
PASTE 2004 Page 1 June 2004

““Model CheckingModel Checking”” Software with Software with

Patrice GodefroidPatrice Godefroid

Bell Laboratories, Lucent TechnologiesBell Laboratories, Lucent Technologies



PASTE 2004 Page 2 June 2004

““Model CheckingModel Checking””

• Model Checking = systematic state-space exploration = exhaustive testing.

• “Model Checking” = “check whether the system satisfies a temporal-logic formula”.

– Example: G(p->Fq) is an LTL formula.

• Simple yet effective technique for finding bugs in high-level hardware and software
designs (examples: FormalCheck for Hw, SPIN for Sw, etc.).

• Once thoroughly checked, models can be compiled and used as the core of the
implementation (examples: SDL, VFSM,…).

BA C

deadlock

Each component is modeled by a FSM.



PASTE 2004 Page 3 June 2004

Model Checking of SoftwareModel Checking of Software

• Challenge: how to apply model checking to analyze software?

– “Real” programming languages (e.g., C, C++, Java),

– “Real” size (e.g., 100,000’s lines of code).

• Two main approaches to software model checking:

Modeling languages

Programming languages

Model checking

Systematic testing
(VeriSoft)

state-space exploration

state-space exploration

abstraction adaptation
(Bandera, BLAST, JPF,
SLAM,…)



PASTE 2004 Page 4 June 2004

VeriSoftVeriSoft: Systematic State-Space Exploration: Systematic State-Space Exploration

• State Space (Dynamic Semantics)= “product of (Unix) processes”

– Processes communicate by executing operations on com. objects.

– Operations on com. objects are visible, other operations are invisible.

– Only executions of visible operations may be blocking.

– The system is in a global state when the next operation of each process is
visible.

– State Space = set of global states + transitions between these.

THEOREM: Deadlocks and assertion violations are
preserved in the “state space” as defined above.

deadlock

s0



PASTE 2004 Page 5 June 2004

VeriSoftVeriSoft
• Controls and observes the execution of concurrent processes of the system under test by

intercepting system calls (communication, assertion violations, etc.).

• Systematically drives the system along all the paths (=scenarios) in its state space
(=automatically generate, execute and evaluate many scenarios).

• From a given initial state, one can always guarantee a complete coverage of the state
space up to some depth.

• Note: analyzes “closed systems”; requires test driver(s) possibly using “VS_toss(n)”.

VeriSoft

BA C

System Processes

deadlock

s0



PASTE 2004 Page 6 June 2004

VeriSoft State-Space SearchVeriSoft State-Space Search

• Automatically searches for:

– deadlocks,

– assertion violations,

– divergences (a process does not communicate with the rest of the system
during more than x seconds),

– livelocks (a process is blocked during x successive transitions).

• A scenario (=path in state space) is reported for each error found.

• Scenarios can be replayed interactively using the VeriSoft
simulator (driving existing debuggers).



PASTE 2004 Page 7 June 2004

The VeriSoft SimulatorThe VeriSoft Simulator



PASTE 2004 Page 8 June 2004

Originality of Originality of VeriSoftVeriSoft

• VeriSoft is the first model checker for software systems described
in general-purpose programming languages such as C and C++
[POPL97].

• VeriSoft looks simple! Why wasn’t this done before?

• Previously existing state-space exploration tools:
– restricted to the analysis of models of software systems;

– each state is represented by a unique identifier;

– visited states are saved in memory (hash-table, BDD,…).

• With programming languages, states are much more complex!

• Computing and storing a unique identifier for every state is
unrealistic!



PASTE 2004 Page 9 June 2004

““State-LessState-Less”” Search Search

• Don’t store visited states in memory: still terminates when state
space is finite and acyclic… but terribly inefficient!

• Example: dining philosophers (toy example)

– For 4 philosophers, a state-less search explores 386,816 transitions, instead
of 708: every transition is executed on average 546 times!



PASTE 2004 Page 10 June 2004

• A state-less search in the state space of a concurrent system can
be much more efficient when using “partial-order methods”.

• POR algorithms dynamically prune the state space of a concurrent
system by eliminating unnecessary interleavings while preserving
specific correctness properties (deadlocks, assertion violations,...).

• Two main core POR techniques:

– Persistent/stubborn sets (Valmari, Godefroid,…)

– Sleep sets (Godefroid,…)

Partial-Order Reduction in Model CheckingPartial-Order Reduction in Model Checking



PASTE 2004 Page 11 June 2004

• Intuitively, a set T of enabled transitions in s are persistent in s if
whatever one does from s while remaining outside of T does not
interact with T.

• Example:

• Limitation: need info on (static) system structure.
• VeriSoft only exploits info on next transitions and “system_file.VS”.

