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Abstract—We present a novel and general technique for auto-
mated test generation that combines tight bounds with incremen-
tal SAT solving. The proposed technique uses incremental SAT
to build test suites targeting a specific testing criterion, amongst
various black-box and white-box criteria. As our experimental
results show, the combination of tight bounds with incremental
SAT, and the testing criterion driven approach implemented in
our prototype tool FAJITA, enable us to effectively generate test
suites for container classes with rich contracts, more efficiently
than other state-of-the-art tools.

I. INTRODUCTION

Testing is a powerful and widely used technique for software
quality assurance, which requires significant resources in most
software development projects [20]. Finding appropriate data
to test software is typically a manual activity. In the last few
years an increasingly growing community that sees automated
test data generation as an essential complement to manually
built test suites has emerged. Many tools that automate test
data generation have been developed based on a variety of gen-
eration techniques, targeting different kinds of programs and
programming languages. Amongst these we have RANDOOP
[23] and AutoTest [22] (based on random generation), Pex [27]
(based on dynamic symbolic execution), Java PathFinder [29]
and Kiasan [8] (based on model checking), Korat [3] (based
on search), EvoSuite [12] (based on genetic algorithms) and
UDITA [17] (based on model checking, over Java PathFinder).
Some of these tools (e.g., RANDOOP, AutoTest and Korat)
follow a black-box approach to test case generation, in the
sense that the structure of the program under test is not
considered during the test generation process. Other tools
(e.g., Kiasan, Java PathFinder, EvoSuite and UDITA), take
into account the structure of the program under test for the
generation, and thus are driven by a white-box approach.

In this article we present a novel, flexible and push-button
technique for test input generation, implemented in our proto-
type tool FAJITA. The experiments we present in this article
show that FAJITA achieves high coverage in generating test
cases involving heap allocated structures with rich contracts.
Said coverage improves even with respect to the most effective
tools targeting this domain. In Table I we present a summary
of the experimental results we obtained on goal coverage

Pex Kiasan Randoop Autotest EvoSuite FAJITA
GC 78% 84% 63% 68% 90% 95%
BC 75% 92% 69% 71% 90% 98%
Time 3h7m 2h16m 25h 25h 22h 1h18m

TABLE I
SUMMARY OF GOAL (GC) AND BRANCH COVERAGE (BC) PERCENTAGE,

AND REQUIRED OVERALL INPUT GENERATION TIME.

and branch coverage, as well as the overall time required for
test input generation. We used a benchmark consisting of 8
collection classes, 25 methods, 227 goals and 394 branching
points. The FAJITA approach to test input generation presented
in this paper makes the following contributions:
• It leverages the bug-finding mechanism introduced in

TACO [16], our tool for bug-finding, to the testing
domain. FAJITA is based on SAT-solving, and the TACO
technique contributes a powerful mechanism based on
symmetry reduction that allows us to remove a significant
number of variables from the SAT problem. This is
particularly effective in the context of rich contracts
including structural data constraints.

• It makes a novel use of incremental SAT-solving for
systematically and effectively building test suites that
target a specific coverage criterion, amongst a variety
of black-box and white-box criteria. This test generation
process leads to test suites that are minimal and only
contain terminating test inputs (the latter is essential for
the automation of the execution process).

• We show that FAJITA produces better and faster coverage
for container classes with rich contracts, compared to
various state-of-the-art tools for test generation based on
a wide range of techniques, including dynamic symbolic
execution, random testing and genetic algorithms.

The article is organized as follows. In Section II we show
how FAJITA makes use of tight bounds, a technique introduced
with the TACO tool for bug-finding. In Section III, we
present the generic, coverage criteria driven approach to test
generation that FAJITA implements, which uses incremental
SAT solving. This generic technique is tailored in Sections IV
and V to make FAJITA target various black-box and white-
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box testing criteria. In Section VI we present the experimental
results that, in particular, give origin to Table I. Finally, in
Sections VII and VIII we discuss related work and present
our conclusions and proposals for further work.

II. TIGHT BOUNDS FOR IMPROVED SAT-SOLVING

Given a propositional formula ϕ, the SAT problem consists
of finding a satisfying valuation for ϕ, or reporting its unsatis-
fiability. The worst-case time complexity of SAT is exponential
on the number of propositional variables of the formula being
solved, and therefore reducing the number of variables most
times contributes to reducing its solving time.

Our approach to test input data generation is based on
SAT-solving. It takes the specifications of the input and other
constraints on it (e.g., regarding the coverage of a particu-
lar equivalence class according to a testing criterion), and
translates these into a propositional formula whose satisfying
valuations correspond to test inputs complying with the spec-
ification and the additional constraints. In order to improve
the analysis time of the SAT-solving process underlying our
approach, we take advantage of a technique put forward in
[16], that: (i) automatically synthesizes symmetry breaking
predicates [5], making the SAT solver produce only canonical
representations of valid inputs, removing other redundant
instances (symmetric to the canonical ones), and (ii) uses the
above mentioned symmetry breaking constraints in order to
automatically remove from the propositional formulas some
variables which, due to these constraints, are guaranteed to be
false in the solving process. This technique was implemented
in the sequential Java analysis tool TACO [16], and has proved
to be extremely useful, allowing us to remove in several of our
case studies over 60% of the propositional variables used for
characterizing the input states, and exponentially improving
the analysis times.

FAJITA uses Alloy [18] as a high level language suitable
for accessing off-the-shelf SAT-solvers. Furthermore, the use
that Alloy makes of KodKod [28] along the translation of
Alloy models to propositional formulas is essential to our
approach. KodKod allows one to prescribe bounds for Alloy
fields. Each field f is equipped with a relation Uf (its upper
bound), which imposes restrictions on the interpretations of
this field: in any Alloy model M, f ⊆ Uf . Therefore, tuples
that are not in Uf cannot belong to f . The translation of Java
code models Java fields as Alloy relations, and each tuple
in such a relation is modeled with a propositional variable
(whose truth value indicates whether the corresponding tuple
is in the relation or not). Therefore, propositional variables
corresponding to tuples that do not belong to Uf can be
directly replaced in the translation process with the truth value
false. We exploit this facility in order to, as mentioned above,
reduce the number of propositional variables. To automatically
generate these bounds, FAJITA preprocesses the description of
valid objects (provided under the form of class invariants and
method preconditions) as described in [16], using a cluster of
computers, and automatically computes tight (i.e., with as few
pairs as possible) bounds for the fields of these objects. These
bounds are stored in a repository, since they are often reused

when generating test data for different testing criteria, when
different methods in the same Java class are considered, or for
different equivalence classes within a testing criterion. Thus,
the cost of computing the bounds is amortized. The computed
bounds, together with the additional constraints corresponding
to coverage according to a pre-selected testing criterion, are
used to build a KodKod model that is finally translated into a
propositional formula in conjunctive normal form, amenable
to most SAT-solvers.

