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ABSTRACT
Automated test generation for object-oriented software typically
consists of producing sequences of calls aiming at high code cov-
erage. In practice, the success of this process may be inhibited
when classes interact with their environment, such as the file sys-
tem, network, user-interactions, etc. This leads to two major prob-
lems: First, code that depends on the environment can sometimes
not be fully covered simply by generating sequences of calls to a
class under test, for example when execution of a branch depends
on the contents of a file. Second, even if code that is environment-
dependent can be covered, the resulting tests may be unstable, i.e.,
they would pass when first generated, but then may fail when exe-
cuted in a different environment. For example, tests on classes that
make use of the system time may have failing assertions if the tests
are executed at a different time than when they were generated.

In this paper, we apply bytecode instrumentation to automati-
cally separate code from its environmental dependencies, and ex-
tend the EVOSUITE Java test generation tool such that it can ex-
plicitly set the state of the environment as part of the sequences of
calls it generates. Using a prototype implementation, which han-
dles a wide range of environmental interactions such as the file
system, console inputs and many non-deterministic functions of
the Java virtual machine (JVM), we performed experiments on 100
Java projects randomly selected from SourceForge (the SF100 cor-
pus). The results show significantly improved code coverage — in
some cases even in the order of +80%/+90%. Furthermore, our
techniques reduce the number of unstable tests by more than 50%.

Categories and Subject Descriptors. D.2.5 [Software Engineer-
ing]: Testing and Debugging – Testing Tools;

Keywords. Unit testing; automated test generation; environment

1. INTRODUCTION
Automated test generation techniques are usually applied to pro-

duce test suites with high code coverage (e.g., statement or branch
coverage), or to satisfy related criteria such as mutation testing [11]
or failure exceptions [9]. The simplest technique is perhaps random
testing [3], but more sophisticated techniques such as Dynamic
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1public class EnvExample {
2

3 public boolean checkContent() throws Exception{
4

5 Scanner console = new Scanner(System.in);
6 String fileName = console.nextLine();
7 console.close();
8

9 File file = new File(fileName);
10 if(!file.exists())
11 return false;
12

13 Scanner fromFile = new Scanner(new FileInputStream(
file));

14 String fileContent = fromFile.nextLine();
15 fromFile.close();
16 String date = DateFormat.getDateInstance(DateFormat.

SHORT).format(new Date());
17 if(fileContent.equals(date))
18 return true;
19

20 return false;
21 }
22}

Figure 1: Example class challenging automated test genera-
tion: Method checkContent first reads a filename from the
console, then reads the first line of that file, and finally com-
pares it to the current date.

Symbolic Execution (DSE) [15] and Search-Based Software Test-
ing (SBST) [18] have been developed and combined [13]. In the
case of procedural code (e.g., programs written in the C language),
this task usually amounts to finding input data for the functions un-
der test. For object-oriented software, there is the extra challenge
of first putting the classes under test (CUT) and method parameters
in the right internal state, which is usually achieved with sequences
of function calls.

However, sequences of function calls on a CUT and its param-
eter objects may not be sufficient in practice to achieve high code
coverage. For example, consider the Java class EnvExample in
Figure 1: The method checkContent has no input parameters in
its signature. To achieve full coverage, a tester would first need to
create a file that contains the current date on the first line, and then
input the name of that file on the console. To the best of our knowl-
edge, there is no research tool in the literature that would do this
automatically. There is a further problem in that class: To cover the
branch in Line 17 the file would need to contain a string represen-
tation of the current date. If the test is later executed on a different
day, the result of the string comparison would change, and asser-
tions that use the return value will lead to unstable tests that fail.
The reason for this is that the success of a test generation technique
and the reproducibility of the results for a given CUT may strongly
depend on the class’s environment.



1public class EnvExampleEvoSuiteTest {
2 @BeforeClass
3 public static void initEvoSuiteFramework() {
4 org.evosuite.Properties.REPLACE_CALLS = true;
5 org.evosuite.Properties.VIRTUAL_FS = true;
6 org.evosuite.agent.InstrumentingAgent.initialize();
7 org.evosuite.runtime.Runtime.getInstance().

resetRuntime();
8 }
9

10 @Before
11 public void initTestCase(){
12 org.evosuite.runtime.Runtime.getInstance().

resetRuntime();
13 org.evosuite.agent.InstrumentingAgent.activate();
14 org.evosuite.utils.SystemInUtil.getInstance().

initForTestCase();
15 }
16

17 @After
18 public void doneWithTestCase(){
19 org.evosuite.agent.InstrumentingAgent.deactivate();
20 }
21

22 @Test
23 public void test0() throws Throwable {
24 SystemInUtil.addInputLine("zF");
25 EvoSuiteFile evoSuiteFile0 = new EvoSuiteFile("/

private/tmp/zF");
26 FileSystemHandling.appendLineToFile(evoSuiteFile0, "

14/02/14");
27 EnvExample envExample0 = new EnvExample();
28 boolean boolean1 = envExample0.checkContent();
29 assertEquals(true, boolean1);
30 }
31

32 @Test
33 public void test1() throws Throwable {
34 SystemInUtil.addInputLine("z");
35 EnvExample envExample0 = new EnvExample();
36 boolean boolean0 = envExample0.checkContent();
37 assertEquals(false, boolean0);
38 }
39

40 @Test
41 public void test2() throws Throwable {
42 SystemInUtil.addInputLine("q");
43 EvoSuiteFile evoSuiteFile0 = new EvoSuiteFile("/

private/tmp/q");
44 FileSystemHandling.appendStringToFile(evoSuiteFile0, "

M");
45 EnvExample envExample0 = new EnvExample();
46 boolean boolean1 = envExample0.checkContent();
47 assertEquals(false, boolean1);
48 }
49}

Figure 2: A JUnit test suite automatically generated by EVO-
SUITE that achieves full coverage on the class EnvExample
defined in Figure 1.

In this paper, we extend the EVOSUITE unit test generation tool
to handle environmental dependencies by a) using bytecode instru-
mentation to control the environmental state and inputs during test
generation, b) including the environmental state and inputs as part
of the search space of EVOSUITE, and c) observing environmen-
tal interactions during the tests and restoring the environmental
state after test execution. This allows EVOSUITE to control not
only function inputs and call sequences, but also the state of the
environment, resulting in stable tests with higher code coverage.
Figure 2 shows a test suite for the EnvExample example class
that achieves 100% branch coverage: test0 (Line 23) creates a
mocked file and sets its content to “14/02/14”, which is the de-
fault mocked date set by EVOSUITE. When checkContent is
invoked, the branch in Line 17 is thus true, and the method returns
true. Test test1 inputs the name of a file that does not exist,
thus covering the branch in Line 10. Finally, test test2 creates a

file, but does not set the required contents, thus the false-branch in
Line 17 is covered. The code between Line 2 and 20 in the test suite
serves to control the environment during subsequent test executions
outside of EVOSUITE.

But how often do environment interactions happen in practice?
In previous work [8], we ran experiments with the EVOSUITE unit
test generation tool on 100 Java projects randomly selected from
SourceForge (i.e., the SF100 corpus). We observed an unexpect-
edly high number of environmental interactions and generally low
code coverage, leading to the conjecture that these two observations
are linked. We thus studied the effects on running test generation on
the SF100 corpus. In detail, in this paper we provide the following
contributions:

• An instrumentation technique to isolate Java code from the
filesystem.