Persistent/Stubborn SetsPersistent/Stubborn Sets

Send(q1,m1)Send(q1,m1)

Send(q1,m2)Send(q1,m2)

Send(q2,m4)Send(q2,m4) z=z=RcvRcv(q1)(q1)

Send(q1,m6)Send(q1,m6)

stopstop

P3P3

x=x=RcvRcv(q2)(q2)

Send(q1,m3)Send(q1,m3)

stopstop

stopstop

P1P1 P2P2 {P1:Send(q1,m1)} is persistent in {P1:Send(q1,m1)} is persistent in ss

The most advanced algorithms forThe most advanced algorithms for
(statically) computing persistent sets(statically) computing persistent sets

are based on are based on ““stubborn setsstubborn sets””
[[ValmariValmari]]

Send(q2,m5)Send(q2,m5)

(q1 is empty in (q1 is empty in ss))



PASTE 2004 Page 12 June 2004

Sleep SetsSleep Sets

• Sleep Sets exploit local independence (commutativity) among
enabled transitions. One sleep set is associated with each state.

• Example:

• Limitation: alone, no state reduction.
• Sleep sets are easy to implement in VeriSoft since they only require

information on next transitions.

Send(q1,x)Send(q1,x)

Send(q1,y)Send(q1,y)

P1P1 P2P2

Send(q2,z)Send(q2,z)

Send(q2,m)Send(q2,m)

P1:Send(q1,x)P1:Send(q1,x) P2:Send(q2,m)P2:Send(q2,m)

P1:Send(q2,z)P1:Send(q2,z) P2:Send(q1,y)P2:Send(q1,y)

Sleep={P1:Send(q1,x)}Sleep={P1:Send(q1,x)}

Transitions in SleepTransitions in Sleep
are not explored!are not explored!P1:Send(q1,x)P1:Send(q1,x)

P2:Send(q2,m)P2:Send(q2,m)



PASTE 2004 Page 13 June 2004

• With POR algorithms, the pruned state space looks like a tree!

• Thus, no need to store intermediate states!

An Efficient State-Less SearchAn Efficient State-Less Search

t

t

t’

t’

t

t’

t t’

t’

(persistent sets)

(sleep sets)

••   Without POR algorithms, a state-less search in the state space   Without POR algorithms, a state-less search in the state space
     of a concurrent system is      of a concurrent system is untractableuntractable..



PASTE 2004 Page 14 June 2004

VeriSoft VeriSoft - Summary- Summary

• Two key features distinguish VeriSoft from other model checkers

– Does not require the use of any specific modeling/programming language.

– Performs a state-less search.

• Use of partial-order reduction is key in presence of concurrency.

• In practice, the search is typically incomplete.

• From a given initial state, VeriSoft can always guarantee a
complete coverage of the state space up to some depth.



PASTE 2004 Page 15 June 2004

Users and ApplicationsUsers and Applications

• Development of research prototype started in 1996.

• VeriSoft 2.0 available outside Lucent since January 1999:

– 100’s of licenses in 25+ countries, in industry and academia

– Free download at http://www.bell-labs.com/projects/verisoft

• Examples of applications in Lucent:

– 4ESS HBM unit testing and debugging (telephone switch maintenance)

– WaveStar 40G R4 integration testing (optical network management)

– 7R/E PTS Feature Server unit and integration testing (voice/data signaling)

– CDMA Cell-Site Call Processing Library testing (wireless call processing)



PASTE 2004 Page 16 June 2004

Application: 4ESS HBM [ISSTA98]Application: 4ESS HBM [ISSTA98]

• 4ESS switches control millions of calls every day.

• Heart-Beat Monitor (HBM) determines the status of elements
connected to 4ESS switch by monitoring propagation delays of
messages to/from these elements.

• HBM decides how to route new calls in 4ESS switch (i.e., decides
to switch from out-of-band to in-band signaling - called NTH).

• November 1996: “field incident”; June 1997: 2nd field incident…

• HBM code = 100s of lines of EPL (assembly) code, 7/3 years old

• Hoes does this code work exactly???



PASTE 2004 Page 17 June 2004

Application: 4ESS HBM (continued)Application: 4ESS HBM (continued)

• Translate EPL code to C code
(using existing partial translator)

• Build test harness for HBM C code, model its
environment (using “VS_toss(n)”), add
“VS_assert(0)” where HBM code hits NTH
(took only a few hours!)

• Check properties (reverse eng./testing)

• Discovered several flaws in software and its
documentation... [ISSTA98]

Example of scenario found:Example of scenario found:

DLNDLNHBMHBM



PASTE 2004 Page 18 June 2004

Application: CDMA Base Station SW [ICSE02]Application: CDMA Base Station SW [ICSE02]

• CDMA wireless network infrastructure is a multi-billion dollar
market (Lucent = #1).

• Three main components of a wireless network:

• CDMA is becoming the standard for air interface (vs. TDMA).
– Same band of RF spectrum shared by many mobiles (using “Walsh codes”)



PASTE 2004 Page 19 June 2004

• CDMA Base Station Call-processing
software library involves complex dynamic
resource-allocation algorithms and handoffs
scenarios (100,000’s lines of C/C++ code).

• How to test reliably this software? VeriSoft

– Increased test coverage from O(10) to
O(1,000,000) scenarios.

– Automatic regression testing for multiple
cell-sites and releases (more than 1,500
VeriSoft runs in 2000-2001).