III. TEST DATA GENERATION USING INCREMENTAL
SAT-SOLVING

We now present a generic algorithm for test data generation
that, when instantiated with an adequate description of a
testing criterion, allows FAJITA to generate test suites that
satisfy the criterion. In Sections IV and V we will show
different instantiations to black-box and white-box coverage
criteria. In order to explain how the algorithm works, let us
denote by S the state space of valid inputs of a program under
test. Any coverage criterion, be it white-box or black-box,
induces an equivalence relation on S. For instance, branch
coverage considers that two inputs are equivalent if, when
executing the program under test for each of these inputs,
each decision point returns the same truth values (none, if the
decision point is never reached, only true, only false, or both
true and false, since a decision point may be visited more
than once). Thus, testing criteria give origin to a collection
p1, . . . , pk of (mutually disjoint) unary predicates on S that
induce a partition on S in which each pi characterizes a
particular equivalence class on the set of inputs.

Since our approach is based on propositional satisfiability,
a scope must be imposed for the analysis. A scope basically
establishes a bound on the number of objects for each class,
and a limited range of values for numerical domains. More-
over, for white box coverage criteria, the scope also includes
a limit for the code under analysis, in the form of a maximum
number of loop iterations (this limit is used to unroll loops
and make the code under analysis loop-free). Our algorithm
for test generation guarantees that, if an equivalence class of
the test criterion is coverable within a provided scope (bounds
on the number of objects and the number of iterations), then
an input corresponding to this class is eventually generated.
Furthermore, the algorithm produces an optimal coverage, in
the sense that exactly one test is produced for each equivalence
class of the test criterion coverable within the provided scope.
If a class is not covered, this does not necessarily mean that it
is infeasible, since by using a larger scope a test input covering
the class might be generated. However, one can employ a
incremental approach with respect to the scope: start with
scope 1 and cover as many equivalence classes as possible,
and then start incrementing the scope to attempt to cover
the remaining uncovered classes, until all classes are covered,
or the analysis becomes infeasible. This is the approach that
FAJITA follows, which has a significant impact in reducing
path explosion in the analysis.

Within a particular scope, FAJITA makes use of another
interesting form of incrementality, via incremental SAT solv-
ing. Incremental SAT-solvers have two distinguishing features.
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Algorithm IncPartitionCoverage
Suite = empty;
rm_val = true;
while (I-SAT(alpha, rm_val))

val = getValuation();
Suite = Suite + getTestInput(val);
rm_val = getPredicateFrom(val);

endwhile

Fig. 1. Partition coverage using incremental SAT Solving.

When a satisfying valuation for a formula ϕ is found: (i) a new
formula α can be added in order to prune the search space even
further while searching for a new valuation satisfying (now)
ϕ∧α, and (ii) the internal state of the solver keeps track of the
already traversed portion of the search space. A new search
for a satisfying valuation for ϕ∧α will not revisit those states
that have already been visited.

By I-SAT(ϕ, α) we denote the invocation of the incre-
mental SAT-solver on a formula ϕ, with the added infor-
mation provided by formula α. Notice that a sequence of
calls I-SAT(ϕ, α1),. . .,I-SAT(ϕ, αm) generates valuations
that, respectively, satisfy formulas ϕ ∧ α1, ϕ ∧ α1 ∧ α2, . . .,
ϕ ∧ α1 ∧ · · · ∧ αm.

Given the above mentioned predicates p1, . . . , pk, our goal
is to generate test input data covering each of the equivalence
classes they determine. Let alpha be a formula characterizing
the state space S (for instance, a class invariant). Assume
that each of the above described predicates, corresponding to
test data equivalence classes, is captured by a corresponding
propositional variable p_i. Then, when a satisfying valuation
val is retrieved by the incremental SAT-solver, it determines
a test input, and exactly one p_i is true in this valuation
(recall that predicates p1, . . . , pk are mutually disjoint). Then,
simply by adding to alpha the extra clause ¬p_i, we
guarantee that new satisfying valuations will correspond to
equivalence classes different from the one captured by p_i.
Since already covered classes are disregarded by this pro-
cess, algorithm IncPartitionCoverage (Fig. 1) yields
exactly one test input per equivalence class. In the algorithm,
rm_val corresponds to the above described clause, which
removes the equivalence class of valuation val (i.e., ¬p_i,
where p_i characterizes the equivalence class of val). The
algorithm takes advantage of incremental SAT-solving in order
to generate a coverage with respect to the testing criterion
characterized by predicates p1, . . . , pk.

As we mentioned, the coverage obtained by the algorithm
in Fig. 1 is optimal: each class coverable within the provided
scope is covered by exactly one test input. We will make sure
that specializations of the algorithm to a (selected) coverage
criterion will preserve this optimality.