• An instrumentation technique to isolate Java code from the
console input.

• An instrumentation technique to isolate Java code from the
system state (time, properties, etc.)

• An extension of the EVOSUITE test generation tool that in-
cludes the state of the environment (e.g., file contents, con-
sole input, etc.) as part of the input space.

• An extension of the EVOSUITE test generation tool that effi-
ciently handles changes to the environment performed by the
tests (e.g., changes of the static state of classes).

Experiments on selected classes demonstrate the power of this
approach in terms of large coverage increases and large reductions
of the number of unstable tests. Experiments on the full SF100
corpus of classes show improvement in both coverage and unstable
tests, but the overall improvements in coverage indicates that there
are further obstacles to achieving high coverage.

Although our main motivation and evaluation is on coverage and
unstable tests, the techniques introduced in this paper provide more
general benefits: First, the use of a virtual file system is impor-
tant for automated test generation as it prevents the real file system
from being corrupted by. Second, isolating test cases from their
environment makes tests execute faster than when they rely on an
actual file system [4], and also makes them independent such that
parallelisation becomes easy.

2. BACKGROUND

2.1 The Environment of a Class
In object-oriented software development, unit testing typically

focuses on individual classes, or the methods of a class. Such a
class is embedded in a complex environment with a range of de-
pendencies. Consider Figure 3: The class under test (CUT) and its
dependency classes have a state that depends on their class loader.
That is, independently of the state of any instances of the CUT, the
class itself can have a state in the context of its class loader; this
state is typically defined by static variables. Class loaders, in turn,
are embedded in a virtual machine (VM) environment, which itself
has a complex state. For example, the state of a VM may be defined
by system properties. The VM, in turn, interacts with the operating
system environment, where the state depends on the system time,
memory state, filesystems, hardware configuration, and many other
factors. The operating system is part of a machine, which can in-
teract with the user or other machines and services over a network.
Interactions with the environment at the level of the JVM and be-
yond are performed via standard library calls provided with the host
language (e.g., Java). Interacting with the class loader specific en-
vironment happens without any specific calls, it is simply reflected
by the states of static variables.



Operating System

Virtual Machine

ClassLoader

Class under test

Dependency 
classes

Network

Filesystem

User

Figure 3: The environment of a class under test.

2.2 System Test Environment Simulators
When developing systems that interact with hardware compo-

nents (e.g., sensors and actuators), it is common practice in indus-
try to build environment simulators. These simulators can be used
for system level testing, and allow the tester to run the developed
system without the need for real hardware (e.g., Software-in-the-
loop testing). This is particular useful for when the hardware is not
available yet during the software development process, and also for
large scale testing when hardware is expensive.

There is a lot of research on how to best develop those environ-
ment simulators, and how to use them for testing purposes. For
example, Arcuri et al. [2] developed a technique to define the en-
vironment as UML state machines, and automatically generate en-
vironment code. However, even though the testing was automated,
there was still the initial manual effort of defining the UML models.

While such an approach is reasonable to simulate hardware, in
this paper we focus on unit level testing, and not system level test-
ing. Furthermore, here we desire full automation for test genera-
tion: There should be no need of manual intervention to write any
models or test drivers. Ideally, once EVOSUITE is installed, the
user should only need to specify which class/project she wants to
generate tests for (e.g., with a mouse-click in IDEs like Eclipse).

2.3 Mocking at the Unit Level
A common approach to isolate a class from its dependencies is

by mocking. In general, mocking refers to the use of replacement
classes during testing rather than real classes. There are differ-
ent related terms, e.g., a stub usually has a fixed default behavior,
whereas a mock typically has to be set up as part of a test, and
then can verify expected interactions. Other common terms are
fakes, dummies, or test doubles. In this paper, we will use the term
“mocks” to denote replacement classes where the behavior can be
set up as part of the test.

The creation of mocks is often supported by mocking frame-
works, which are are widely used in industry when unit tests are
manually written. For Java, there are many tools like Mockito1,
EasyMock2 and JMock3. Isolating a class using mocks and stubs
is good from a testing point of view, but may create a mainte-
nance problem, as the behavior of the mock classes needs to be
kept in sync with the real behavior. In this paper, we do not mock
user classes, which in principle are under control of the program-

1http://code.google.com/p/mockito/, accessed March 2014
2http://www.easymock.org, accessed March 2014
3http://jmock.org, accessed March 2014

mer. Rather, we aim to bring the environment under control; but to
achieve this, we do use an approach based on mocking.

The use of mocking in automated test case generation is less
common, albeit some promising techniques have been developed.
For example, when there are CUTs that take references to some
specific interface as input, but no concrete class exists that im-
plements these interfaces, concrete classes can be created on the
fly [16]. If there are formal specifications (i.e., formal pre and post
conditions), such information can be used to create more “realistic”
mock classes [14]. Automated mocking can also be used to replace
input instances that have operations that take long time to run [19].
Furthermore, it has also been used to partially handle interactions
with databases [20] and file systems [17].

This latter work is perhaps the one that shares most similarities
with what presented in this paper. In [17], mocks were created to
handle interactions with the file system, and an initial case study
was carried out on eight methods. However, those mocks were not
sharing their behavior (i.e., the writing of a text in a mocked file
would not have effect to the reading of the same file from another
mock), and could only be used when given as input to the CUT.
Therefore, such an approach would not work on a class like the one
depicted in Figure 1, as the object interacting with the file system
is not given as input to the CUT.

The Pex [21] test generation tool is integrated with the Moles
framework [6], which supports integration of user-supplied mocks
(moles) during testing. Once a mole has been manually created, it
permits Pex to derive path conditions during symbolic execution in
cases where calls to the environment would otherwise prohibit that.
Promising results were obtained on a 15 line of code method [6].

The approach presented in this paper builds on this general line
of research and provides a full working solution, addressing dif-
ferent technical challenges of environment mocking. In contrast to
previous work, our approach is fully automated, e.g., it does not re-
quire the users to manually provide mocked classes or do any man-
ual processing on the CUTs. Furthermore, we provide an evalua-
tion using more than two million lines of code (the SF100 corpus),
suggesting practical usefulness beside initial promising results.

2.4 Automated Unit Test Generation
In this paper, we take the EVOSUITE [7] unit test generation tool

as a starting point for our investigations. EVOSUITE is an advanced
research prototype that automatically generates unit test suites for
Java programs. It works at Java bytecode level (so it can also be
used on third-party systems with no available source code), and it
is fully automated: it does not require any manually written test
drivers or parameterized unit tests. For example, when EVOSUITE
is used from its Eclipse plugin, a user just needs to select a class,
and tests are generated with a mouse-click.

