the following threats to validity.

Our selection of developers was constrained to only experienced
developers; in our context, developers who had at least 50 bugs
assigned to them. While this skews our results towards developers
who frequently fix bugs, they are also the ones who will benefit
most by an improved quality of bug reports.

A related threat is that to some extent our survey operated on
a self-selection principle: the participation in the survey was vol-
untarily. As a consequence, the results might be skewed towards
people that are likely to answer the survey, such as developers with
extra spare time—or who care about the quality of bug reports.

Avoiding the self-selection principle is almost impossible in an
open-source context. While a sponsorship from the Foundations of
APACHE, ECLIPSE, and MOZILLA might have reduced the amount
of self-selection, it would not have eliminated skew. As pointed
out by Singer and Vinson the decision of responders to participate
“could be unduly influenced by the perception of possible benefits
or reprisals ensuing from the decision” [25].

In order to take as little time as possible off developers, we con-
strained the selection of items in our survey. While we tried to
achieve completeness, we were aware that our selection was not
exhaustive of all information used and problems faced by develop-
ers. Therefore, we encouraged developers to provide us with ad-
ditional comments, to which we received 48 responses. We could
not include the comments into the statistical analysis; however, we
studied and discussed them in Section 2.2.

As with any empirical study, it is difficult to draw general con-
clusions because any process depends on a large number of con-
text variables [3]. In our case, we contacted developers of three
large open-source initiatives APACHE, ECLIPSE, and MOZILLA. We

are confident that our findings also apply to smaller open-source
projects. However, we do not contend that they are transferable to
closed-software projects (which have no patches and rarely stack
traces). In future work, we will search for evidence for this hypoth-
esis and point out the differences in quality of bug-reports between
open-source and closed-source development.

7. RELATED WORK

To our knowledge, no other work has specifically studied the qual-
ity of bug reports or suggested a quality-meter tool for bug reports.
So far, only anecdotical evidence has been reported, for instance,
Joel Spolsky observed that funny bug report has higher chances of
getting addressed [26].

In a workshop paper, we presented preliminary results for the
ECLIPSE project using a handcrafted prediction model [4]. In this
paper we improve our previous results as follows: (1) training of
prediction models for bug quality, (2) fully-fledged evaluation of
CUEZILLA'’s predictions within and across projects, and (3) auto-
matic mining of facts that serve as incentives for bug reporters.
The survey and all experiments were carried out for two additional
projects: APACHE and MOZILLA.

Several studies used bug reports to automatically assign devel-
opers to bug reports [2, 6], assign locations to bug reports [5], track
features over time [9], recognize bug duplicates [8, 24], and predict
effort for bug reports [28]. All these approaches should benefit by
our measure for the quality of bug reports since training only with
high-quality bug reports will likely improve their predictions.

In order to inform the design of new bug reporting tools, Ko et
al. [15] conducted a linguistic analysis of the titles of bug reports.
They observed a large degree of regularity and a substantial num-
ber of references to visible software entities, physical devices, or
user actions. Their results suggest that future bug tracking systems
should collect data in a more structured way.

In 2004, Antoniol et al. [1] pointed out the lack of integration
between version archives and bug databases. Providing such an
integration allows queries to locate the most faulty methods in a
system. While the lack of integration was problematic a few years
ago, things have changed in the meantime: the Mylyn tool by Ker-
sten and Murphy [13] allows to attach a task context to bug reports
so that changes can be tracked on a very fine-grained level.

According to the results of our survey, errors in steps to repro-
duce are one of the biggest problems faced by developers. This
demonstrates the need for tools that can capture the execution of a
program on user-side and replay it on developer-side. While there
exist several capture/repay techniques (such as [20, 12, 29]), their
user-orientation and scalability can still be improved.

Not all bug reports are generated by humans. Some bug-finding
tools can report violations of safety-policies and annotate them with
back-traces or counterexamples. Weimer suggested to addition-
ally provide patches and presented an algorithm to construct such
patches (in the presence of model-checking and safety-policy in-
formation). He found that automatically generated “reports also
accompanied by patches were three times as likely to be addressed
as standard bug reports” [27].

