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Abstract. When applying search-based software engineering (SBSE) techniques
one is confronted with a multitude of different parameters that need to be chosen:
Which population size for a genetic algorithm? Which selection mechanism to
use? What settings to use for dozens of other parameters? This problemnot only
troubles users who want to apply SBSE tools in practice, but also researchers
performing experimentation – how to compare algorithms that can have different
parameter settings? To shed light on the problem of parameters, we performed
the largest empirical analysis on parameter tuning in SBSE to date, collecting
and statistically analysing data from more than a million experiments. As case
study, we chose test data generation, one of the most popular problemsin SBSE.
Our data confirm that tuning does have a critical impact on algorithmic perfor-
mance, and over-fitting of parameter tuning is a dire threat to external validity
of empirical analyses in SBSE. Based on this large empirical evidence, we give
guidelines on how to handle parameter tuning.
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1 Introduction

Recent years have brought a large growth of interest in search based software engineer-
ing (SBSE) [1], especially in software testing [2]. The fieldhas even matured to a stage
where industrial applications have started to appear [3, 4]. One of the key strengths
of SBSE leading to this success is its ability of automatically solving very complex
problems where exact solutions cannot be deterministically found in reasonable time.
However, to make SBSE really usable in practice, no knowledge of search algorithms
should be required from practitioners who want to use it, as such knowledge is highly
specialized and might not be widespread. In other words, SBSE tools should be treated
as “black boxes” where the internal details are hidden, otherwise technology transfer to
industrial practice will hardly be feasible.

One of the main barriers to the use of a search algorithm in SBSE is tuning. A search
algorithm can have many parameters that need to be set. For example, to use a genetic



algorithm, one has to specify the population size, type of selection mechanism (roulette
wheel, tournament, rank-based, etc.), type of crossover (single point, multi-point, etc.),
crossover probability, type and probability of mutation, type and rate of elitism, etc.
The choice of all these parameters might have a large impact on the performance of a
search algorithm. In the worst case, an “unfortunate” parameter setting might make it
impossible to solve the problem at hand.

Is it possible to find anoptimal parameter setting, to solve this problem once and
for all? Unfortunately, this is not possible, and this has been formally proven in the
No Free Lunch(NFL) theorem [5]: All algorithms perform on average equally on all
possible problems. For any problem an algorithm is good at solving, you can always find
another problem for which that algorithm has worse performance than other algorithms.
Because the same algorithm with different parameter settings can be considered as a
family of different algorithms, the NFL theorem applies to tuning as well. However,
the NFL is valid only whenall possible search problems are considered. SBSE only
represents a subset of all possible problems, so it could be possible to find “good”
parameter settings that work well for this subset. Such a known good configuration is
important when handing tools over to practitioners, as it isnot reasonable to expect
them to tune such tools as that would require deep knowledge of the tools and of search
algorithms in general. Similarly, it is also important froma research perspective to avoid
skewing results with improper parameter settings.

In this paper, we present the results of the largest empirical analysis of tuning in
SBSE to date to address the question of parameter tuning. We chose the scenario of
test data generation at unit test level because it is one of the most studied problems
in SBSE [1]. In particular, we consider test data generationfor object-oriented soft-
ware using the EVOSUITE tool [6], where the goal is to find the minimal test suite that
maximizes branch coverage (having a small test suite is important when no automated
oracles are available and results need to be manually checked by software testers). We
chose to consider five parameter settings (e.g., populationsize and crossover rate). To
make the experiments finish in feasible time, we only considered 20 software classes as
case study (previous empirical analyses of EVOSUITE were based on thousands of dif-
ferent classes [6]). Still, this led to more thanone millionexperiments that took weeks
to run even on a cluster of computers.

Although it is well known that parameter tuning has impact onthe performance of
search algorithms, there is little empirical evidence in the literature of SBSE that tries
to quantify its effects. The results of the large empirical analysis presented in this paper
provide compelling evidence that parameter tuning is indeed critical, and unfortunately
very sensitive to the chosen case study. This brings to a compulsory use ofmachine
learning techniques [7] if one wants to evaluate tuning in a sound scientific way. Fur-
thermore, a problem related to tuning that is often ignored is thesearch budget. A prac-
titioner might not want to deal with the choice of a genetic algorithm population size,
but the choice of the computational time (i.e., how long she/he is willing to wait before
the tool gives an output) is something that has a strong impact on tuning. To improve
performance, tuning should be a function of the search budget, as we will discuss in
more details in the paper.