A. Alloy Intermediate Models for Test Input Generation

The inputs to the test generation process are a method to be
tested with its corresponding Java class, and a user-selected
coverage criterion. From them, FAJITA automatically synthe-
sizes input predicates IP1(params1), . . . , IPn(paramsn). For
black-box test criteria, these predicates are synthesized from a
specification, e.g., from the JML precondition of the method

one sig PredsAndParams {
this : C,
ip_1,...,ip_n : boolean,
params_1 : Types1,..., params_n : Typesn }

fact defPreds {
PredsAndParams.ip_1=true <=>
AIP1[PredsAndParams.this,

PredsAndParams.params_1]
and ... and
PredsAndParams.ip_n=true <=>
AIPn[PredsAndParams.this,

PredsAndParams.params_n] }
fact InvAndPrecondition {
I(PredsAndParams.this) and
mp(PredsAndParams.this) }

Fig. 2. Instrumentation of the Alloy model for characterizing a testing
criterion’s equivalence classes.

under analysis. For white-box criteria, these predicates are
synthesized from the source code, e.g., from branching con-
ditions in the method’s source code. Appropriately combined,
they give origin to the above mentioned predicates p1, . . . , pk
describing the equivalence classes to be covered. For the
sake of simplicity in the description, we allow predicates
IP i to be parameterized, although for the definition of the
equivalence classes these parameters must be instantiated with
constant values (i.e., params1, . . . ,paramsk are constants). In
Sections IV and V we will describe how these predicates are
constructed in order to enforce selected testing criteria. The
translation from annotated code to a CNF formula includes,
as an intermediate step, the construction of an Alloy model.
We only describe here how the Alloy model for test input
generation is constructed provided one has already defined the
testing criterion’s predicates.

FAJITA uses the same translation of JML-annotated Java
code presented in [16] in order to arrive to an Alloy
model. We instrument this model in order to appropriately
capture predicates IP1(params1), . . ., IPn(paramsn), by
corresponding Alloy predicates AIP1(this,params1), . . .,
AIPn(this,paramsn). The latter are automatically obtained
from the JML or Java predicates using the translation described
in [16]. From the class invariant and the method precondition,
we also obtain Alloy formulas I and mp, respectively.

We now describe the fragment of Alloy used in Fig. 2.
For a thorough description of Alloy we refer the reader
to [18]. Signatures denote sets of objects. The modifier
“one” constrains signature PredsAndParams to have a
single object P . Then, object P.this, which belongs to sig-
nature C, corresponds to the input datum being generated,
and the Boolean values P.ip 1, . . . , P.ip n will allow us
to synthesize the formula rm_val we will use in algo-
rithm IncPartitionCoverage. In order to relate these
boolean variables to the corresponding parameterized predi-
cates, fields P.params1, . . . , P.paramsn are incorporated in
the model to represent the predicate’s parameters, and axioms
are introduced to relate each Boolean variable P.ip i to its
corresponding predicate AIP i. Axioms are called facts in
Alloy. Fact defPreds relates, as we described, predicates
with boolean variables storing their truth values. Finally,
fact InvAndPrecondition requires test input candidates



4

retrieved from this Alloy specification to satisfy the class
invariant and the precondition of the method under analysis.

In Sections IV and V we describe how predicates
IP1(params1), . . . , IPn(paramsn) are defined, and how they
relate to predicates p1, . . . , pk in order to capture several black-
box and white-box testing criteria. In this way, we show how
testing criteria fit the generic scenario proposed in this section,
and how algorithm IncPartitionCoverage enables us
to obtain optimal coverage (again, within the provided scope)
according to these testing criteria.

IV. INCREMENTAL TEST INPUT GENERATION FOR
BLACK-BOX CRITERIA

In this section we show how the generic process described in
Section III can be instantiated for generating test inputs, while
at the same time achieving optimal coverage with respect to
black-box testing criteria. As mentioned in Section III, any
coverage criterion establishes an equivalence between inputs.
For instance, for the black-box testing criterion partition cov-
erage, the relationship between partitions and the equivalence
between inputs we refer to is straightforward. As we will show
in this section, this is also the case for other testing criteria.

Let us consider, for instance, Boolean Query Coverage
[22]. If one needs to test a method whose receiver is an
object of class C, then one can take into consideration the
parameterless Boolean queries of class C in order to define
a partition on the state space of this class. As an example,
consider a class, say, Stack, with two parameterless Boolean
queries isEmpty() and isFull(). These two parameter-
less Boolean queries define four classes, corresponding to
the four different combinations of outputs of these queries,
and constitute a partition of the state space of any object of
type Stack. More generally, let us consider a class C with
n different parameterless Boolean queries q1(X), . . . , qn(X)
(here, X represents the implicit this receiver object of these
queries). Tuples of the form 〈q1(o), . . . , qn(o)〉, for o an object
of class C, induce a partition on the set of possible states
of o, i.e., on the state space of class C. The predicates
defined as pl1,...,ln(X) = l1(X) ∧ . . . ∧ ln(X), for every
possible combination of literals l1, . . . , ln (where each li is
associated to propositions {qi,¬qi}), are mutually disjoint.
This family of mutually disjoint predicates characterizes the
equivalence classes to be covered according to Boolean query
coverage. We will use predicates q1(X), . . . , qn(X) as the
predicates IP1, . . . , IPn required in the instrumentation of
the Alloy model described in Section III-A. In order to
instantiate algorithm IncPartitionCoverage (Fig. 1), it
only remains to show how to define clause rm_val, required
by this algorithm. Formula rm_val is expressed by a single
clause c defined as follows:

c :=
∨

1≤i≤k, qi s.t. val(qi)=true

¬ qi

∨
∨

1≤j≤k, qj s.t. val(qj)=false

qj . (1)

Formula (1) requires that the validity of query qi(X) be
captured by a corresponding Boolean variable qi. This re-

one sig PredsAndParams {
this : Stack,
q_1,q_2 : boolean }

fact defPreds {
PredsAndParams.q_1=true <=>
AIP1[PredsAndParams.this]
and
PredsAndParams.q_2=true <=>
AIP2[PredsAndParams.this] }

pred AIP1[s:Stack]{isEmpty[s]}
pred AIP2[s:Stack]{isFull[s]}
fact InvAndPrecondition {

StackInv(PredsAndParams.this) and
mp(PredsAndParams.this) }

Fig. 3. Boolean query coverage: Alloy model for class Stack.

quirement is already fulfilled by fact defPreds in the Alloy
instrumentation (Fig. 2). In Fig. 3 we show an example of the
instantiation of the Alloy model for Boolean query coverage.