EVOSUITE uses a genetic algorithm in which it evolves whole
test suites, an approach that has been shown to be more efficient
at achieving code coverage than generating tests individually [10,
11]. Once unit tests with high code coverage are generated, EVO-
SUITE applies various post-processing steps to improve readabil-
ity (e.g., minimizing) and adds test assertions that capture the cur-
rent behavior of the tested classes. To select the most effective
assertions, EVOSUITE uses mutation analysis [12]. EVOSUITE can
generate test suites covering different kinds of coverage criteria,
like for example weak and strong mutation testing [11], and it can
also aim at triggering undeclared exceptions; for example, this has
been demonstrated to automatically find real faults in several open
source projects [9]. EVOSUITE can be integrated into a program-
mer’s development environment with its Eclipse plugin, or it can
be used on the command line.



3. HANDLING THE ENVIRONMENT DUR-
ING TEST GENERATION

The environment of a class under test needs to be controlled dur-
ing test generation in order to make code dependent on the envi-
ronmental state or inputs reachable, and to make test cases stable
and deterministic in subsequent executions. In this section, we de-
scribe our approach to control the environment during test genera-
tion in EVOSUITE and in the resulting test cases. When designing
the techniques presented in this paper, we tried to satisfy the fol-
lowing important constraints:

• The mocked environment has to be semantically equivalent
to the real one. For example, if a running thread modifies
a file (e.g., by writing text to it), such modifications should
be reflected in all other threads and successive interactions
on such a file (e.g., it should be possible to read what was
written in the file).

• The user should not need to do any manual installation or
configuration of any third-party tool (e.g., installing a vir-
tual operating system, or set up a customised JVM). Every-
thing should be fully automated and running within a stan-
dard JVM, independently of the operating system.

• The developed solutions for environment mocking should
not break any current practice in the development process of
the final users. For example, if the testers use tools like Ja-
CoCo/EclEmma4 to measure achieved coverage, then those
should still work with a mocked environment.

3.1 Instrumenting Bytecode in Unit Tests
EVOSUITE, like many other test generation tools, relies heavily

on bytecode instrumentation. In Java, it is easy to attach instru-
menting code to a class loader, such that all classes will receive
the same instrumentation. Thus, during test generation all test exe-
cutions use a customized class loader that ensures the instrumenta-
tion. However, we need to ensure that the generated JUnit test cases
faithfully represent the exact same behavior as observed during test
generation. Using a custom class loader is not a viable option in
the generated JUnit tests: Once a JUnit file is generated, we can-
not really make assumptions on how it will be used. For example,
class loaders used in Eclipse can be different from the ones used
in Maven when test cases are run. Furthermore, the user might
employ special plugins which use their own special class loaders
that do their own set of bytecode changes. This is the typical case
of plugins used to measure code coverage (e.g., EclEmma), which
add their probes to the analyzed classes when loaded in memory.

Our solution uses JavaAgent technology: When a JUnit test suite
is run, it automatically starts a JavaAgent that automatically binds
to the JVM in which the tests are executed. This agent is responsi-
ble for instrumenting and modifying the bytecode of classes loaded,
regardless of the used class loader. Figure 2 shows how this is done
by calling methods on the class InstrumentingAgent. For ex-
ample, InstrumentingAgent.initialize() (Line 6) will
set up the agent, and activate (Line 13) and deactivate
(Line 19) will instruct the agent to perform or stop doing bytecode
instrumentation.

3.2 Controlling Static State
During the execution of a test case, the CUT can not only access

object and primitive values stored in static fields (i.e., the static state
of the program), it might also modify them, leading to different be-
haviour if the test case is executed again or if the execution order of
the tests in a test suite is altered. Let us illustrate this problem with

4http://www.eclemma.org/, accessed March 2014

1public class Counter {
2 private static int count = 0;
3

4 public int id;
5 public Counter() {
6 id = count++;
7 }
8}

Figure 4: A simple class that modifies static state.

1@Test
2public void test() {
3 Counter counter = new Counter();
4 assertEquals(0, counter.id);
5}

Figure 5: A generated test case for Counter.
a simple example: Figure 4 shows a class that uses a static inte-
ger field to provide unique identifiers to each object that is created.
Whenever a new instance of Counter is created, the field count
is increased. EVOSUITE generates the test case shown in Figure 5,
but this test will only pass if no other Counter instance was ever
created during the execution of any other test case in the same test
suite. If another test case is executed before test and creates a
Counter instance, the value of count will be wrong, and the
test will fail. Even worse, during test generation, many tests will be
executed, and thus the value of count is quite unpredictable.

A possible workaround to this problem is to discard all classes
that were loaded by the JVM’s class loader after each test case ex-
ecution is concluded, for example by using a different class loader
for every test execution (e.g., [5]). The advantage of such a solution
is that, whenever a class is used again, the JVM will need to reload
it, and the static state will be the initial one. In the context of a test
generation tool, the obvious disadvantage of this solution is a sig-
nificant decrease of performance, since class files have to be re-read
from the file system (or the network, if a URLClassLoader is be-
ing used), instrumented, and the static initialisation blocks all have
to be re-executed, even if no static state was changed at all. Fur-
thermore, other tools relying on their own class loading schemas
(e.g., JaCoCo or EclEmma), may not be compatible to this solution
(e.g., as they require their own class loaders and instrumentation),
breaking current practices of the final user.

3.2.1 Handling updates in static fields
An alternative to reloading all classes lies in resetting their state.

In Java, the static state of a class is initialized in a special method
(<clinit>), and an idea introduced with JCrasher [5] is to create
a copy of that method that can later be invoked to reset the static
state of a class. This copy needs to be modified to avoid attempts
to re-initialize fields with the final modifier, as the JVM would
not permit this. This approach has some limitations; in particular,
although it saves the effort of loading classes repeatedly it still re-
quires execution of the reset methods for every class. This is not
very efficient if the number of classes loaded is large — and in our
experience, projects often have thousands of dependency classes.

In order to handle the changes in the static state during test case
execution more efficiently, EVOSUITE monitors any change to the
static fields of the CUT; i.e., every writing access to a static field
(PUTSTATIC in Java bytecode) is instrumented with a method call
that records the occurrence. If along the test execution an update of
a static field occurs (e.g. count), we re-execute the static initiali-
sation method (i.e., the copy of <clinit>) of the declaring class
of the static field (in this case, class Counter) when the test has
finished. This solution avoids re-loading all classes, and also limits
the re-execution of static initialiser methods only to those classes
where an actual change was detected during test case execution.



1public class Counter {
2 private static AtomicInteger atomicInteger = new

AtomicInteger();
3

4 public int id;
5 public Counter() {
6 id = atomicInteger.getAndIncrement();
7 }
8}

Figure 6: A simple class that modifies static state using the
singleton pattern.

3.2.2 Reverting changes in the state of objects
However, this optimistic approach has serious limitations. To

understand these limitations, let us introduce the modified version
of the previous example in Figure 6. In this modified version, the
integer primitive value is replaced by the complex type Atomic-
Integer from the JDK library. Singletons like this one are very
common in practice, and they can be found extensively in open
source projects such as those included in SF100. Observe that the
value of the field atomicInteger will not change, but the state
of the object referenced by that field will change. This change will
escape our monitoring of writing accesses to static fields during test
execution, as there is no explicit writing to a static field5.

