“Model Checking” Software with
VeriSOft

Patrice Godefroid
Bell Laboratories, Lucent Technologies

eeeeeeeeeeeee

“Model Checking”

A

>
A

w
A

o
v

-- ' deadlock
Each component is modeled by a FSM.
* Model Checking = systematic state-space exploration = exhaustive testing.

» “Model Checking” = “check whether the system satisfies a temporal-logic formula”.
— Example: G(p->Fq) is an LTL formula.

» Simple yet effective technique for finding bugs in high-level hardware and software
designs (examples: FormalCheck for Hw, SPIN for Sw, etc.).

* Once thoroughly checked, models can be compiled and used as the core of the
implementation (examples: SDL, VFSM,...).

PASTE 2004 Page 2 June 2004

Model Checking of Software

e Challenge: how to apply model checking to analyze software?
— “Real” programming languages (e.g., C, C++, Java),
— “Real” size (e.g., 100,000’s lines of code).

« Two main approaches to software model checking:

state-space exploration

Modeling languages » Model checking
A
(Bandera, BLAST, JPF,
abstraction | SLAM,...) adaptation
_ state-space exploration M) .
Programming languages » Systematic testing
(VeriSoft)

PASTE 2004 Page 3 June 2004

VeriSoft: Systematic State-Space Exploration

e State Space (Dynamic Semantics)= “product of (Unix) processes”

— Processes communicate by executing operations on com. objects.

— Operations on com. objects are visible, other operations are invisible.

— Only executions of visible operations may be blocking.

— The system 1s in a global state when the next operation of each process is
visible.

— State Space = set of global states + transitions between these.

l sO
THEOREM: Deadlocks and assertion violations are
preserved in the “state space” as defined above. Q/ (i‘
, ©
! deadlock !
y v
o

PASTE 2004 Page 4 June 2004

VeriSoft

» Controls and observes the execution of concurrent processes of the system under test by
intercepting system calls (communication, assertion violations, etc.).

« Systematically drives the system along all the paths (=scenarios) in its state space
(=automatically generate, execute and evaluate many scenarios).

 From a given initial state, one can always guarantee a complete coverage of the state
space up to some depth.

* Note: analyzes “closed systems”; requires test driver(s) possibly using “VS_toss(n)”.

VeriSoft l 30
System Proces§§§ __ >
E i v l | Q/ (i‘
A Y [S > !
| A B | @)
! D i D i C | / deadlock i
: i v v
__ 1 ‘//

PASTE 2004 Page 5 June 2004

VeriSoft State-Space Search

e Automatically searches for:
— deadlocks,
— assertion violations,

— divergences (a process does not communicate with the rest of the system
during more than x seconds),

— livelocks (a process is blocked during x successive transitions).
* A scenario (=path 1n state space) 1s reported for each error found.

* Scenarios can be replayed interactively using the VeriSoft
simulator (driving existing debuggers).

PASTE 2004 Page 6 June 2004

The VeriSoft Simulator

File Reset Next Event Move Go To End Quit

Process_1 |

| Process_2 | Move the pointer over a node to see which state it represents.

send_to_gueuwe(H,10 room_is_hot)

rev_From_gueune{1,10}=room_is_hot

oy: [RSRRUVORUGNSEA] Deatocks: 0 borts: 0

(initial_state)

VS_togs(3)=1

Vs toss(3)=1

send_to_gueune(1,10, roon_is_hot)

rov_from_queuwe(1,[10)=roomn_is_hot

Assertion violation!