This paper is organized as follows. Section 2 discusses related work on tuning. The
analyzed search algorithm (a genetic algorithm used in EVOSUITE ) is presented in
Section 3 with a description of the parameters we investigate with respect to tuning.
Section 4 presents the case study and the empirical analysis. Guidelines on how to
handle parameter tuning are discussed in Section 5. Threatsto validity are discussed in
Section 6. Finally, Section 7 concludes the paper.

2 Related Work

Eibenet al. [8] presented a survey on how to control and set parameter values of evo-
lutionary algorithms. In their survey, several techniquesare discussed. Of particular
interest is the distinction betweenparameter tuningandparameter control: The for-
mer deals with how to choose parameter valuesbeforerunning a search algorithm. For
example, should we use a population size of 50 or 100? On the other hand, parameter
control deals with how to change parameter valuesduring the run of a search algorithm.
A particular value that is good at the beginning of the searchmight become sub-optimal
in the later stages. For example, in a genetic algorithm one might want to have a high
mutation rate (or large population size) at the beginning ofthe search, and then decrease
it in the course of the evolution; this would be conceptuallysimilar to temperature cool-
ing in simulated annealing. In this paper we only deal with parameter tuning. Parameter
control is a promising area of research, but mainly unexplored in SBSE.

Recently, Smit and Eiben [9] carried out a series of experiments on parameter tun-
ing. They consider the tuning of six parameters of a genetic algorithm applied to five
numerical functions, comparing three settings: a default setting based on “common wis-
dom”, the best tuning averaged on the five functions (which they callgeneralist), and
the best tuning for each function independently (specialist). Only one fixed search bud-
get (i.e., maximum number of fitness evaluations as stoppingcriterion) was considered.
Our work shares some commonalities with these experiments,but more research ques-
tions and larger empirical analysis are presented in this paper (details will be given in
Section 4).

In order to find the best parameter configuration for a given case study, one can run
experiments with different configurations, and then the configuration that gives highest
results on average can be identified as best for that case study. However, evaluating all
possible parameter combinations is infeasible in practice. Techniques to select only a
subset of configurations to test that have high probability of being optimal exist, for
example regression trees (e.g., used in [10]) and response surface methodology (e.g.,
used in [11]). The goal of this paper is to study the effects ofparameter tuning, which
includes also the cases of sub-optimal choices. Such type ofanalysis requires an exhaus-
tive evaluation. This is done only for the sake of answering research questions (as for
example to study the effects of a sub-optimal tuning). In general, a practitioner would
be interested only in the best configuration.

If a practitioner wants to use a search algorithm on an industrial problem (not nec-
essarily in software engineering) that has not been studiedin the literature, then she
would need to tune the algorithm by herself, as default settings are likely to bring to
poor performance. To help practitioners in making such tuning, there exist frameworks



such as GUIDE [12]. The scope of this paper is different: we tackleknownSBSE prob-
lems (e.g., test data generation for object-oriented software). For known problems, it is
possible to carry out large empirical analyses in laboratory settings.

There might be cases in which, even on known problems, it might be useful to let
the practitioners perform/improve tuning (if they have enough knowledge about search
algorithms), and tools like EvoTest support this [3]. As an example, a SBSE problem
instance type might need to be solved several times (e.g., a software system that is
slightly modified during time). Another example could be to do tuning on a sub-system
before tackling the entire system (which for example could be millions of lines of code).
Whether such cases occur in practice, and whether the tuning can be safely left to prac-
titioners, would require controlled empirical studies in industrial contexts. As such em-
pirical evidence is currently lacking in the literature of SBSE, we are in the conditions
to claim that parameter tuning is needed before releasing SBSE tool prototypes.

3 Search Algorithm Setting

We performed our experiments in a domain of test generation for object-oriented soft-
ware. In this domain, the objective is to derive test suites (sets of test cases) for a given
class, such that the test suite maximizes a chosen coverage criterion while minimizing
the number of tests and their length. A test case in this domain is a sequence of method
calls that constructs objects and calls methods on them. Theresulting test suite is pre-
sented to the user, who usually has to add test oracles that check for correctness when
executing the test cases.