Since extending our monitoring approach to cover such cases
would require a substantial amount of overhead (i.e. monitoring
each change to any field of any object reachable from all the static
fields), we complement the optimistic approach with a pessimistic
extension. Given all classes that were loaded during the execution
of the whole test suite, we re-execute the class initialisers for all
of them after each test case is finished. This solution is by far less
performant that the optimistic approach presented earlier. Never-
theless, to control the impact in performance we combine both ap-
proaches. During the regular genetic algorithm execution of EVO-
SUITE, we rely on the optimistic approach to handle changes to the
static state of the CUT. Also, along the entire evolution of the chro-
mosomes we track all the classes that are initialised by the CUT.
When EVOSUITE finishes the genetic algorithm, a more focused
phase starts to generate the assertions that will act as oracles. Dur-
ing this assertion generation phase, test cases are re-executed re-
peatedly, but less often than during the search algorithm. In this
stage of EVOSUITE test generation, we apply the pessimistic ap-
proach, and we reset all classes that were loaded during the search
of the test suite.

This schema is completed by two additions. First, since the or-
der in which classes are loaded might have an impact on the static
state, we also try to reproduce the exact sequence of class ini-
tialisation that occurred during the genetic algorithm. Secondly,
final fields are instrumented as non-final by the instrumen-
tation framework. The latter change has no effect from the final
user perspective (since the original bytecode does not modify the
final field more than once) and allows the re-execution of the class
initialiser to appropriately restore the value of the static fields to
their original state. Take for instance the atomicInteger field.
Even if the class <clinit> method is executed again, it will not
update the value of the field. In contrast, if the field is non-final,
then the execution of the class initialiser will replace the used in-
stance with a fresh one.

In the generated test cases, the initEvoSuiteFramework
method is invoked once before any test of the test suite is executed
(@BeforeClass) and ensures that EVOSUITE’s instrumentation

5The static variable is loaded with GETSTATIC, and then a method
is invoked using INVOKEVIRTUAL.

is used, and that all classes are loaded in the correct order (see
Figure 2, Line 2). The instrumentation is activated before, and de-
activated after every test execution, such that any further loaded
classes are correctly instrumented (e.g., to receive the additional
static reset methods based on <clinit>). Finally, after every test
execution doneWithTestCase invokes resetClasses (not
shown in Figure 2 as there is no static state in this example) which
calls the static state resetting method on all classes for which the
static state was changed.

3.3 Mocking Environment Interactions
Handling static state only covers the environment in the scope

of a class loader (see Figure 3). To be able to control the environ-
ment inputs of a class beyond that, we need to mock them. In other
words, we create a simulated environment, which is controlled by
the generated test cases. The type of simulator/mock will depend
on the type of the environment input we want to simulate. For ex-
ample, mocking the file system will be different from mocking the
CPU clock-time. Mocking the environment has several advantages:

• Test cases will be faster to run, as they do not have to deal
with expensive I/O operations on the environment (e.g., read-
ing and writing files from a physical hardisk).

• Test cases become independent from each other. E.g., two
test cases manipulating the same file can be run in parallel
without the worry of one influencing the other, as each of
them will have its own instance of the simulated file system.

• No negative side-effects. A tester will not need to worry to
apply a tool like EVOSUITE on a class that deletes files, as all
those operations will be automatically made on a virtual file
system. Even code that generates new temporary files can be
problematic for search-based test generation, because during
the search hundreds of thousands of CUT statements could
be executed, and even code like File.deleteOnExit()
would have effect only after the search.

• Higher coverage due to exception handling. When using a
simulated environment, we can easily simulate error con-
ditions. For example, if there are problems in the hardisk,
Java classes manipulating files might end up throwing an
IOException. In the search, as part of the test data, we
can mark virtual files to simulate that they should throw an
IOException if any operation is called on them.

• The test cases become more stable. For example, consider
a CUT accessing to the CPU time-clock. The accessed time
value could affect not only the achieved coverage, but also
the JUnit assertions that capture the executed behavior. If run
again, the JUnit test case will likely fail, as a new clock value
is used. By mocking the CPU clock-time (and other non-
deterministic events), we can prevent this kind of unstable
tests. This is particular important when test suites generated
by tools like EVOSUITE are used for regression testing.

The basic principle of this approach is to identify the standard
library classes/methods that are responsible for environment inter-
actions, and to replace them with mocked versions. The behavior
of these mocked versions should be determined by the test gener-
ator in order to set up the environment in whatever way is neces-
sary to achieve coverage. This is achieved by providing dedicated
helper methods that set the environment state (e.g., to set the system
time), and make them part of the methods that EVOSUITE considers
during test generation. However, including such calls in the input
space when there is no actual interaction with the environment may
have a negative effect on the efficiency of the test generator. For
example, if the CUT does not do any I/O on the file system, then
there is no point in generating files as test data, as those will never



Table 1: Classes mocked in EVOSUITE.
Filesystem Non-determinism

java.io.File java.lang.Exception

java.io.FileInputStream java.lang.Throwable

java.io.FileOutputStream java.lang.Runtime

java.io.RandomAccessFile java.lang.System

java.io.FileReader java.lang.Class

java.io.FileWriter java.lang.Thread

java.io.PrintStream java.lang.Math

java.io.PrintWriter java.util.Date

java.util.logging.FileHandler java.util.Calendar

javax.swing.JFileChooser java.util.GregorianCalendar

javax.swing.filechooser java.util.Random

.FileSystemView java.util.logging.LogRecord

be used and would just hamper the search. Therefore, the environ-
ment mock classes dynamically detect if they are used, and only
if a part of the environment has been accessed, the corresponding
helper methods are made available to the test generator.

3.3.1 Console Inputs
When a Java program is run from a console, then the program can

read user’s inputs on the console from System.in, which is an
instance of java.io.InputStream in Java. For example, the
class PasswordReader from Sourceforge project Schemaspy
reads passwords while masking the output with “*” characters. When
EVOSUITE is run on such a class, it replaces all occurrences of the
static variable System.in in all instrumented class with a cus-
tomized InputStream, which is called SystemInUtil. By
using a customized stream, we can detect after a test case execu-
tion if the CUT has tried to read from System.in.

If the CUT has tried to read from System.in, in the next gen-
eration of the evolutionary algorithms we add the static method
addInputLine(String str) of the class SystemInUtil
to the set of methods EVOSUITE can use in the generated JUnit
test cases. This method, which will be now part of the search,
adds its input string to the stream, and so it simulates a console
input from the user. EVOSUITE will now also try to find input
values for this method that lead to higher coverage. Calls to this
method will be included in the generated JUnit tests, as can be seen
in Figure 2 (e.g., Lines 24, 34, and 42). Note that the mocked sys-
tem input will be reset before every test execution using the call to
initForTestCase in SystemInUtil (Line 14).

3.3.2 Virtual File System
In Java, there are different ways to access the filesystem. Han-

dling the filesystem is important to allow a test generator to cover
code dependent on files, but that is not the only reason: In our past
experiments on SF100 [8], we had incidents where several parts of
the hardrive were wiped out during test generation by unfortunate
sequences of calls and inputs. As a consequence, we added a cus-
tom security manager that allows files to be read, but not to write,
delete or execute any of them. However, as this security manager
may adversely affect the code coverage, as part of this paper we
have implemented a virtual file system for EVOSUITE that fully
runs inside the JVM. To force the CUTs to use this virtual file sys-
tem, we have mocked the standard Java API classes for IO. This
includes the classes in Table 1.