By using formula (1) in the algorithm of Fig. 1, and
instantiating the Alloy model (Fig. 2) with the Boolean
queries q1(X), . . . , qn(X), we obtain an optimal Boolean
query coverage. To prove that we indeed obtain optimal
coverage for this criterion, the most critical part is to show
that adding clause (1) as the rm_val formula in the al-
gorithm exactly removes the equivalence class covered by
the test input value getTestInput(val). Let us ar-
gue about this fact. Let val be a valuation retrieved by
getValuation during the j-th iteration of the loop in
algorithm IncPartitionCoverage. Due to the Alloy
instrumentation, this valuation satisfies exactly one predicate
pl1,...,ln . We will show first that by adding the appropriate
instance of clause (1), the class induced by predicate pl1,...,ln
is indeed removed. Let us call this instance of clause (1), Rem .
It is straightforward to notice that val does not satisfy clause
Rem . Let us now consider any valuation val′ retrieved during
an iteration j′ (j′ > j) of the loop. Due to the use of the
incremental SAT-solver, val′ must satisfy Rem:∨

1≤i≤k, qi s.t. val(qi)=true

¬ val′(qi)

∨
∨

1≤j≤k, qj s.t. val(qj)=false

val′(qj) ≡ true.

Since val′ satisfies Rem and val does not, val 6= val′.
Moreover, since clause Rem only depends on variables
q1, . . . , qn, there must exist an index i0, with 1 ≤ i0 ≤ n, such
that val(qi0) 6= val′(qi0). Suppose that val(qi0) = true and
val′(qi0) = false . Then, val′ cannot satisfy pl1,...,ln . A simi-
lar reasoning can be applied if i0 is such that val(qi0) = false
and val′(qi0) = true .

Finally, let us prove that the addition of clause Rem only
removes the class induced by predicate pl1,...,ln . Let φ be
the CNF formula considered by the incremental SAT-solver
previous to the addition of clause Rem . Let ϕ = φ ∧ Rem .
We must show that any valuation val′ that satisfies φ and
differs from val on variables q1, . . . , qn, satisfies ϕ.

Let i0 be such that 1 ≤ i0 ≤ n and val′(qi0) 6= val(qi0).
If val(qi0) = true , then ¬val′(qi0) = true and val′ satisfies
Rem . Similarly, if val(qi0) = false , then val′(qi0) = true
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if (Cond1) then {
{/*$goal 1*/}
if_body;

} else {
{/*$goal 2*/}
else_body; }

assert (Cond2);
{/*$goal 3*/}

=⇒

PG1 = false;
PG2 = false;
PG3 = false;
if (Cond1) then {

PG1 = true;
if_body;

} else {
PG2 = true;
else_body; }

assert (Cond2);
PG3 = true;

Fig. 4. Code instrumentation for goal coverage.

and val′ satisfies Rem . Since by hypothesis val′ satisfies φ,
it satisfies ϕ.

V. INCREMENTAL TEST INPUT GENERATION FOR
WHITE-BOX CRITERIA

We now show how to instantiate the generic methodology
of section III in order to obtain optimal coverage according
to various white-box testing criteria. As in the case of black-
box criteria, the approach consists of appropriately defining
equivalence class predicates so that the algorithm presented in
Fig. 1 achieves optimal coverage for the criterion under con-
sideration. We show how to define equivalence class predicates
corresponding to goal coverage, statement coverage, branch
coverage, and path coverage.

A. Handling Goal Coverage

Goal coverage is a white-box testing criterion that consists
of defining particular points in the code, which should be tra-
versed by tests exercising the code. Goal coverage is supported
by the ROOPS (Reachability in Object-Oriented ProgramS)
language initiative [24], a common ground for comparing
testing tools targeting Java and C# programs.

In order to deal with goal coverage, we instrument the
source code by adding a predicate (boolean variable) PGi for
each goal i. These predicates are initialized as false, and
set to true in the place in the code where the original goal
was placed. Figure 4 shows an example.

In order to achieve goal coverage by employing the generic
process described in section III, we need to determine the
input predicates and the clauses to be removed. Following the
terminology from Section III, we will use the Alloy predicates
AIP1, . . . ,AIPn defined (using Alloy notation) by

pred AIPi[]{PredsAndParams.PGi=true}

The Alloy instrumentation for achieving goal coverage is
based on that shown in Fig. 2. We use predicates PG1, . . . , PGn
as the predicates IP1, . . . , IPn required in the instrumentation
of the Alloy model described in Section III-A. Unlike previous
cases, besides the class invariant I and the precondition mp,
we conjoin in fact InvAndPreconditionAndCode the
Alloy predicate Code obtained as a result of the translation
of the method’s source code to Alloy [16]. The corresponding
Alloy model deviates slightly from that in Fig. 2, becoming
the model in Fig. 5. According to this characterization, in
the satisfying valuations of the model, the values of this,

one sig PredsAndParams {
this : C,
PG1,...,PGn : boolean }

fact defPreds {
PredsAndParams.PG1=true <=> AIP1[]
and ... and
PredsAndParams.PGn=true <=> AIPn[] }

pred AIP1[]{ PredsAndParams.PG1 = true }
...
pred AIPn[]{ PredsAndParams.PGn = true }
fact InvAndPreconditionAndCode {

I and mp and Code }
fact SomeGoalMustBeCovered {

PredsAndParams.PG1=true
or ... or
PredsAndParams.PGn=true }

Fig. 5. Instrumentation of the Alloy model for goal coverage.

one sig PredsAndParams {
this : Stack,
PG1,PG2,PG3 : boolean }

fact defPreds {
PredsAndParams.PG1=true <=> AIP1[] and
PredsAndParams.PG2=true <=> AIP2[] and
PredsAndParams.PG3=true <=> AIP3[] }

pred AIP1[]{PredsAndParams.PG1 = true}
pred AIP2[]{PredsAndParams.PG2 = true}
pred AIP3[]{PredsAndParams.PG3 = true}
fact InvAndPreconditionAndCode {

StackInv and Push_Requires and Push_Code }
fact SomeGoalMustBeCovered {

PredsAndParams.PG1=true or
PredsAndParams.PG2=true or
PredsAndParams.PG3=true }

Fig. 6. Alloy model for goal coverage: method push from class Stack.