Dismiss

¥

wvoid Environme

i

PASTE 2004

El
Step Hext Continue Print Quit
{ Text Regular Expression:
[sds] =]
2 Match Clear
Theg
Step Hext Continue Print Quit AND
wH — —— Labels Processes
1s_door_closed=l; send_to_queue(1,10, roon_is_hot) w1
= 1faéiifroom_hot) send_to_queue(1,10, roon_is_cool) |— m 2
Vi e send_to_queue(1,10,open_door)
: send_to_queue(1,10,close_door)
7+ test +/ rev_fron_queue(1,10)=roon_is_hot|
1if {is_room _hot &% is_door_closed) rev_from_queue(1,10)=roon_is_coo

El
comeback $ werizoft main.c -simul errorl,path

goe —Idhome/godAverizoftsbin shomedgod/verisoft/bindverizoft_simul_Sun05_5,5,1,0 -
IMERIFY -g main,c

shomesgod/verisoft/bindzinul , tel errorl,path

Loading =ss5,%5 for state space view {please waitl...

Dlone.,

Page 7

Home Zoom In Zoom Out Labels Quit | buttons: L=go to state; M=center view; R=examine

2l

Quit

June 2004

Originality of VeriSoft

« VeriSoft 1s the first model checker for software systems described

in general-purpose programming languages such as C and C++
[POPL97].

* VeriSoft looks simple! Why wasn’t this done before?

« Previously existing state-space exploration tools:
— restricted to the analysis of models of software systems;

— each state 1s represented by a unique identifier;

— visited states are saved in memory (hash-table, BDD,...).

* With programming languages, states are much more complex!

« Computing and storing a unique i1dentifier for every state 1s
unrealistic!

PASTE 2004 Page 8 June 2004

“State-Less” Search

« Don’t store visited states in memory: still terminates when state
space 1s finite and acyclic... but terribly inefficient!

« Example: dining philosophers (toy example)

— For 4 philosophers, a state-less search explores 386,816 transitions, instead
of 708: every transition is executed on average 546 times!

500000 T T T T T T T T

450000 |- .
400000 - -
350000 i
300000 i
Tranzsitions
250000 ; _ -

Classical =—
200000 - -

! Slale—less -
150000 i
100000 - : i
50000 - : .
o & * & 1 I I I

Philoscphels
PASTE 2004 Page 9 June 2004

Partial-Order Reduction in Model Checking

» A state-less search 1n the state space of a concurrent system can
be much more efficient when using “partial-order methods”.

* POR algorithms dynamically prune the state space of a concurrent
system by eliminating unnecessary interleavings while preserving
specific correctness properties (deadlocks, assertion violations,...).

Lecture Notes in

 Two main core POR techniques: Computer Science 1032
— Persistent/stubborn sets (Valmari, Godefroid,...) Paice Godefroid
— Sleep sets (Godefroid,...) Partial-Order Methods

of Concurrent Systems

An Approach ta the
State-Explosion Problem

6_‘:} Springer

PASTE 2004 Page 10 June 2004

Persistent/Stubborn Sets

* Intuitively, a set T of enabled transitions in s are persistent in s 1f
whatever one does from s while remaining outside of T does not

interact with T. S
: \Qeaehable states
\VvithOllt executing

\ any transition

A |
\ | \ of T
« Example: (ql is empty ins) - . _ .
Pl P2 — » P3 {P1:Send(ql,m1)} is persistent in s

Send(ql,m1) l Send(q1,m3) Send(q2,m5)
\ 4

The most advanced algorithms for
(statically) computing persistent sets
lSend(ql,m2) stop (Send(ql.m6) are based on “stubborn sets”

stop [Valmari]

—>
x=Rcv(q2) lSend(q2,m4) vz=Rcv(q1)

stop

« Limitation: need info on (static) system structure.
» VeriSoft only exploits info on next transitions and “system_file.VS”.

PASTE 2004 Page 11 June 2004

Sleep Sets

« Sleep Sets exploit local independence (commutativity) among
enabled transitions. One sleep set 1s associated with each state.

Pl P2
« Example: — —
lS end(ql,x) Send(q2,m)
lS end(q2,z) Send(ql,y)
v v

Pl: Send(gchf end(q2 m)
Sleep={P1:Send(ql,x)}
P1:Send(q2,z) end(q2 m)\ P2 Send(qly) Lransitions in Sleep
3) are not explored!
v v v
» Limitation: alone, no state reduction.

» Sleep sets are easy to implement in VeriSoft since they only require
information on next transitions.