The test cases may have variable length [13], and so earlier approaches to testing
object-oriented software made use of method sequences [14,15] or strongly typed ge-
netic programming [16, 17]. In our experiments, we used the EVOSUITE [6] tool, in
which one individual is an entire test suite of variable size. The entire search space of
test suites is composed of all possible test suites of sizes from 1 to a predefined max-
imumN . Each test case can have a size (i.e., number of statements) from 1 to L. For
each position in the sequence of statements of a test case, there can be up toImax

possible statements, depending on the SUT and the position within the test case (later
statements can reuse objects instantiated in previous statements). The search space is
hence extremely large, although finite becauseN , L andImax are finite.

Crossover between test suites generates two offspringO1 andO2 from two parent
test suitesP1 andP2. A random valueα is chosen from[0,1], and the first offspringO1

contains the firstα|P1| test cases from the first parent, followed by the last(1− α)|P2|
test cases from the second parent. The second offspringO2 contains the firstα|P2| test
cases from the second parent, followed by the last(1 − α)|P1| test cases from the first
parent.

The mutation operator for test suites works both at test suite and test case levels:
When a test suiteT is mutated, each of its test cases is mutated with probability 1/|T |.
Then, with probabilityσ = 0.1, a new test case is added to the test suite. If it is added,
then a second test case is added with probabilityσ2, and so on until theith test case
is not added (which happens with probability1 − σi). Test cases are added only if the
limit N has not been reached.



If a test case is mutated, then three types of operations are applied with probability
1/3 in order: remove, change and insert. When removing statements out of a test case of
lengthl, each statement is removed with probability1/l. Removing a statement might
invalidate dependencies within the test case, which we attempt to repair; if this repair
fails, then dependent statements are also deleted. When applying the change mutation,
each statement is changed with probability1/l. A change means it is replaced with a
different statement that retains the validity of the test case; e.g., a different method call
with the same return type. When inserting statements, we firstinsert a new statement
with probabilityσ′ = 0.5 at a random position. If it is added, then a second statement
is added with probabilityσ′2, and so on until theith statement is not inserted. If after
applying these mutation operators a test caset has no statement left (i.e., all have been
removed), thent is removed fromT . The initial population of test cases is generated
randomly, by repeatedly performing the insertion operatoralso used to mutate test cases.

The search objective we chose is branch coverage, which requires that a test suite
exercises a program in such a way that every condition (if, while, etc.) evaluates to true
and to false. The fitness function is based on the well-established branch distance [18],
which estimates the distance towards a particular evaluation of a branch predicate. The
overall fitness of a test suite with respect to all branches ismeasured as the sum of the
normalized branch distancesof all branches in the program under test. Using a fitness
function that considers all the testing targets at the same time has been shown to lead to
better results than the common strategy of considering eachtarget individually [6]. Such
an approach is particularly useful to reduce the negative effects of infeasible targets for
the search.

We applied several bloat control techniques [19] to avoid that the size of individuals
becomes bloated during the search.

In the experiments presented in this paper, we investigatedfive parameters of the
search, which are not specific to this application domain. The first parameter is the
crossover rate: Whenever two individuals are selected from the parent generation, this
parameter specifies the probability with which they are crossed over. If they are not
crossed over, then the parents are passed on to the next stage(mutation), else the off-
spring resulting from the crossover are used at the mutationstage.

The second parameter is thepopulation size, which determines how many individ-
uals are created for the initial population. The populationsize does not change in the
course of the evolution, i.e., reproduction ensures that the next generation has the same
size as the initial generation.

The third parameter is theelitism rate: Elitism describes the process that the best
individuals of a population (its elite) automatically survive evolution. The elitism rate is
sometimes specified as a percentage of the population that survives, or as the number of
individuals that are copied to the next generation. For example, with an elitism rate set
to 1 individual, the best individual of the current population is automatically copied to
the next generation. In addition, it is still available for reproduction during the normal
selection/crossover/mutation process.

In a standard genetic algorithm, elitism, selection and reproduction is performed
until the next population has reached the desired population size. A common variant
is steady stategenetic algorithms, in which after the reproduction the offspring replace



their parents in the current population. As the concept of elitism does not apply to
steady state genetic algorithms, we treat the steady state genetic algorithm as a special
parameter setting of the elitism rate.