PG1, . . . , PGn are dependent on the executions of the method
under test. In particular, this corresponds to the method’s
receiver object, and variables PG1,...,PGn store goal
reachability information. Notice also that we include fact
SomeGoalMustBeCovered, which guarantees that the ini-
tial call to the SAT-solver will cover at least one goal. In Fig. 6
we show an example where method push from Stack is
assumed to be annotated with three goals. Notice the use of
boolean variables PG1, PG2, and PG3, whose value in each
valuation is determined by the Alloy encoding of the push
method code. In fact, Boolean variables p1, . . . , pn are main-
tained only for presentation purposes, since we can remove
them and directly use variables PG1, . . . ,PGn instead.

Now let us place our attention on the rm_val clause
required in algorithm IncPartitionCoverage. On invo-
cation to the incremental SAT-solver, it produces a valuation
val that is retrieved by subroutine getValuation. Clause
rm_val should be such that, when added to the propositional
CNF formula resulting from the translation of the model,
removes all further valuations covering the same goals already
covered by val. Clause rm_val is built as follows:∨
1≤i≤n, val(PGi)=false, Gi not yet covered

PredsAndParams.PGi .

(2)
Notice that formula (2) is indeed a clause that can directly

be fed to the incremental SAT-solver. Also, according to Al-
loy’s semantics, pi has type PredsAndParams → boolean.
Therefore, expresion PredsAndParams.pi has type boolean.
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Since objects of type boolean are modeled inside the SAT-
problem with a single propositional variable, the implemen-
tation of FAJITA will use the corresponding propositional
variable resulting from the translation of the Alloy model
to a propositional formula, rather than using the expression
PredsAndParams.pi.

Let us argue about the correctness of our characterization of
goal coverage, i.e., that under the aforementioned conditions
algorithm IncPartitionCoverage indeed achieves goal
coverage. Let m(o) be a goal annotated routine, whose input
is an object o of class C. Suppose that we translate m(o)
by first instrumenting its code according to Fig. 4, and then
instrumenting the Alloy intermediate translation according
to Fig. 5. Each time algorithm incPartitionCoverage
produces a valuation (as a result of calling subroutine
getValuation), this valuation is such that variable
PredsAndParams.this covers the class induced by tuple
〈PredsAndParams.PG1, . . . ,PredsAndParams.PGn〉;
that is, the value of PredsAndParams.this corresponds
to an input that reaches exactly those goals whose predicates
PredsAndParams.PG1, . . ., PredsAndParams.PGn
were assigned the value true in the valuation.

Let us consider clauses cj (j = 1, . . . , p−1), introduced by
subroutine getPredicateFrom in iterations 1, . . . , p − 1
of algorithm incPartitionCoverage. The valuation v
obtained during the p-th iteration must satisfy

∧
1≤j≤p−1 cj .

Moreover, by (2), v must cover a class in which at least one
variable PGj that has not been set to true before, is now set
to true. Thus, each iteration covers at least one previously
uncovered goal.

It remains to show that each goal reachable within the
provided scope (recall that our analysis is limited by a scope,
i.e., a user provided limit in the number of objects, and
a maximum number of loop iterations, or loop unrolls) is
indeed covered, and that no unreachable goal is covered. The
latter is easy to guarantee resorting to the correctness of the
characterization of Java code given in [14], since valuations
must be coherent with method executions, and therefore no
execution exists that reaches an unreachable goal.

Let us suppose that the algorithm terminated without cov-
ering a goal G, reachable within the provided scope. Then,
the formula α obtained is unsatisfiable, yet there is a method
execution that, within the provided scope, reaches goal G. We
take this execution and build a valuation, as follows:
• PredsAndParams.this = input value that traverses

the path.
• PGi = true if goal Gi is covered, and false otherwise.

The resulting propositional valuation v′ satisfies the original
formula ϕ. Also, since goal G has not been so far covered,
v′ satisfies clauses cj (j = 1, . . . , p − 1), contradicting the
unsatisfiability of formula α. Thus, every “bounded-reachable”
goal is indeed covered by the algorithm.

Finally, notice that each call to the incremental SAT-
solver in the goal coverage instantiation of algorithm
incPartitionCoverage covers at least one goal that was
previously not covered. Thus, given a method including n
goals, the algorithm terminates after at most n invocations
to the SAT-solver.

Goal coverage is a quite versatile testing criterion; other
well known white-box testing criteria can be obtained by
appropriately introducing goals in the code. For instance,
statement coverage, which requires the test suite to exercise
every executable statement at least once, can be achieved as
a particular case of goal coverage. This is obtained by intro-
ducing a new goal immediately after each decision occurring
in the code.

B. Handling Branch Coverage

Branch coverage requires the test suite to contain tests that
evaluate each executable branching condition in the program
under test to true and false. Each decision point (predicate)
cond in the program generates two branches, the branch in
which cond is true (denoted by B+cond), and the branch in
which cond is false (denoted by B−cond).

As discussed earlier in this section, in order to make
algorithm incPartitionCoverage to produce a suite
that achieves a test criterion of interest (in this case, branch
coverage), we need to appropriately choose equivalence class
predicates capturing the criterion. We will obtain branch
coverage in our setting by resorting to goals. In effect, adding
a goal after each branch implies that any suite that achieves
goal coverage also achieves branch coverage of the program
under test. Notice that this approach will require twice as
many propositional variables (goals) as decision points in the
program under test. If we take into account that modern SAT-
solvers can handle formulas involving millions of variables,
this is a very economical representation.