Furthermore, users can help developers to fix bugs without filing
bug reports. Liblit et al. introduced statistical debugging [16]. They
distribute specially modified versions of software, which monitor
their own behavior while they run and report back how they work.
This information is then used to isolated bugs using statistical tech-
niques. Currently, their approach works best for crashes, but one
can imagine a “report back” button that send the state of a (failing)
program. Still, it is unclear how to extract sufficient information
for rarely occurring bugs.

8. CONCLUSION AND CONSEQUENCES

Well written bug reports are likely to get more attention among de-
velopers than poorly written ones. In order to get a notion of bug
report quality from the developers’ perspectives, we conducted a
survey among APACHE, ECLIPSE, and MOZILLA developers. The
results suggest that, across all three projects, steps to reproduce and
stack traces are most useful in bug reports. The most severe prob-
lems encountered by developers are errors in steps to reproduce, in-
complete information, and wrong observed behavior. Surprisingly,
bug duplicates are encountered often but not considered as harmful
by developers.

Additionally, the developers rated bug reports on their quality on
a scale from one (poor quality) to five (excellent quality). Based
on the results from the survey, we developed a tool, CUEZILLA that
measures the quality of bug reports in real-time. This tool can rate
up to 41% bug reports in complete agreement with developers. Ad-
ditionally, it is also programmed to recommend what additions can
be made to bug reports to make their quality better. As incentives
for doing so, CUEZILLA automatically mines patterns that are rele-
vant to fixing bugs and presents them to reporters. In the long term,
an automatic measure of bug report quality in bug tracking systems
can ensure that new bug reports meet a certain quality level; and
also serve as a data cleaning technique for research on bug reports.
Our future work is thus as follows:

Problematic contents in reports. Currently, we award scores for
the presence of desired contents, such as itemizations and
stack traces. We plan to extend CUEZILLA to identify prob-
lematic contents such as errors in steps to reproduce and code
samples in order to warn the reporter in these situations.

Usability studies for new bug reporting tools. In Section 2.2 we
listed several comments by developers about problems with
existing bug reporting tools. To address these problems, we
plan to develop prototypes for new, improved reporting tools,
which we will test with usability studies.

Impact on other research. Several approaches used bug reports
to automatically assign developers to bug reports [2, 6], as-
sign locations to bug reports [5], recognize bug duplicates [8,
24], and predict effort for bug reports [28]. Does training
only with high-quality bug reports improve their predictions?

Additionally, aiding reporters in providing better bug reports can
go a long way in structuring bug reports. Such structured text may
also be beneficial to researchers who use them for experiments. In
effect, in the short- to medium-term, data quality in bug databases
would generally increase, in turn providing more reliable and con-
sistent data to work with.

To learn more about our work in mining software archives, visit

http://www.softevo.org/

9. ACKNOWLEDGMENTS

Many thanks to Christian Lindig, Stephan Neuhaus, and Andreas
Zeller for their valuable discussions and helpful suggestions on
earlier revisions of this paper. A special thanks to all developers
who responded to our survey. When this research was carried out,
Thomas Zimmermann was with Saarland University and funded by
the DFG Research Training Group “Performance Guarantees for
Computer Systems”.