In this context, a mock is class that extends the class it is meant to
mock, overriding all its methods. For example, java.io.File
has 37 methods we needed to change to operate on the virtual file
system, plus a further 15 methods that needed no changes. All
methods of all classes operate on the same virtual file system, mak-
ing the changes done by one mock class affecting the behavior of

all the other mock classes. The instrumentation consists of replac-
ing all invocations of methods and constructors of the original class
(e.g., java.io.File) to invocations of the mocked class (e.g.,
MockFile). In addition, EVOSUITE is instructed not to use any
of the methods of the mocked classes, but the methods of the mock
classes instead. Because each mock class is a subclass of the class it
mocks it can be used like the original class, and all class signatures
remain unchanged.

When a mocked class has methods that return an instance of
another class dealing with the file system, we provide mocks for
those returned instances. For example, the method getChannel
in FileInputStream returns an instance of the abstract class
FileChannel of the java.nio.channels package. In this
case, our mocked getChannel returns a concrete instance for
FileChannel that is consistent with the current state of the given
file input stream. However, we still not fully support the nio pack-
age (e.g., calls to static methods like FileChannel.open are
not handled yet).

The virtual file system is re-initialized after each test case exe-
cution. In addition, after a test case execution, we can check if the
CUT has tried to read from any file. If so, then in the next genera-
tions of the evolutionary algorithm we add to search several differ-
ent methods to create and manipulate such files, which will now be
a new kind of test data. One such method is appendLineToFile,
which can be seen for example in Figure 2 (Lines 26 and 44).

3.3.3 General Java Virtual Machine Calls
Besides filesystem and console input, there are many less obvi-

ous sources of environmental inputs to a class. For example, there
are different ways in which a class can access the current system
time (System.currentTimeMillis, System.nanoTime,
Date, Calendar, GregorianCalendar). Other classes and
methods, such as Random, SecureRandom, and Math.random,
may indirectly depend on the system time when setting the initial
seed. Some more subtle examples of environmental state are infor-
mation about the operating system state; for example, the name and
string representation of a Thread object depends on how many
threads are currently running in the system, and this information is
used in various places such as loggers (e.g., LogRecord or ex-
ception messages). Also the stack trace of a thread is used, e.g.,
in Exception and Throwable, and this is typically different
depending on which JUnit runner is used. In all these cases, we
use mock classes or methods with deterministic behaviour. In ad-
dition, if the current system time is accessed, then a special method
System.setCurrentTimeMillis is added to the methods
EVOSUITE uses for test generation, which allows the current sys-
tem time to be set explicitly. Furthermore, each call to a function
that retrieves the time increases the mocked time by 1. Similarly to
this, the next random number can be explicitly set by EVOSUITE.

Figure 7 illustrates an example where the system time is in-
volved: Covering the MessageBean class is quite trivial — the
class has seven methods but not a single conditional statement or
loop. However, the method getCreation will return a string
that represents the exact time at which the MessageBean was in-
stantiated during test generation. During later test execution, an
assertion using this value would fail. By mocking the system time
and dependent classes such as GregorianCalendar, the time
is under control of the test. Although the time could be set by the
test, in MessageBean this is not even necessary, and thus the de-
fault time used in EVOSUITE is reported, and the test is now stable.

There are more sources of nondeterminism: For example, when
using Java reflection, the order in which Method objects or other
reflection objects are returned is nondeterministic. To avoid this



1public class MessageBean implements Serializable{
2 private static final SimpleDateFormat SDF = new

SimpleDateFormat("dd/MM/yyyy HH:mm:ss SSS");
3 private GregorianCalendar creation = new

GregorianCalendar();
4

5 public String getCreation() {
6 return SDF.format(creation.getTime());
7 }
8

9 // ...
10}

1 @Before
2 public void initTestCase(){
3 org.evosuite.runtime.Runtime.getInstance().

resetRuntime();
4 }
5

6 @Test
7 public void test1() throws Throwable {
8 MessageBean messageBean0 = new MessageBean("+CV_[B!oP

CbfRC");
9 String string0 = messageBean0.getCreation();

10 assertEquals("14/02/2014 20:21:21 320", string0);
11 }

Figure 7: Excerpt from the class MessageBean that depends
on the system time (Sourceforge project DB-Everywhere).
Achieving full code coverage on this class is easy, but test1
would fail unless executed at exactly the right time. However,
EVOSUITE instrumentation controls the system time, and the
time reported in the assertion is EVOSUITE’s default time.

problem, we mock all reflection calls with a wrapper class that sorts
any returned list of reflection objects by name.

Hash codes are a particularly tricky source of failing tests. To
produce deterministic hash codes, we provide a mocked version
of System.identityHashCode, which looks up a sequential
object ID based on the actual identity hash code of a given ob-
ject. If a class does not implement its own hashCode method,
then we add one using instrumentation which calls the mocked
identityHashCode function.

Finally, java.lang.Runtime provides various system spe-
cific values such as availableProcessors or freeMemory,
which would differ depending on the machine on which a test is ex-
ecuted. Again, we provide a mocked version of that class. Table 1
summarizes which classes are currently fully or partially mocked
in EVOSUITE.

4. EMPIRICAL STUDY
In this paper, we aim to address the following research questions:
RQ1: Does controlling the environment successfully increase

coverage on known cases of environmental interactions?
RQ2: Does controlling the environment successfully resolve known

issues of unstable tests?
RQ3: How do results generalize to the SF100 corpus?
RQ4: How many unsafe environmental interactions does EVO-

SUITE now handle?

4.1 Experimental Setup
To answer the research questions posed in this paper, we used

the SF100 corpus [8], which is a collection of 11,219 Java classes
from 100 Java projects randomly selected from SourceForge. We
carried out three different sets of experiments:

For the first set of experiments, we manually selected 30 Java
classes from the SF100 corpus that interact with the environment.
The selection was made by looking for usage of environment-related
API in the source code, and by observing security exceptions trig-

gered by EVOSUITE’s restrictive security manager (for example,
the security manager will prohibit and report all attempted write ac-
cesses to files). Such a biased selection is important to study what
kind of improvements could be obtained on classes that could most
benefit from the proposed techniques. For example, not much im-
provement would be seen when using a mocked file system during
test generation for CUTs that do not interact with any files. Further-
more, using such a small set of classes has the following benefits:
we can run more experiments with different random seeds, we can
manually study the classes in more detail, and it can also be easier
for researchers to use such a set in the future for replicated experi-
ments and comparisons.

On this set of 30 classes, we applied EVOSUITE with six dif-
ferent configurations: the default one (“Base”), one configuration
for each technique discussed in Section 3, i.e, “Console” (Sec-
tion 3.3.1), “VFS” (Section 3.3.2), “JVM” (Section 3.3.3), “Static”
(Section 3.2), and we also considered a configuration in which all
four techniques are activated at the same time (“All”). For each
configuration, we ran EVOSUITE 100 times on each CUTs. Each
run lasted up to three minutes. In total, this took (20× 6× 100×
3)/(60× 24) = 38 days of computational resources.