Since our approach to obtaining branch coverage resorts
to the above described goal coverage approach, we only
instrument the source code in a different way compared to the
instrumentation presented in Section V-A, but we preserve the
way in which the intermediate Alloy model is instrumented.
The instrumentation of the source code is the following.
Whenever an if-then statement is found in the code, the
else branch, as well as appropriate goals, are added:

if (P) then {Body;} 7→

if (P) then{
goalP+ = true;
Body;
} else
goalP− = true;

Similarly, given a while statement, its instrumentation is:

while (P) {Body;} 7→

while (P) {
goalP+ = true;
Body;}

goalP− = true;

By following the lines of our reasoning about the correct-
ness of the goal coverage characterization, it is straightforward
to see that algorithm incPartitionCoverage, adapted as
explained before for goal coverage and injecting goals appro-
priately, produces a test suite that satisfies branch coverage.
Moreover, given a method including k conditions, algorithm
incPartitionCoverage terminates after at most 2k in-
cremental invocations to the SAT-solver.
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one sig PredsAndParams {
this : C,
C1,...,Ck : boolean,
params1 : Types1,..., paramsn : Typesn }

fact defPreds {
C1=true <=> AC1[PredsAndParams.this,

PredsAndParams.params1]
and ... and
Ck=true <=> ACk[PredsAndParams.this,

PredsAndParams.paramsk] }
fact InvAndPreconditionAndCode {

I and mp and Code }
pred AC1[c:C, pars1:Types1] {predicate body}
...
pred ACk[c:C, parsk:Typesn] {predicate body}

Fig. 7. Instrumentation of the Alloy model for path coverage.

C. Handling Path Coverage

Path coverage requires the test suite to traverse every
executable path in the control flow graph (CFG) of the
method under test. In case there are loops in the program, the
number of paths is infinite. Notice however that our analysis
is bounded by a user provided scope, that includes a limit in
the number of iterations. This bound is used to unroll loops in
the code, making the CFG acyclic, and consequently making
the number of paths finite.

As we did for branch coverage, we can use the process for
obtaining a test suite complying with goal coverage presented
in Section V-A in order to get a suite complying with path
coverage. In order to do this we will appropriately inject
goals in the program under test. The goals we inject in
the code are exactly the same as for the case of branch
coverage. Then, we instrument the Alloy model with a slight
variant of the processes defined previously in this section. This
instrumentation is shown in Fig. 7. Predicates ACi are the
Alloy versions automatically obtained from method decision
points. For instance, consider a decision C1 = A[i] <= j
where A is an array and i is an integer variable, both local to
the method under test, and j is an integer-typed parameter of
the method. Part of the instrumentation of the Alloy model,
according to what is described in Fig. 7, would look for this
case as follows:

one sig PredsAndParams {
this : C,
j : integer,
A : array,
i : integer,
C1 : boolean }

fact defPreds {
PredsAndParams.C1=true <=>

AC1[PredsAndParams.A, PredsAndParams.i,
PredsAndParams.j] }

pred AC1[A:Array, i,j:integer]{
lte[(PredsAndParams.A)[PredsAndParams.i],

PredsAndParams.j] }

Notice that program condition C1 (whose value is stored in
a Boolean variable C1) becomes Alloy predicate AC1 .

Let us now define the clause to be added when
calling method getPredicateFrom in algorithm
incPartitionCoverage, so that no further inputs
are produced for already covered (bounded) paths. When
executing the method on value PredsAndParams.this,

some branches associated to decisions Ci1 , . . . , Cij are
covered. By adding the clause

c :=
∨

1≤k≤j,v(Cik
)=true

!PredsAndParams.Cik ∨

∨
1≤k≤j,v(Cik

)=false

PredsAndParams.Cik . (3)

the equivalence class of inputs corresponding to the path cov-
ered by PredsAndParams.this is “marked” as covered,
and algorithm incPartitionCoverage will disregard this
equivalence class in further generations of inputs.

Again, by following the lines of our argument on the
correctness of the goal coverage characterization, it is
straightforward to show that, by instantiating algorithm
incPartitionCoverage as just described, a path cov-
erage is obtained. Moreover, given a bound l on loops, and
a method containing k feasible paths with loops bounded by
l, algorithm IncPartitionCoverage terminates after at
most k + 1 invocations to the SAT-Solver.

VI. EVALUATION

We now present an evaluation of our test input generation
mechanism. The section is organized as follows. In Section
VI-A we describe the hardware and software platforms used
for the experiments. In Section VI-B we present experiments
showing how FAJITA compares to other state-of-the-art tools
for test input generation. Finally, in Section VI-C we discuss
the validity and relevance of the experiments performed.

A. The Hardware and Software Platforms

All experiments were run on identical hardware, featuring
an Intel Core i5-750 processor running at 2.67 GHz, Intel
DP55WB motherboard and 8 GB 1333 MHz DDR3 total main
memory. The operating system was Windows 7 Professional
for the Pex tool (which does not run under Linux), and
Debian’s GNU/Linux (version 6, “squeeze”) in all other cases.

B. Experimental Results

In this section we compare FAJITA with some closely
related tools, namely:
Pex [27]: Microsoft’s Pex uses dynamic symbolic execution.
It combines code execution with static analysis techniques,
and uses the Z3 SMT-Solver [7] in order to solve constraints
arising from path conditions.
Kiasan [8]: Kiasan uses symbolic model checking with lazy
initialization as the underlying technology for test input gen-
eration, and uses the Yices SMT-Solver [11] for constraint
solving. It works on a JML annotated method, but since
the JML constructs supported by Kiasan are not sufficiently
expressive to specify some of the complex class invariants we
will use in our benchmark classes, we provided appropriate
repOk methods (imperative class/object invariants).
Randoop [23]: Randoop is a tool for random generation
of unit tests. It uses, as the underlying technique, feedback-
directed random test generation.
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Autotest [21]: Autotest is a fully automatic testing framework
integrated inside EiffelStudio that uses random generation.
EvoSuite [12]: EvoSuite imitates the mechanisms of natural
adaptation by evolving whole test suites. Starting from a
random population, evolution is performed until a solution is
found, or the allocated resources are exhausted.

In all FAJITA experiments we initially set the number of
loop unrolls and data domain scopes to 1. FAJITA itera-
tively increases both bounds until either optimal coverage is
achieved, 5 minutes pass without new tests being generated
(in which case termination is enforced), or a provided timeout
is reached. We make use of symmetry breaking and tight
bounds as described in Section II. As we mentioned, a cluster
is employed in order to pre-compute tight bounds for the
structures used in the experiments. This computation is reused
for different methods and coverage criteria involving the same
structure. Although we do not include here the tight bound
computation time, it is worth mentioning that it is 70 seconds
in average for our experiments. The specific times for each
structure and scope can be found in [16].