The fourth parameter is theselection mechanism, which describes the algorithm
used to select individuals from the current population for reproduction. In roulette wheel
selection, each individual is selected with a probability that is proportionate to its fit-
ness (hence it is also known as fitness proportionate selection). In tournament selection,
a number of individuals are uniformly selected out of the current population, and the
one with the best fitness value is chosen as one parent for reproduction. Thetourna-
ment sizedenotes how many individuals are considered for the “tournament”. Finally,
rank selection is similar to roulette wheel selection, except that the probability of an
individual being selected is not proportionate to its fitness but to its rank when rank-
ing individuals according to their fitness. The advantage ofthis approach over roulette
wheel selection is that the selection is not easily dominated by individuals that are fitter
than others, which would lead to premature convergence. Theprobability of a ranking
position can be weighted using therank biasparameter.

Finally, the fifth parameter we consider is whether or not to apply aparent replace-
ment check. When two offspring have been evolved through crossover and mutation,
checking against the parents means that the offspring survive only if at least one of the
two offspring has a better fitness than their parents. If thisis not the case, the parents
are used in the next generation instead of the offspring.

In addition to these parameters, another important decision in a genetic algorithm
is when to stop the search, as it cannot be assumed that an optimal solution is always
found. The search budget can be expressed in many different formats, for example, in
terms of the time that the search may execute. A common format, often used in the
literature to allow better and less biased comparisons, is to limit the number of fitness
evaluations. In our setting, the variable size of individuals means that comparing fitness
evaluations can be meaningless, as one individual can be very short and another one
can be very long. Therefore, in this setting (i.e., test datageneration for object-oriented
software) we rather count the number of statements executed.

4 Experiments

In this paper, we use as case study a subset of 20 Java classes out of those previously
used to evaluate EVOSUITE [6]. In choosing the case study, we tried to balance the
different types of classes: historical benchmarks, data structures, numerical functions,
string manipulations, classes coming from open source applications and industrial soft-
ware. Apart from historical benchmarks, our criterion whenselecting individual classes
was that classes are non-trivial, but on which EVOSUITE may still achieve high cov-
erage to allow for variation in the results. We therefore selected classes where EVO-
SUITE used up its entire search budget without achieving 100% branch coverage, but
still achieved more than 80% coverage.

We investigated five parameters:

– Crossover rate:{0 , .2 , .5 , .8 , 1}.
– Population size:{4 , 10, 50 , 100 , 200}.



– Elitism rate:{0 , 1, 10% , 50%} or steady state.
– Selection: roulette wheel, tournament with size either2 or 7, and rank selection

with bias either1.2 or 1.7.
– Parent replacement check (activated or not).

Notice that the search algorithm used in EVOSUITE has many other parameters
to tune. Because the possible number of parameter combinations is exponential in the
number of parameters, only a limited number of parameters and values could be used.
For the evaluation we chose parameters that are common to most genetic algorithms,
and avoided parameters that are specific in EVOSUITE to handle object-oriented soft-
ware. Furthermore, because the goal of this paper is to studythe effects of tuning, we
analyzed all the possible combinations of the selected parameters. On the other hand,
if one is only interested in finding the “best” tuning for the case study at hand, tech-
niques such as the response surface methodology could be used to reduce the number
of configurations to evaluate.

Another important factor is thesearch budget. A search algorithm can be run for
any arbitrary amount of time – for example, a practitioner could run a search algorithm
for one second only, or for one hour. However, the search budget has a strong effect
on parameter tuning, and it is directly connected to the concept of explorationand
exploitationof the search landscape. For example, the choice of a large population size
puts more emphasis on the exploration of the search landscape, which could lead to a
better escape from local optima. On the other hand, a large population can slow down
the convergence to global optima when not so many local optima are present. If one
has a small search budget, it would be advisable to use a smallpopulation size because
with a large population only few generations would be possible. Therefore, parameter
tuning is strongly correlated to the search budget. In fact,the search budget is perhaps
the only parameter a practitioner should set. A realistic scenario might be the following:
During working hours and development, a software engineer would have a small budget
(in the order of seconds/minutes) for search, as coding and debugging would take place
at the same time. On the other hand, a search could then be leftrunning overnight, and
results collected the morning after. In these two situations, the parameter settings (e.g.
population size) should be different. In this paper, we consider a budget of100,000
function call executions (considering the number of fitnessfunction evaluations would
not be fair due to the variable length of the evolved solutions). We also consider the
cases of a budget that is a tenth (10,000) and ten times bigger (1,000,000).

For each class in the case study, we run each combination of parameter settings
and search budget. All experiments were repeated 15 times totake the random nature
of these algorithms into account. Therefore, in total we had20 × 54 × 2 × 3 × 15 =
1,125,000 experiments. Parameter settings were compared based on theachieved cov-
erage. Notice that, in testing object-oriented software, it is also very important to take
the size of the generated test suites into account. However,for reasons of space, in this
paper we only consider coverage, in particular branch coverage.