– Found several critical bugs…[ICSE2002]

Application: CDMA Base Station SW (continued)Application: CDMA Base Station SW (continued)

Automated Testing Interface

Hw Simulation Environment

CDMA
Call

Processing
Library

Rest of the
System…

Test driver

VeriSoft

Walsh code
checking

mobileMSC

CECell 1

CECell 2

CECell 3

CE



PASTE 2004 Page 20 June 2004

Discussion: Strengths of VeriSoftDiscussion: Strengths of VeriSoft

• Used properly, very effective at finding bugs

– can quickly reveal behaviors virtually impossible to detect using
conventional testing techniques (due to lack of controllability and
observability)

– compared with conventional model checkers, no need to model the
application!

• Eliminates this time-consuming and error-prone step

• VeriSoft is WYSIWYG: great for reverse-engineering

• Versatile: language independence is a key strength in practice

• Scalable: applicable to very large systems, although incomplete

– the amount of nondeterminism visible to VeriSoft can be reduced at the
cost of completeness and reproducibility (not limited by code size)



PASTE 2004 Page 21 June 2004

Discussion: Limitations of VeriSoftDiscussion: Limitations of VeriSoft

• Requires test automation:

– need to run and evaluate tests automatically (can be nontrivial)

– if test automation is already available, getting started is easy

• Need be integrated in testing/execution environment

– minimally, need to intercept VS_toss and VS_assert

– intercepting/handling communication system calls can be tricky...

• Requires test drivers/environment models (like most MC)

• Specifying properties: the more, the better… (like MC)

– Restricted to safety properties (ok in practice); use Purify!

• State explosion... (like MC)



PASTE 2004 Page 22 June 2004

Discussion: ConclusionsDiscussion: Conclusions

• VeriSoft (like model checking) is not a panacea.

– Limited by the state-explosion problem,…

– Requires some training and effort (to write test drivers, properties, etc.).

– “Model Checking is a push-button technology” is a myth!

• Used properly, VeriSoft is very effective at finding bugs.

– Concurrent/reactive/real-time systems are hard to design, develop and test.

– Traditional testing is not adequate.

– “Model checking” (systematic testing) can rather easily expose new bugs.

• These bugs would otherwise be found by the customer!

• So the real question is “How much ($) do you care about bugs?”



PASTE 2004 Page 23 June 2004

Comparison with Related WorkComparison with Related Work

• Traditional model checkers: (e.g., SPIN, SDLvalid, etc.)

– language dependent,

– requires a model or limited to high-level design,

– but analyzing a model is easier.

• Specification-based test generation: (e.g., TestMaster, etc.)

– language dependent,

– test generation only,

– no support for concurrency.

• Software model checkers based on static analysis and abstraction:

– see next slide.



PASTE 2004 Page 24 June 2004

Model Checking of SoftwareModel Checking of Software

• Two complementary approaches to software model checking:

Modeling languages

Programming languages

Model checking
state-space exploration

state-space exploration

abstraction adaptation

Automatic Abstraction (static analysis):
•Idea: parse code to generate an abstract
model  that can be analyzed using model
checking.
•No execution required but language
dependent.
•Produce spurious counterexamples
(unsound).
•Can prove correctness (complete).

Systematic Testing (dynamic analysis):
•Idea: control the execution of multiple test-
drivers/processes by intercepting systems
calls.
•Language independent but requires
execution.
•Counterexamples arise from code (sound).
•Provide a complete state-space coverage up
to some depth only (incomplete).

( Bandera, BLAST, JPF,
SLAM,…)

Systematic testing
(VeriSoft)



PASTE 2004 Page 25 June 2004

VeriSoftVeriSoft Project: Related Work Project: Related Work

• First paper on VeriSoft: [POPL97]

• Examples of related research issues: (joint work with many others!)

– How to automatically “close” open reactive programs? [PLDI98]

– How to automatically synthesize a spec from dynamic observations? [TACAS97]

– How to analyze effectively partial state-spaces?
[CAV99,CONCUR00,CONCUR01,CAV02,VMCAI03,EMSOFT03,LICS04...]

– How to exploit symmetry (e.g., as in client-server applications)? [PSTV-FORTE99]

– How to test systems without ever writing a test driver? [FSE2000]
• VeriWeb: automatically testing dynamic websites [WWW2002]

– How to explore very large state spaces using genetic algorithms? [TACAS2002]

– Etc.   See my web-page (www.bell-labs.com/~god) for complete references.

• Current and future work:

– automatic generation of (nondeterministic) test drivers from static analysis…

– goal: more users for VeriSoft by making unit testing a reality in the sw industry!



PASTE 2004 Page 26 June 2004

ConclusionsConclusions

• VeriSoft is a tool for systematically testing concurrent/reactive sw

• Computes the “product” of OS processes with run-time scheduler

• Is language independent (C, C++,…): no static analysis

• Performs a state-less search and makes heavy use of partial-order
reduction algorithms when concurrency

• Can provide full state-space coverage but typically up to some
depth only; first (“bounded”) model checker for C/C++/etc.

• 100’s of non-commercial licenses in industry and academia

• Free download at http://www.bell-labs.com/projects/verisoft