For those tools that include parameters that are set manually,
we looked for the combinations that led to the best coverage.
For instance, in Kiasan, we looked for the best combination of
k-bound, loopbound and callbound. We only report the time of
the most successful experiment. Since FAJITA is push-button,
we report the result it produces in the first execution.

Randoop, Autotest and EvoSuite use random seeds. For
these tools, we ran each experiment 10 times and reported
the average time amongst those runs that achieved maximum
coverage. For all tools we set a 1 hour timeout (indicated as
TO when reached).

We considered the following container classes adopted from
the ROOPS benchmark, aiming at achieving high goal and
branch coverage:
SinglyLinkedList: An implementation of sequences
based on singly-linked lists.
DoublyLinkedList: The implementation provided in
class AbstractLinkedList of interface List from the
Apache package commons.collections, based on circu-
lar doubly-linked lists.
NodeCachingLinkedList: A caching, circular doubly
linked list, implementing interface List from the Apache
package commons.collections.
BinarySearchTree: An implementation of binary search
trees used as part of a benchmark in [29].
AVLTree: An implementation of AVL trees obtained from
the case study used in [2].
BinomialHeap: An implementation of binomial heaps used
as part of a benchmark in [29].
FibonacciHeap: An implementation of Fibonacci heaps
used as part of a benchmark in [29].
IntRedBlackTreeMap: A map implementation part of
the ROOPS repository, that follows the specification for the
java.util.TreeMap class, but using primitive values of
type int as keys.

The results of these experiments are summarized in Table II.
Data in the table is reported as follows. Columnn #B reports
the number of branches in each method. We report for each

tool and experiment the percentage of branches covered and
the required time. We highlighted those positions in the
table where a suboptimal performance regarding coverage was
detected. Due to space limitations, for goal coverage we only
report the summary presented in Table I. As shown in Table II,
FAJITA is the tool that achieved the best branch coverage on
average in the 25 methods under analysis, and the same is true
for goal coverage (see Table I). Also, FAJITA produced the
smallest test suites.

Since EvoSuite measures branch coverage at the byte code
level, the tool finishes when every Java conditional jump
instruction is covered both ways. Because of this we were
unable to measure the branch coverage at the source code
level until the timeout was reached.

Kiasan failed to achieve maximum goal and branch coverage
in 5 methods, and Pex failed in 14 methods. As expected,
complex class invariants require loops in their imperative de-
scriptions that lead to a path explosion problem. As explained
before, FAJITA performs a bounded analysis and the scope
(limit on the number of objects and iterations) is iteratively
increased. This helps in tackling path explosion, since the size
of inputs and length of runs is increased as the search for
optimal coverage requires it.

Randoop and AutoTest reach the timeout in all experiments.
This is because they do not allow one to specify that analysis
must stop when all goals are reached; the termination condi-
tions that can be selected are either a maximum generation
time, or a maximum number of generated tests.

For method setMaxCacheSize from class
NodeCachingLinkedList, Pex and Kiasan reported
covering 5 goals, while FAJITA covered 4. A manual
inspection of the code of this method enabled us to confirm
that the goal that FAJITA did not reach is located inside an
infinite loop; that is, any input covering this goal leads to a
non-terminating execution. Similarly, Pex and Randoop cover
a branch that leads to an infinite execution. The translation
from code to a propositional formula implemented in FAJITA
explicitly prevents the generation of such test inputs, which
guarantees that all the generated tests can be executed
without the need of human intervention to discard/stop
non-terminating tests.

C. Threats to Validity

We used several container classes as a benchmark. Container
classes have become ubiquitous [29], and are representatives of
a wider class of programs that include, for instance, parse trees
and XML documents. Moreover, a number of analysis tools
have used these classes in highly regarded software analysis
conference papers as well (see for instance [3], [9], [19], [25],
[26], [29]). Container classes are also good examples of code
in which strong heap properties must be enforced.

FAJITA uses a class invariant specified as a JML-formula
extended with reachability constructs. In Pex and Kiasan we
used repOk predicate methods ruling out those structures that
did not satisfy the class invariant. To minimize the risk of
programming not amenable repOk methods we used minor
modifications of the repOk methods provided for Korat [3]. In
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#B Pex Kiasan Randoop AutoTest EvoSuite FAJITA
SinglyLL
contains 12 25% (7s) 100% (4s) 58% (TO) 92% (TO) 92% (8s) 100% (4s)
insertBack 6 50% (1s) 100% (2s) 100% (TO) 100% (TO) 100% (8s) 100% (3s)
remove 10 40% (1s) 100% (3s) 100% (TO) 100% (TO) 100% (8s) 100% (8s)
DoublyLL
contains 10 10% (6s) 100% (3s) 90% (TO) 100% (TO) 90% (TO) 100% (6s)
addLast 2 50% (9s) 100% (3s) 100% (TO) 100% (TO) 100% (TO) 100% (4s)
removeIndex 14 93% (6s) 71% (3s) 100% (TO) 79% (TO) 100% (TO) 100% (13s)
NodeCachingLL
contains 10 30% (1s) 100% (9s) 70% (TO) 100% (TO) 100% (TO) 100% (7s)
setMaxCacheSize 8 100% (9s) 88% (4s) 100% (TO) 38% (TO) 88% (TO) 88% (5m7s)
addLast 6 100% (12s) 100% (4s) 100% (TO) 100% (TO) 100% (TO) 100% (5s)
removeIndex 20 35% (9s) 25% (3s) 90% (TO) 60% (TO) 90% (TO) 95% (7m26s)
SearchTree
find 8 100% (1s) 100% (3s) 36% (TO) 38% (TO) 100% (TO) 100% (4s)
add 12 100% (4s) 100% (3s) 25% (TO) 25% (TO) 100% (TO) 100% (6s)
remove 20 85% (58m35s) 85% (6s) 10% (TO) 30% (TO) 85% (TO) 85% (5m9s)
AVLTree
findNode 8 100% (5s) 100% (3s) 36% (TO) 75% (TO) 36% (TO) 100% (4s)
findMax 6 83% (3m36s) 100% (3s) 50% (TO) 100% (TO) 50% (TO) 100% (6s)
findMin 6 83% (1m33s) 100% (3s) 50% (TO) 100% (TO) 50% (TO) 100% (6s)
BinHeap
findMin 6 83% (5s) 100% (3s) 100% (TO) 100% (TO) 100% (TO) 100% (10s)
decreaseKey 6 100% (6s) 100% (3s) 67% (TO) 83% (TO) 100% (TO) 100% (7s)
extractMin 46 35% (8s) 100% (6s) 74% (TO) 52% (TO) 100% (TO) 100% (1m47s)
insert 28 82% (TO) 82% (TO) 82% (TO) 82% (TO) 82% (TO) 100% (3m41s)
FibHeap
minimum 2 100% (1s) 100% (3s) 100% (TO) 100% (TO) 100% (TO) 100% (3s)
insertNode 6 100% (4s) 100% (3s) 33% (TO) 33% (TO) 100% (TO) 100% (6s)
removeMin 38 87% (TO) 87% (4s) 8% (TO) 11% (TO) 87% (TO) 87% (6m4s)
IntRBTreeMap
put 38 100% (3s) 89% (TO) 86% (TO) 42% (TO) 100% (TO) 100% (42s)
remove 66 98% (2m27s) 81% (14m35s) 71% (TO) 23% (TO) 95% (TO) 94% (6m10s)
Average – 74,76% 92,32% 69,44% 70,52% 89,80% 97,96%