PASTE 2004 Page 12 June 2004

An Efficient State-Less Search

e With POR algorithms, the pruned state space looks like a tree!

* Thus, no need to store intermediate states!

O 300000 T | | | | T | |

/ \ Oﬁ/ oo -
N =l

100000 -
Tranmtiens
250000 -

ersistent sets

:/ \At’ (p) 200000 -
150000 -

O O 100000 -
t\ 50000

O] # - i Y 1 1
1 2 k| 4 5 &

sleep sets
(p) E’hilmnphcl‘s

* Without POR algorithms, a state-less search in the state space
of a concurrent system is untractable.

PASTE 2004 Page 13 June 2004

VeriSoft - Summary

Two key features distinguish VeriSoft from other model checkers

— Does not require the use of any specific modeling/programming language.

— Performs a state-less search.
« Use of partial-order reduction 1s key in presence of concurrency.
« In practice, the search 1s typically incomplete.

* From a given 1nitial state, VeriSoft can always guarantee a
complete coverage of the state space up to some depth.

PASTE 2004 Page 14 June 2004

Users and Applications

« Development of research prototype started in 1996.

* VeriSoft 2.0 available outside Lucent since January 1999:
— 100’s of licenses 1n 25+ countries, 1n industry and academia

— Free download at http://www.bell-labs.com/projects/verisoft

« Examples of applications in Lucent:
— 4ESS HBM unit testing and debugging (telephone switch maintenance)
— WaveStar 40G R4 integration testing (optical network management)
— 7TR/E PTS Feature Server unit and integration testing (voice/data signaling)

— CDMA Cell-Site Call Processing Library testing (wireless call processing)

PASTE 2004 Page 15 June 2004

Application: 4ESS HBM [ISSTA98]

* 4ESS switches control millions of calls every day.

« Heart-Beat Monitor (HBM) determines the status of elements
connected to 4ESS switch by monitoring propagation delays of
messages to/from these elements.

« HBM decides how to route new calls in 4ESS switch (i.e., decides
to switch from out-of-band to in-band signaling - called NTH).

 November 1996: “field incident”; June 1997: 2nd field incident...

« HBM code = 100s of lines of EPL (assembly) code, 7/3 years old

» Hoes does this code work exactly???

PASTE 2004 Page 16 June 2004

Application: 4ESS HBM (continued)

 Translate EPL code to C code

_ - _ Example of scenario found:
(using existing partial translator)

Processor A Processor B

e Build test harness for HBM C code, model its sage 1, comts0 index0
environment (using “VS toss(n)”), add der0, dighly 1
“VS_assert(0)” where HBM code hits NTH o oot index
(tOOk Only a feW hourS!) index 1, on time +

stage 1, count=1 ndex2
—
i HBM i DLN stage 1, connt=1 ndex0
| ! ’ index 2, lare
______________ index 0, on time
—[e
stage 1,connt=2 mdexl
due to procesang ord el
mdex], on tme
« Check properties (reverse eng./testing) N -

 Discovered several flaws in software and its
documentation... [ISSTA9S]

PASTE 2004 Page 17 June 2004

Application: CDMA Base Station SW [ICSE02]

e CDMA wireless network infrastructure 1s a multi-billion dollar

market (Lucent = #1).

» Three main components of a wireless network:

e

|

babile

/ Base Statich

blokile
Switching
Center

Thierhet

« CDMA 1s becoming the standard for air interface (vs. TDMA).

— Same band of RF spectrum shared by many mobiles (using “Walsh codes™)

PASTE 2004

Page 18

June 2004

Application: CDMA Base Station SW (continued)

« CDMA Base Station Call-processing
software library involves complex dynamic

resource-allocation algorithms and handoffs
scenarios (100,000°’s lines of C/C++ code).

* How to test reliably this software? VeriSoft

— Increased test coverage from O(10) to
0O(1,000,000) scenarios.

— Automatic regression testing for multiple
cell-sites and releases (more than 1,500
VeriSoft runs in 2000-2001).