For the second set of experiments, we manually selected 30 Java
classes from the SF100 corpus that lead to unstable tests. Note
that not all classes interacting with the environment automatically
lead to unstable tests; indeed many of the classes chosen for the
first set of experiments simply lead to very low coverage without
the additional instrumentation, but not unstable tests. After test
generation, EVOSUITE attempts to compile and run all generated
tests and will thus detect and report unstable tests. We selected 30
classes from this information. Again, experiments were repeated
100 times with the same six configurations.

In the third set of experiments, we used the whole SF100 corpus,
consisting of all the 11,219 classes it currently includes. Due to
the large number of experiments, we ran only two configurations:
“Base” and “All”. Each experiment was repeated five times with
different random seeds. This led to (11,219 × 2 × 5 × 3)/(60 ×
24) = 233 days of computational resources.

Put together, these three sets of experiments took 308 days of
computational resources. To run such large amount of experiments,
we used a cluster of computers using six cores (12 considering
hyper-threading) at 2.6 GHz., running a Linux distribution. To
properly analyze the results of these large sets of experiments, we
followed the guidelines in [1]. In particular, we used the Wilcoxon-
Mann-Whitney U-test (at α = 0.05 significance level) and the
Vargha-Delaney Â12 standarized effect size.

4.2 Results

4.2.1 RQ1: Effects on code coverage
Table 2 shows the results for the first set of experiments on 30

environment dependent Java classes. On this manually selected set
of classes, performance improvements are very large, going from
29% average branch coverage of the “Base” configuration to the
82% achieved by the “All” configuration.

In some cases the improvement is due to a single technique. For
instance, the classes Log4jImportCallable and Renaming-
FileStream require an input file with content that has to sat-
isfy certain constraints. A large coverage increase can already be
achieved by simply creating these files, but with the three min-
utes of search time EVOSUITE was generally not able to produce
much meaningful file content. For example, FileEditor re-
quires content in an ad-hoc format for storing application data, and
Log4jImportCallable requires valid XML valid inputs.



Table 2: Results for RQ1: Average branch coverage achieved by each of the six analyzed configurations. Effect size Â12 is calculated
for the “All” configuration compared to the “Base” one. Statistically significant differences at 0.05 level are shown in bold.

Class Base Console VFS JVM Static All Â12

com.imsmart.parser.MCSVParser 0.10 0.10 0.76 0.10 0.10 0.78 1.00
net.sourceforge.beanbin.reflect.ReflectionShelf 0.75 0.75 0.75 0.75 1.00 1.00 1.00
com.allenstudio.ir.core.ConfigurationManager 0.09 0.08 0.53 0.08 0.41 0.80 1.00
com.soops.CEN4010.JMCA.JParser.SimpleNode 0.26 0.74 0.27 0.25 0.26 0.73 0.99
net.sourceforge.jwbf.core.bots.util.SimpleCache 0.40 0.40 0.89 0.40 0.40 0.99 1.00
jipa.Variable 0.60 0.60 0.60 0.61 0.99 0.99 0.71
apbs_mem_gui.FileEditor 0.20 0.20 0.77 0.20 0.20 0.77 1.00
net.kencochrane.a4j.file.FileUtil 0.29 0.29 0.40 0.28 0.29 0.40 1.00
httpanalyzer.HeaderSettings 0.94 0.94 0.94 0.95 1.00 1.00 0.79
corina.browser.RelativeDate 0.83 0.83 0.83 0.95 0.83 0.94 1.00
corina.util.GZIP 0.12 0.12 0.71 0.12 0.12 0.70 1.00
net.sourceforge.schemaspy.util.PasswordReader 0.08 0.68 0.09 0.09 0.11 0.64 1.00
net.sourceforge.schemaspy.view.StyleSheet 0.24 0.24 0.24 0.24 0.79 0.86 1.00
framework.base.ValueListHandler 0.12 0.12 0.12 0.12 0.12 0.93 1.00
de.beiri22.stringincrementor.helper.StringFromFile 0.33 0.33 0.80 0.33 0.33 0.80 0.97
de.huxhorn.lilith.log4j.xml.Log4jImportCallable 0.22 0.22 0.74 0.22 0.22 0.73 1.00
dk.statsbiblioteket.summa.ingest.stream.RenamingFileStream 0.00 0.00 0.87 0.00 0.00 0.87 1.00
ch.bfh.egov.nutzenportfolio.persistence.customizing.CustomizingIbatisDao 0.00 0.00 1.00 0.00 0.00 1.00 1.00
nu.staldal.lagoon.BuildSitemap 0.30 0.33 0.77 0.30 0.69 0.79 0.99
client.ClientProperties 0.00 0.00 1.00 0.00 0.00 1.00 1.00
fi.vtt.probeframework.javaclient.api.probe.PFTest 0.79 0.79 0.77 0.67 0.88 0.85 0.68
fi.vtt.probeframework.javaclient.protocol.IO 0.67 0.68 0.69 0.61 0.99 0.96 0.91
fr.pingtimeout.jtail.io.index.RomFileIndex 0.08 0.08 0.99 0.08 0.08 0.99 1.00
org.fixsuite.message.parsers.fpl.MainParser 0.25 0.25 0.87 0.25 0.25 0.99 1.00
com.lts.application.repository.ArchiveRepository 0.07 0.07 0.56 0.07 0.07 0.56 1.00
net.sf.xbus.tools.QLoad 0.22 0.66 0.22 0.22 0.22 0.63 1.00
umd.cs.shop.JSUtil 0.28 0.62 0.30 0.27 0.25 0.64 0.99
jigl.signal.io.SignalInputStream 0.03 0.03 0.56 0.03 0.03 0.54 1.00
org.jcvi.jillion.internal.core.io.RandomAccessFileInputStream 0.34 0.34 0.79 0.34 0.34 0.80 1.00
Newzgrabber.IniUtility 0.20 0.20 0.79 0.20 0.20 0.79 1.00

Average 0.29 0.35 0.65 0.29 0.37 0.82 0.96

Table 3: Results for RQ2: Average number of unstable tests generated for each of each of the six analyzed configurations. Effect
size Â12 is calculated for the “All” configuration compared to the “Base” one. Statistically significant differences at 0.05 level are
shown in bold.