10.
(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES
G. Antoniol, H. Gall, M. D. Penta, and M. Pinzger. Mozilla:
Closing the circle. Technical Report TUV-1841-2004-05,
Technical University of Vienna, 2004.
J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In ICSE '06: Proceeding of the 28th International
Conference on Software Engineering, pages 361-370, 2006.
V. R. Basili, F. Shull, and F. Lanubile. Building knowledge
through families of experiments. IEEE Trans. Software Eng.,
25(4):456-473, 1999.
N. Bettenburg, S. Just, A. Schréter, C. Weil3, R. Premraj, and
T. Zimmermann. Quality of bug reports in Eclipse. In
Proceedings of the 2007 OOPSLA Workshop on Eclipse
Technology eXchange (ETX). ACM Press, October 2007. To
appear.
G. Canfora and L. Cerulo. Fine grained indexing of software
repositories to support impact analysis. In MSR "06:
Proceedings of the 2006 International Workshop on Mining
Software Repositories, pages 105-111, 2006.
G. Canfora and L. Cerulo. Supporting change request
assignment in open source development. In SAC ’06:
Proceedings of the 2006 ACM Symposium on Applied
Computing, pages 1767-1772, 2006.
L. Cherry and W. Vesterman. Writing tools - the STYLE and
DICTION programs. Technical report, AT&T Laboratories,
1980.
D. Cubranic and G. C. Murphy. Automatic bug triage using
text categorization. In SEKE 2004: Proceedings of the
Sixteenth International Conference on Software Engineering
& Knowledge Engineering, pages 92-97, 2004.
M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating
bug report data for feature tracking. In Proceedings of the
10th Working Conference on Reverse Engineering (WCRE
2003), 13-16 November 2003, Victoria, Canada, pages
90-101, 2003.
E. Goldberg. Bug writing guidelines.
https://bugs.eclipse.org/bugs/bugwritinghelp.html. Last
accessed 2007-08-04.
HOT or NOT. http://www.hotornot.com/. Last accessed
2007-09-11.
S. Joshi and A. Orso. SCARPE: A Technique and Tool for
Selective Record and Replay of Program Executions. In
Proceedings of the 23rd IEEE International Conference on
Software Maintenance (ICSM 2007), Paris, France, October
2007.
M. Kersten and G. C. Murphy. Using task context to improve
programmer productivity. In Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering (FSE 2006), pages 1-11, 2006.
J. P. Kincaid, R. P. Fishburne, Jr., R. L. Rogers, and B. S.
Chissom. Derivation of new readability formulas (automated
readability index, fog count and flesch reading ease formula)
for navy enlisted personnel. Technical report, Research
Branch Report 8-75, Millington, TN: Naval Technical
Training, U. S. Naval Air Station, Memphis, TN, 1975.
A.J. Ko, B. A. Myers, and D. H. Chau. A linguistic analysis
of how people describe software problems. In Proceedings of
the 2006 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC 2006), pages 127-134,
2006.
B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable statistical bug isolation. In PLDI '05: Proceedings

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, pages 15-26, New
York, NY, USA, 2005. ACM Press.

R. Likert. A technique for the measurement of attitudes.
Archives of Psychology, 140:1-55, 1932.

D. MacKenzie, P. Eggert, and R. Stallman. Comparing and
Merging Files with GNU Diff and Patch. Network Theory
Ltd., 2003.

L. Moonen. Generating robust parsers using island
grammars. In Proceedings of the Eighth Working Conference
on Reverse Engineering (WCRE), pages 13—, 2001.

A. Orso, S. Joshi, M. Burger, and A. Zeller. Isolating relevant
component interactions with JINSI. In Proc. of Fifth
International Workshop on Dynamic Analysis (WODA 2007),
May 2006.

U. Passing and M. J. Shepperd. An experiment on software
project size and effort estimation. In ISESE, pages 120-131.
IEEE Computer Society, 2003.

T. Punter, M. Ciolkowski, B. Freimut, and I. John.
Conducting on-line surveys in software engineering. In Proc.
of International Symposium on Empirical Software
Engineering (ISESE ’03), pages 80-88, 2003.
Ratemyface.com. http://www.ratemyface.com/. Last
accessed 2007-09-11.

P. Runeson, M. Alexandersson, and O. Nyholm. Detection of
duplicate defect reports using natural language processing. In
ICSE ’07: Proceedings of the 29th International Conference
on Software Engineering, pages 499-510, 2007.

J. Singer and N. G. Vinson. Ethical issues in empirical
studies of software engineering. IEEE Trans. Software Eng.,
28(12):1171-1180, 2002.

J. Spolsky. Joel on Software: And on Diverse and
Occasionally Related Matters That Will Prove of Interest to
Software Developers, Designers, and Managers, and to
Those ... Ill-Luck, Work with Them in Some Capacity.
APress,US, 2004.

W. Weimer. Patches as better bug reports. In GPCE "06:
Proceedings of the 5th international conference on
Generative programming and component engineering, pages
181-190, New York, NY, USA, 2006. ACM Press.

C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How
long will it take to fix this bug? In MSR '07: Proceedings of
the Fourth International Workshop on Mining Software
Repositories, 2007.

G. Xu, A. Rountev, Y. Tang, and F. Qin. Efficient
checkpointing of java software using context-sensitive
capture and replay. In ESEC-FSE ’07: Proceedings of the 6th
Jjoint meeting of the european software engineering
conference and the 14th ACM SIGSOFT symposium on
Foundations of software engineering, pages 85-94, New
York, NY, USA, 2007. ACM Press.