Using the raw coverage values for parameter setting comparisons would be too
noisy. Most branches are always covered regardless of the chosen parameter setting,
while many others are simply infeasible. Givenb the number of covered branches in a



run for a classc, we used the following normalization to define arelative coverager:

r(b,c) =
b−minc

maxc −minc

,

whereminc is the worst coverage obtain inall the56,250 experiments for that classc,
andmaxc is the maximum obtained coverage. Ifminc == maxc, thenr = 1.

To analyze all these data in a sound manner, we followed the guidelines in [20].
Statistical difference is measured with the Mann-Whitney U-test, whereas effect sizes
are measured with the Vargha-DelaneyÂ12 statistics. TheÂ12 statistics measures the
probability that a run with a particular parameter setting yields better coverage than
a run of the other compared setting. If there is no differencebetween two parameter
setting performances, then̂A12 = 0.5. For reasons of space it is not possible to show all
the details of the data and analyses. For example, instead ofreporting all the p-values,
we only state when those are lower than0.05.

In the analyses in this paper, we focus on four specific settings: worst (W ), best
(B), default (D) and tuned (T ). The worst combinationW is the one that gives the
worst coverage out of the54 × 2 = 1,250 combinations, and can be different depend-
ing on the class under test and chosen search budget. Similarly, B represents the best
configuration out of1,250. The “default” combinationD is arbitrarily set to population
size 100, crossover rate0.8, rank selection with1.7 bias,10% of elitism rate and no
parent replacement check. These values arein line with common suggestions in the lit-
erature, and that we used in previous work. In particular, this default setting was chosen
beforerunning any of the experiments. Finally, given a set of classes, the tuned con-
figurationT represents the configuration that has the highest average relative coverage
on all that set of classes. When we write for exampleÂDW = 0.8, this means that,
for the addressed class and search budget, a run of the default configurationD has0.8
probability of yielding a coverage that is higher than the one obtained by a run of the
worst configurationW .

The data collected from this large empirical study could be used to addressseveral
research questions. Unfortunately, for reasons of space weonly focus on the four that
we believe are most important.

RQ1: How large is the potential impact of a wrong choice of parameter settings?

In Table 1, for each class in the case study and test budget100,000, we report the relative
coverage (averaged out of 15 runs) of the worst and best configurations. There are cases
in which the class under test is trivial for EVOSUITE (e.g., DateParse), in which tuning
is not really important. But, in most cases, there is a very large difference between the
worst and best configuration (e.g., BellmanFordIterator).A wrong parameter tuning can
make it hard (on average) to solve problems that could be easyotherwise.

Different parameter settings cause
very large variance in the performance.



Table 1.Relative coverage averaged out of 15 runs for default, worst and best configuration. Ef-
fect sizes for default compared to worst (ÂDW ) and and compared to best configuration (ÂDB).
Statistically significant effect sizes are in bold.

Class Default Worst Best ÂDW ÂDB

Cookie 0.49 0.33 0.86 0.93 0.00
DateParse 1.00 1.00 1.00 0.50 0.50
Triangle 1.00 0.60 1.00 0.70 0.50
XMLElement 0.90 0.43 0.97 1.00 0.10
ZipOutputStream 1.00 0.47 1.00 0.77 0.50
CommandLine 0.41 0.11 0.59 0.98 0.34
Remainder 0.82 0.30 0.98 0.98 0.13
Industry1 0.95 0.53 0.98 1.00 0.18
Industry2 0.90 0.42 0.95 1.00 0.11
Attribute 0.47 0.21 0.90 1.00 0.00
DoubleMetaphone 0.63 0.22 0.96 1.00 0.00
Chronology 0.77 0.43 0.94 1.00 0.00
ArrayList 1.00 0.67 1.00 0.67 0.50
DateTime 0.60 0.21 0.95 1.00 0.00
TreeMap 0.65 0.00 0.78 0.93 0.27
Bessj 0.65 0.42 0.95 1.00 0.00
BellmanFordIterator 0.13 0.00 1.00 0.57 0.07
TTestImpl 0.55 0.21 1.00 0.88 0.00
LinkedListMultimap 0.81 0.18 1.00 1.00 0.03
FastFourierTransformer 1.00 0.29 1.00 0.98 0.47

RQ2: How does a “default” setting compare to the best and worst achievable
performance?