TABLE II
BRANCH COVERAGE FOR CONTAINER CLASSES

general, the modifications were required to match field names,
or to improve the performance of Pex and Kiasan. For instance,
for AVLTree we replaced the iterative method balanced
(which checks the balance criterion) with a recursive ver-
sion. This improved Kiasan’s performance significantly. These
repOK methods were also used to help Randoop and AutoTest
in their random generation processes (both tools benefit from
the representation invariant during the generation). The conver-
sion from Java code to C# (input language for Pex) and Eiffel
(input language for Autotest) was done manually. Although we
did not prove the correctness of the translation, the analysis
results are consistent throughout all programming languages.

VII. RELATED WORK

Automated test case generation is currently a very prolific
area of research, and various tools and techniques have been
developed in recent years. Among these approaches, one might
cite those based on random generation [22], model checking
[29], constraint solving (including SMT [27] and SAT solving)
or some forms of exhaustive search [3].

In [25] a set of experiments compare random testing and
shape abstraction for container classes. In this work we use
two random based tools (namely, Randoop and AutoTest). Our
results show that incremental SAT-based test input generation,

plus our symmetry breaking scheme, outperform branch cov-
erage in most of the cases.

Incremental SAT has been used in other contexts [6] for
generating combinatorial interaction tests for product families.

While most tools mentioned in this section generate a single
test suite whose quality can be measured against coverage
criteria, FAJITA’s goal-oriented use of incremental SAT drives
the generation process towards achieving high coverage.

Other tools also use the Alloy tool-set as part of the test gen-
eration process. TestEra [13] uses incremental SAT-solving for
exhaustive bounded generation of input data (a purely black-
box criterion). If more than one test input per equivalence
class is required, then FAJITA can make use of TestEra’s
enumeration process. Whispec [26] builds on specification-
based testing and focuses on maximizing code coverage by
iteratively running a conjunction of method preconditions and
path conditions. TestEra and Whispec, unlike FAJITA, provide
a single test generation mechanism. Whispec is not publicly
available for experimental comparison with FAJITA. In [14]
some of the authors of the current article presented a previous
approach for white-box test input generation for Java programs
called JAT. Coverage criteria were modeled by appropriately
slicing the control flow graph. FAJITA can be considered as
a successor of JAT that provides a much simpler extension
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mechanism, and is substantially more efficient.
One can also compare FAJITA and TACO. While TACO

provides greater quality assurance, FAJITA scales better. Each
time a test is generated, part of the state space (the part that
corresponds to the equivalence class just covered) is pruned by
the incremental SAT-solver. As a simple example illustrating
the difference in scalability between FAJITA and TACO,
consider method extractMin from class BinomialHeap.
This method contains a fault reported in [16], and it takes
TACO 43m to detect the fault, while FAJITA achieves branch
coverage for this method in less than 2m.

VIII. CONCLUSIONS AND FURTHER WORK

Test input generation tools based on model checking, sym-
bolic or concolic execution are subject to path explosion.
Therefore, significant effort is put towards efficiently travers-
ing the state space induced by the program structure. These
techniques are somewhat oblivious to the coverage criteria.
While the abstracted code is executed they gather information
from which test inputs are generated. FAJITA is flexible, and
targets specific coverage criteria. The selection of the input
predicates for the SAT-solver, as well as the clauses added to
advance the search in the incremental steps, make the solver
target a coverage criterion of interest. FAJITA proved to be
particularly successful when used for generating test input data
that satisfies strong heap invariants and is aimed at reaching
intricate code fragments. We have carried our experiments
with container classes, in which FAJITA in several occasions
outperformed state of the art tools such as Pex and Kiasan.

Fully automated analysis techniques have scalability is-
sues. In the case of FAJITA, the scalability is related to
the program under test and its specification, which given a
scope are encoded as a boolean formula. Complex programs
and specifications may make the analysis feasible only for
very small scopes. The techniques underlying FAJITA, namely
tight bounds with symmetry breaking, scope and loop unrolls
iteratively increased to reduce formula and path explosions,
and analysis targeting a specific coverage criterion, all improve
significantly the scalability of the SAT based test generation,
and are essential for the performance of the tool. Nevertheless,
many other problems still need to be tackled, to make the
tool scale further, and be useful for larger programs. Some
approaches we plan to work on in the future include better
ways of computing tight bounds, dealing with interprocedural
code modularly (as opposed to the code inlining that FAJITA
performs), and working on appropriate parallelizations of the
the SAT problems resulting from FAJITA analyses. Further
experimental assessment, which we also plan to do, is nec-
essary to compare FAJITA with other techniques, analyze the
bug finding effectiveness of suites computed by the tool, and
evaluate how our tool performs on medium sized programs
other than container classes.
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