Class Base Console VFS JVM Static All Â12

org.databene.jdbacl.JDBCDriverInfo 2.72 2.52 2.52 2.49 0.00 0.00 0.02
net.sourceforge.beanbin.reflect.ReflectionShelf 1.14 1.16 1.20 2.06 0.00 0.00 0.20
org.jsecurity.realm.ldap.AbstractLdapRealm 2.99 3.04 3.17 3.21 0.14 0.13 0.12
org.jsecurity.codec.Base64 1.27 1.28 1.35 1.74 0.00 0.00 0.28
gui.gl.Camera 2.37 2.36 2.33 2.19 0.00 0.07 0.04
module.MessageFactory 4.20 4.19 4.24 4.15 1.55 0.01 0.00
corina.gui.Bug 1.33 1.40 1.39 0.00 1.40 0.00 0.13
net.sourceforge.schemaspy.Config 0.64 0.75 0.79 0.82 0.06 0.08 0.30
de.huxhorn.lilith.handler.Slf4JHandler 0.84 0.98 0.75 0.00 0.77 0.00 0.38
dk.statsbiblioteket.summa.common.Record 7.16 7.09 6.93 0.03 6.94 0.00 0.00
com.gbshape.dbe.struts.bean.MessageBean 0.61 0.62 0.61 0.00 0.62 0.00 0.22
visu.handball.moves.model.animation.PassLineIterator 2.50 2.52 2.52 2.38 0.00 0.00 0.04
visu.handball.moves.model.player.Player 5.53 5.57 5.47 5.87 0.00 0.00 0.10
fi.vtt.noen.mfw.bundle.probe.plugins.measurement.MeasurementTask 3.73 3.66 3.41 0.02 1.73 0.00 0.02
fi.vtt.probeframework.javaclient.api.probe.PFTest 6.86 6.79 7.50 4.41 7.05 0.30 0.22
org.exolab.jms.net.connector.ConnectionContext 1.75 1.73 1.47 1.57 0.00 0.00 0.13
org.exolab.jms.message.Timestamp 1.19 1.23 1.03 0.00 1.17 0.00 0.18
com.lts.util.DateUtil 2.59 2.87 2.55 0.09 2.27 0.11 0.08
com.lts.util.ImprovedRandom 2.49 2.39 2.93 0.02 1.62 0.00 0.03
fr.unice.gfarce.identity.Formation 1.91 1.90 1.87 0.00 1.77 0.00 0.11
org.javathena.utiles.ConfigurationManagement 3.96 3.87 2.40 3.81 0.00 0.00 0.01
org.javathena.core.utiles.Functions 0.93 0.93 0.78 0.00 0.80 0.03 0.23
net.sf.xbus.protocol.records.RecordTypeMessage 1.82 1.59 1.28 0.00 1.55 0.00 0.23
org.sourceforge.ifx.basetypes.IFXDateTime 3.26 3.67 3.66 0.00 3.38 0.00 0.05
net.virtualinfinity.atrobots.arena.Heading 1.83 1.76 1.79 0.12 1.60 0.16 0.09
org.jcvi.jillion.assembly.consed.ace.WholeAssemblyAceTag 2.13 2.12 2.21 0.00 2.19 0.00 0.05
org.quickserver.net.server.impl.BasicClientHandler 1.91 1.86 2.18 1.79 0.01 0.00 0.07
org.heal.module.oai.provider.basic.BasicResumptionToken 1.63 2.01 1.87 0.86 1.22 0.00 0.14
mygrid.Performance 1.22 1.22 1.22 0.00 1.19 0.00 0.00
net.sourceforge.ext4j.log.Server 0.57 0.54 0.57 0.67 0.00 0.00 0.24

Average 2.43 2.45 2.40 1.27 1.30 0.02 0.12



Some classes (BuildSitemap, ClientProperties or Rom-
FileIndex) not only tried to read from files, but also to write to
them (e.g., by dumping an XML document with a description of
the object). In those cases the correlation between the “VFS” con-
figuration and the overall improvement is very clear.

Nevertheless, in some classes I/O accesses were combined with
changes to the static data (such as ConfigurationManager)
or calls to Random or Date (such as FileUtil). Here, the com-
bined configuration (“All”) achieved the highest coverage.

Interestingly, “Static” by itself led to higher coverage for almost
one third of the subjects. A closer inspector revealed that this is
mostly due to branches that are very difficult to reach if singleton
objects are not reset on a test by test basis (e.g., HeaderSettings).
Finally, the mocking of System.in (the “Console” configura-
tion) was effective in all cases where it occurred (QLoad, JSUtil
and PasswordReader).

RQ1: Controlling the environment can have a large impact on
branch coverage, even in the order of +80%/+90%.

4.2.2 RQ2: Effects on unstable tests
Table 3 shows the results for the second set of experiments on

30 classes resulting in unstable tests. Without any treatment, the
average number of failing tests per test suite is in the range of 0.57
to 7.16. Adding console and filesystem mocking has no significant
effects on the number of unstable classes, except in one case. This
is as expected: When checking for unstable tests, we compiled and
ran the JUnit test suites on the same computer and on the same file
system. Thus, if any files are read from, this would not be affected.
Interestingly, for ConfigurationManagement the number of
unstable tests nevertheless decreases when mocking the filesystem.
This class implements a singleton pattern and attempts to read from
a file. If this file does not exist, static default properties are used,
which contributes to unstable tests. When mocking the filesystem,
EVOSUITE creates the file on the virtual filesystem and typically
manages to set at least some of the properties, such that fixed rather
than static values are used. Consequently, the number of unstable
tests is reduced. When resetting the static state, all unstable tests
disappear.

In general, either resetting the static state or mocking nondeter-
ministic JVM calls removes the unstable tests in almost all cases.
Out of those cases fixed by the JVM-related instrumentation, the
main source for unstable tests is time: E.g., usage of Date (e.g.
Bug), System.currentTimeMillis (e.g. PFTest, Date-
Util) or GregorianCalendar (e.g. Formation). Some
classes use random numbers (Functions, Heading), and Per-
formance accesses information about the available memory on
the system from Runtime. In total, out of the 30 classes our in-
spection revealed that 13 are affected exclusively by non-deterministic
calls to the JVM, another 12 are affected strictly by changes to
the static state, and the remaining 5 are affected simultaneously by
both.

There are several classes where no individual technique manages
to remove all unstable tests, but only a combination of techniques
succeeds. For example, MessageFactory is a singleton that
serves as a factory of objects that access the current time. When
just mocking JVM calls, the created objects will still be influenced
by the static state and lead to unstable tests; when just handling
static state, there is a reduction in the number of unstable tests,
but the created objects will still refer to the current time. Used
together, the unstable tests disappear. Conversely, for PFTest or
BasicResumptionToken it is the other way round: Replacing

JVM calls achieves some reduction, but only in conjunction with
handling static state.

Interestingly, there are several classes where unstable tests hap-
pen even for the “All” configuration, although rarely (e.g., PFTest).
These cases exhibit corner cases we have not handled yet. For ex-
ample, PFTest defines its own hashCode method that builds the
hash code from a range of different objects, and is a method which
EVOSUITE tries to cover. Every now and then EVOSUITE man-
ages to find specific cases not handled by our instrumentation (e.g.,
EVOSUITE’s own mock objects in the experiments underlying the
presented data). It is an ongoing engineering effort to cover all
corner cases.

RQ2: Controlling the environment removes unstable tests for
intended sources of non-determinism.

4.2.3 RQ3: Generalization of results
When run on all the 11,219 classes of the SF100 corpus, the de-

fault version of EVOSUITE obtains 76.5% branch coverage. When
using all the environment techniques discussed in this paper (the
“All” configuration), then the coverage is increased to 77.9%, cov-
ering 2,803 additional branches. For each class we calculated the
Â12 effect size, and then checked if the resulting 11,219 are sym-
metric or not to 0.5 (i.e., if there are more classes in which “All”
provides better results than worse). The improvement is statisti-
cally significant, as the resulting p-value is very close to zero.