Table 1 also reports the relative coverage for the default setting, with effect sizes of
the comparisons with the worst and best configuration. As onewould expect, a default
configuration has to be better than the worst, and worse/equal to the best configuration.
However, for most problems, although the default setting ismuch betterthan the worst
setting (i.e.,ÂDW values close to1), it is unfortunatelymuch worsethan the best setting
(i.e.,ÂDB values are close to0). When one uses randomized algorithms, it is reasonable
to expect variance in the performance when they are run twicewith a different seed.
However, consider the example of Bessj in Table 1, whereÂDW = 1 andÂDB = 0.
In that case, the coverage values achieved by the default setting in 15 runs are always
better than any of the15 coverage values obtained with the worst configuration, but
also always worse than any of the15 runs obtained with best configuration. These data
suggest that, if one does not have the possibility of tuning,then the use of a default
setting is not particularly inefficient. However, there is large space for performance
improvement if tuning is done.

Default parameter settings perform relatively well, but are
far from optimal on individual problem instances.



RQ3: If we tune a search algorithm based on a set of classes, how will its
performance be on other new classes?

To answer this research question, for each class, we tuned the algorithm on theother19
classes, and then compared this tuned version with the default and best configuration
for the class under test. Table 2 reports the data of this analysis. If one makes tuning
on a sample of problem instances, then we would expect a relatively good performance
on new instances. But thêATB values in Table 2 are in most of the cases low and
statistically significant. This means that parameter settings that should work well on
average can be particularly inefficient on new instances compared to the best tuning
for those instances. In other words, there is a very high variance in the performance of
parameter settings.

Of particular interest are thêATD values. In three cases they are equal to0.5 (so no
difference between tuned and default settings), in seven cases they are higher than0.5
(so tuning helps), but then in 10 cases they are lower than0.5 (but only in four cases
there is statistically significant difference). This meansthat, on the case study used in
this paper, doing tuning is evenworsethan just using some arbitrary settings coming
from the literature! This might be explained with the concept of over-fittingin machine
learning [7]. A too intensive tuning on a set of problem instances can result in parameter
settings that are too specific for that set. Even the case of19 problem instances, as done
in this paper, is too small to avoid such type of over-fitting.

Tuning should be done on a very large sample of problem
instances. Otherwise, the obtained parameter settings are

likely to be worse than arbitrary default values.

RQ4: What are the effects of the search budget on parameter tuning?

For each class and the three search budgets, we compared the performance of the default
setting against the worst and the best; Table 3 shows the dataof this analysis. For a
very large search budget one would expect not much difference between parameter
settings, as all achievable coverage would be reached with high probability. Recall that
it is not possible to stop the search before because, apart from trivial cases, there are
always infeasible testing targets (e.g., branches) whose number is unknown. The data in
Table 3 show that trend for many of the used programs (e.g., see LinkedListMultimap)
regarding the default and best settings, but the worst setting is still much worse than the
others (i.e.,ÂDW close to1) even with a search budget of one million function calls.
What is a “large” search budget depends of course on the case study. For example, for
DateParse, already a budget of100,000 is enough to get no difference between best,
worst and default configuration. On the other hand, with a search budget of1,000,000,
for example for CommandLine there is still a statistically strong difference.

As said, a very large search budget might reduce the importance of tuning. How-
ever, when we increase the search budget, that does not always mean that tuning be-
comes less important. Consider again the case of CommandLine: At budget10,000,
theÂDW is not statistically significant (i.e., close to0.5 and Mann-Whitney U-test has



Table 2.Relative coverage averaged out of 15 runs for tuned configuration.Effect sizes for tuned
compared to default (̂ATD) and and compared to best configuration (ÂTB). Statistically signifi-
cant effect sizes are in bold.

Class Tuned ÂTD ÂTB

Cookie 0.78 0.98 0.27
DateParse 1.00 0.50 0.50
Triangle 1.00 0.50 0.50
XMLElement 0.81 0.40 0.11
ZipOutputStream 0.93 0.47 0.47
CommandLine 0.38 0.32 0.22
Remainder 0.62 0.23 0.05
Industry1 0.90 0.24 0.08
Industry2 0.84 0.30 0.17
Attribute 0.52 0.75 0.00
DoubleMetaphone 0.57 0.08 0.00
Chronology 0.87 0.76 0.28
ArrayList 1.00 0.50 0.50
DateTime 0.93 1.00 0.30
TreeMap 0.32 0.33 0.26
Bessj 0.81 0.92 0.18
BellmanFordIterator 0.00 0.43 0.00
TTestImpl 0.68 0.93 0.03
LinkedListMultimap 0.98 0.96 0.33
FastFourierTransformer 0.97 0.28 0.25

p-value greater than0.05), whereas it gets higher (close to1) for 100,000 and then for
1,000,000. For ÂDB , it is statistically significant when budget is10,000, but not when
we increase the budget to100,000. Interestingly, it comes back to be statistically sig-
nificant at1,000,000, with an effect size that is even stronger than in the case of budget
10,000. How come? The reason is that the testing targets have different difficulty to
be covered. Even with an appropriate tuning, for some targets we would still need a
minimum amount of search budget. If the search budget is lower than that threshold,
then we would not cover (with high probability) those targets even with the best tuning.
Therefore, tuning might not be so important if either the search budget is too “large”,
or if it is too “small”, where “large” and “small” depend on the case study. But such an
information is usually not known before doing tuning.

Available search budget has strong impact on the
parameter settings that should be used.

5 Guidelines

The empirical analysis carried out in this paper clearly shows that tuning has a strong
impact on search algorithm performance, and if it is not doneproperly, there are dire



Table 3.For each test budget, effect sizes of default configuration compared to the worst (̂ADW )
and best configuration (̂ADB). Statistically significant effect sizes are in bold. Some data are
missing (-) due to the testing tool running out of memory.

Class Test Budget
10,000 100,000 1,000,000

ÂDW ÂDB ÂDW ÂDB ÂDW ÂDB

Cookie 0.77 0.07 0.93 0.00 0.82 0.11
DateParse 0.63 0.50 0.50 0.50 0.50 0.50
Triangle 0.67 0.50 0.70 0.50 0.69 0.50
XMLElement 0.81 0.07 1.00 0.10 1.00 0.50
ZipOutputStream 0.87 0.43 0.77 0.50 0.71 0.50
CommandLine 0.54 0.23 0.98 0.34 1.00 0.00
Remainder 0.72 0.21 0.98 0.13 1.00 0.46
Industry1 0.63 0.00 1.00 0.18 - -
Industry2 0.82 0.06 1.00 0.11 1.00 0.42
Attribute 0.80 0.06 1.00 0.00 1.00 0.15
DoubleMetaphone 0.87 0.06 1.00 0.00 0.92 0.14
Chronology 0.90 0.08 1.00 0.00 1.00 0.17
ArrayList 0.70 0.43 0.67 0.50 1.00 0.50
DateTime 0.69 0.06 1.00 0.00 0.88 0.45
TreeMap 0.60 0.24 0.93 0.27 1.00 0.27
Bessj 0.83 0.10 1.00 0.00 1.00 0.33
BellmanFordIterator 0.50 0.00 0.57 0.07 - -
TTestImpl 0.88 0.21 0.88 0.00 0.95 0.31
LinkedListMultimap 0.60 0.05 1.00 0.03 0.96 0.50
FastFourierTransformer 0.83 0.00 0.98 0.47 - -

risks in ending up with tuned configurations that are worse than suggested values in the
literature. To avoid these problems, it would hence be important to use machine learn-
ing techniques [7] when tuning parameters. Which ones to use is context dependent,
and a detailed discussion is beyond the scope of this paper. Instead, we discuss some
basic scenarios here, aiming at developers who want to tune parameters before releasing
SBSE tool prototypes, or researchers who want to tune tools for scientific experiments.
Further details can be found for example in [7].

Given a case study composed of a number of problem instances,randomly partition
it in two non-overlapping subsets: thetraining and thetestset. A common rule of thumb
is to use 90% of instances for the training set, and the remaining 10% for the test set. Do
the tuning using only the problem instances in the training set. Instead of considering
all possible parameter combinations (which is not feasible), use techniques such as
the response surface methodology (e.g., used in [11]). Given a parameter setting that
performs best on this training set, then evaluate its performance on the test set. Draw
conclusions on the algorithm performance only based on the results on this test set.