Although the overall coverage increase is significant, why does
EVOSUITE still not achieve 100% coverage? To some extent, this
is simply due to the large number and variety of classes in SF100—
any specific improvement will only apply to a fraction of the classes,
and thus only slightly increase coverage. The environmental depen-
dencies we handled in our experiments are only some of many re-
maining issues in achieving high code coverage (e.g., multi-threading,
GUI code, networking, databases, etc.).

Furthermore, based on our observations (cf. RQ1) we conjecture
that the I/O related coverage increase could be larger if EVOSUITE
were more efficient at generating relevant content for these files.
Although this is already possible in principle with the techniques
presented in this paper, three minutes of regular search may simply
not be enough to optimise complex strings representing file content.
Optimisations such as the integration of DSE [13] for the specific
task of optimising mocked data will be helpful in achieving this
goal, but requires additional engineering effort.

For each class, we checked if, in any of the five runs per config-
uration, there were any generated test cases that were unstable. On
one hand, the default “Base” EVOSUITE led to 1,452 classes with
unstable tests. On the other hand, the techniques discussed in this
paper reduced the number of classes with unstable tests to 671, i.e.,
less than half.

Sampling the classes with unstable tests revealed some common
cases that still need to be handled:

• GUI related code is notoriously non-deterministic. For ex-
ample, AWT and Swing components have names and IDs
that change with every execution. In our implementation, we
have not addressed mocking of GUI components yet.

• Multi-threading is a well-known source of non-determinism.
EVOSUITE so far does not address multi-threading explicitly,
but many classes in SF100 spawn threads.

• Hashcode calculation on objects not handled by mocking can
lead to nondeterminism, when the hashcode values are used
in computations (which may happen in the CUT or the test).

In addition, we found several cases where reproduction of the un-
stable tests observed on the cluster (which runs Linux) were diffi-



cult on our development machines, which are Macs. Consequently,
there are some remaining platform specific details not fully covered
by our infrastructure.

RQ3: Coverage on SF100 increased significantly, and the
number of unstable tests was reduced by half.

4.2.4 RQ4: Effects on unsafe operations
Some environmental interactions can not only influence cover-

age or stability of tests, they can be harmful. For example, in our
past experiments on SF100 [8] we have observed classes that cre-
ate files named using string inputs, leading to the disk being clut-
tered with thousands of randomly named files; we even had inci-
dents where we lost all of our experimental data and SF100 files
due to unsafe interactions. As a consequence, EVOSUITE uses a
conservative security manager that prohibits any potentially unsafe
operations.

When we run EVOSUITE with a virtual file system, it could still
happen that some CUTs access the real file system, as not all Java
API classes are mocked. In these cases, the default sandbox will
prevent harmfull operations, but it is of interest to verify how much
of the I/O issues are solved. When run with its default configura-
tions, there are 3,436 CUTs that do access the file system at least
once in a potentially harmful way. When run with the virtual file
system introduced in this paper, there are only 599 cases left.

A manual verification of some of those 599 CUTs point to some
I/O related classes that were not mocked, like ZipFile and Jar-
File. Furthermore, there are quite a few cases in SF100 in which
the CUTs try to start non-Java processes. These result in execute
permission requests on the executable files, which are denied by
our sandbox (also in the presence of the virtual filesystem).

RQ4: Our implementation covers a large share of I/O, but fully
covering the Java standard library is ongoing engineering effort.

4.3 Threats to Validity
Threats to internal validity might come from how the empirical

study was carried out. EVOSUITE and the extensions are heav-
ily tested (> 1600 tests), although ultimately there is no guarantee
against faults. As we employed randomized algorithms, all experi-
ments were repeated (100 times for the smaller samples of classes;
five times on the entire SF100 corpus).

To cope with possible threats to external validity, the SF100 cor-
pus was employed as case study. SF100 is a collection of 100 Java
projects randomly selected from SourceForge [8], and thus pro-
vides high confidence in the possibility to generalize our results to
other open source software as well. Although we ran EVOSUITE
on different operating systems during testing and development, the
experiments were run only on Linux. Consequently, there remains
the question of whether results also hold on other operating sys-
tems, or across different operating systems. In general, Java should
be platform independent, but we have observed different environ-
mental behavior occasionally.

Threats to construct validity are on how the performance of a
technique is defined. We focused on code coverage and unstable
tests in our experiments. However, in practice, an increase in cov-
erage may not be desirable if it results in degraded readability of
the test cases. To ensure validity of our measurement of unstable
tests, all tests were compiled and executed outside of the EVO-
SUITE framework. However, some cases of unstable tests may es-
cape this check. For example, an assertion that checks the current
date may only fail when executed on a different day. Nevertheless,

our experiments show that the reduction is significant, and point
out areas that need to be addressed to further increase test stability.

5. CONCLUSIONS
When generating unit tests, isolating the unit under test from

its environment is important to achieve higher code coverage. To
obtain reliable regression suites, it is also important to produce test
cases that are stable and deterministic.

In this paper, we have presented a fully automated approach
where we replace API calls and classes related to the environment
with mocked versions, and allow EVOSUITE to explicitly set the
state of the environment and its inputs as part of the tests it gener-
ates. In particular, with the techniques introduced in this paper we
are able to handle inputs from the console, the file system, the static
state of all classes loaded in the JVM, and, finally, we handle many
the of non-deterministic functionalities of the JVM.

Experiments on selected classes exhibiting these problems show
the large potential of improvement resulting from this approach. In
some cases, improvements were in the order of +80%/+90% branch
coverage, and the number of unstable tests is greatly reduced. To
study how these results generalize and to see how common these
environment problems are for practitioners, we also carried out an
empirical study on the SF100 corpus, which contains 11,219 Java
classes consisting of more than two million lines of code.

Larger experiments on the SF100 corpus of classes confirmed
those improvements, showing that the techniques presented in this
paper have practical value for software engineers. These novel
techniques are implemented in the EVOSUITE tool, which is freely
available to download from www.evosuite.org.

However, these experiments also show that there is further work
to be done. First, there is a range of engineering tasks necessary to
extend the support of environmental isolation:

• As witnessed by the remaining unstable tests, there are fur-
ther sources of non-determinism we have not yet handled in
our implementation, for example caused by multi-threading
and GUI code.

• As witnessed by the remaining file-related security excep-
tions, we have only mocked a subset of the file-related API
of Java. There are other APIs (e.g., nio and nio2) that
require further engineering work to be fully mocked.

• There are other environmental interactions we have not ad-
dressed yet, such as networking (e.g., sockets) and databases.

Besides these engineering issues, there are more fundamental is-
sues that require more in-depth research:

• Our approach so far enables the search to optimize the envi-
ronmental state and inputs, but there is a need to improve the
ways in which these inputs are optimized. For example, the
search should be able to detect whether a file should contain
binary or XML content, and then advanced search techniques
are required specifically for each type of input.

• Even if the search is fully able to optimize complex inputs,
including the binary input of a file explicitly in the test case
may not be ideal, as test cases may need to be read and under-
stood by developers during maintenance or test oracle gener-
ation. Consequently, future work needs to consider ways to
improve the readability of the generated test cases.
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