If the case study is “small” (e.g., because composed of industrial systems and not
open-source software that can be downloaded in large quantities), and/or if the cost of
running the experiment is relatively low, usek-fold cross validation [7]. In other words,



randomly partition the case study ink non-overlapping subsets (a common value is
k = 10). Use one of these as test set, and merge the otherk − 1 subsets to use them as
training set. Do the tuning on the training set, and evaluatethe performance on the test
set. Repeat this processk times, every time with a different subset for the test set, and
remainingk−1 for the training set. Average the performance on all the results obtained
from all thek test sets, which will give some valuev describing the performance of the
algorithm. Finally, apply tuning onall the case study (do not use any test set), and keep
the resulting parameter setting as the final one to use. The validity of this parameter
setting would be estimated by the valuev calculated during the cross validation.

Comparisons among algorithms should never be done on their performance on the
training set — only use the results on validation sets. As a rule of thumb, if one com-
pares different “tools” (e.g., prototypes released in the public domain), then no tuning
should be done on released tools, because parameter settings are an essential component
thatdefinea tool. On the other hand, if the focus is on evaluating algorithms at a high
level (e.g., on a specific class of problems, is it better to use population based search
algorithms such as genetic algorithms or single individualalgorithms such as simulated
annealing?), then each compared algorithm should receive the same amount of tuning.

6 Threats to Validity

Threats tointernal validitymight come from how the empirical study was carried out.
To reduce the probability of having faults in our experimentframework, it has been
carefully tested. But it is well known that testing alone cannot prove the absence of
defects. Furthermore, randomized algorithms are affectedby chance. To cope with this
problem, we repeated each experiment15 times with different random seeds, and we
followed rigorous statistical procedures to evaluate their results.

Threats toconstruct validitycome from the fact that we evaluated parameter settings
only based on structural coverage of the resulting test suites generated by EVOSUITE .
Other factors that are important for practitioners and thatshould be considered as well
are the size of the test suites and their readability (e.g., important in case of no formal
specifications when assert statements need to be manually added). Whether these factors
are negatively correlated with structural coverage is a matter of further investigation.

Threats toexternal validitycome from the fact that, due to the very large number of
experiments, we only used20 classes as case study, which still took weeks even when
using a computer cluster. Furthermore, we manually selected those20 classes, in which
we tried to have a balance of different kinds of software. A different selection for the
case study might result in different conclusions. However,to the best of our knowledge,
there is no standard benchmark in test data generation for object-oriented software that
we could have rather used.

The results presented in this paper might not be valid on all software engineering
problems that are commonly addressed in the literature of SBSE. Based on the fact that
parameter tuning has large impact on search algorithm performances, we hence strongly
encourage the repetition of such empirical analysis on other SBSE problems.



7 Conclusion

In this paper, we have reported the results of the largest empirical study in parameter
tuning in search based software engineering to date. In particular, we focus on test data
generation for object-oriented software using the EVOSUITE tool [6].

It is well known that parameter tuning has effects on the performance of search
algorithms. However, this paper is the first that quantifies these effects for a search based
software engineering problem. The results of this empirical analysis clearly show that
arbitrary parameter settings can lead to sub-optimal search performance. Even if one
does a first phase of parameter tuning on some problem instances, the results on new
problem instances can be very poor, even worse than arbitrary settings. Hence, tuning
should be done on (very) large samples of problem instances.The main contribution
of this paper is that it provides compelling empirical evidence to support these claims
based on rigorous statistical methods.

To entail technology transfer to industrial practice, parameter tuning is a task of
responsibility of who develops and releases search based tools. It is hence important
to havelarge tuning phases on whichseveralproblem instances are employed. Unfor-
tunately, parameter tuning phases can result in over-fitting issues. To validate whether
a search based tool can be effective in practice once delivered to software engineers
that will use it on their problem instances, it is important to use machine learning tech-
niques [7] to achieve sound scientific conclusions. For example, tuning can be done on
a subset of the case study (i.e., the so calledtraining set), whereas performance eval-
uation would be done a on a separate and independent set (i.e., the so calledtest set).
This would reduce the dire threats to external validity coming from over-fitting the pa-
rameter tuning. To the best of our knowledge, in the literature of search based software
engineering, in most of the cases parameter tuning is eithernot done, done on theentire
case study at hand, or its details are simply omitted.

Another issue that is often neglected is the relation between tuning and search bud-
get. The final user (e.g., software engineers) in some cases would run the search for
some seconds/minutes, in other cases they could afford to run it for hours/days (e.g.,
weekends and night hours). In these cases, to improve searchperformance, the parame-
ter settings should be different. For example, the population size in a genetic algorithm
could be set based on a linear function of the search budget. However, that is a little
investigated topic, and further research is needed.
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