— Found several critical bugs...[ICSE2002]

PASTE 2004 Page 19

VeriSoft
! : .
Test driver [] Walsh Fode
checking

Eeieae

Automated Testing Interface

J 1

CDMA
Call

Library

Processing[*— System...

—» Rest of the

v 1

v 1

Hw Simulation Environment

June 2004

Discussion: Strengths of VeriSoft

« Used properly, very effective at finding bugs

— can quickly reveal behaviors virtually impossible to detect using
conventional testing techniques (due to lack of controllability and
observability)

— compared with conventional model checkers, no need to model the
application!
» Eliminates this time-consuming and error-prone step

* VeriSoft is WYSIWYG: great for reverse-engineering
* Versatile: language independence is a key strength 1n practice

« Scalable: applicable to very large systems, although incomplete

— the amount of nondeterminism visible to VeriSoft can be reduced at the
cost of completeness and reproducibility (not limited by code size)

PASTE 2004 Page 20 June 2004

Discussion: Limitations of VeriSoft

e Requires test automation:
— need to run and evaluate tests automatically (can be nontrivial)

— 1f test automation is already available, getting started 1s easy

Need be integrated 1n testing/execution environment
— minimally, need to intercept VS toss and VS _assert

— 1intercepting/handling communication system calls can be tricky...

Requires test drivers/environment models (like most MC)

Specifying properties: the more, the better... (like MC)

— Restricted to safety properties (ok in practice); use Purify!

 State explosion... (like MC)

PASTE 2004 Page 21 June 2004

Discussion: Conclusions

VeriSoft (like model checking) 1s not a panacea.
— Limited by the state-explosion problem,...
— Requires some training and effort (to write test drivers, properties, etc.).

— “Model Checking is a push-button technology” is a myth!

« Used properly, VeriSoft 1s very effective at finding bugs.
— Concurrent/reactive/real-time systems are hard to design, develop and test.
— Traditional testing 1s not adequate.

— “Model checking” (systematic testing) can rather easily expose new bugs.

These bugs would otherwise be found by the customer!

So the real question is “How much ($) do you care about bugs?”

PASTE 2004 Page 22 June 2004

Comparison with Related Work

e Traditional model checkers: (e.g., SPIN, SDLvalid, etc.)

— language dependent,
— requires a model or limited to high-level design,

— but analyzing a model is easier.

» Specification-based test generation: (e.g., TestMaster, etc.)
— language dependent,
— test generation only,

— no support for concurrency.

« Software model checkers based on static analysis and abstraction:

— see next slide.

PASTE 2004 Page 23 June 2004

Model Checking of Software

 Two complementary approaches to software model checking:

state-space exploration

Modeling languages » Model checking
A
(Bandera, BLAST, JPF,
abstraction| SLAM,...) adaptation
. state-space exploration y ,
Programming languages » Systematic testing
(VeriSoft)
Automatic Abstraction (static analysis): Systematic Testing (dynamic analysis):
Idea: parse code to generate an abstract Idea: control the execution of multiple test-
model that can be analyzed using model drivers/processes by intercepting systems
checking. calls.
*No execution required but language *Language independent but requires
dependent. execution.
*Produce spurious counterexamples *Counterexamples arise from code (sound).
(unsound). *Provide a complete state-space coverage up
*Can prove correctness (complete). to some depth only (incomplete).

PASTE 2004 Page 24 June 2004

VeriSoft Project: Related Work

* First paper on VeriSoft: [POPL97]

« Examples of related research issues: (joint work with many others!)

How to automatically “close” open reactive programs? [PLDI9S]
How to automatically synthesize a spec from dynamic observations? [TACAS97]

How to analyze effectively partial state-spaces?
[CAV99,CONCURO00,CONCURO01,CAV02,VMCAIO03,EMSOFTO03,LICS04...]

How to exploit symmetry (e.g., as in client-server applications)? [PSTV-FORTE99]

How to test systems without ever writing a test driver? [FSE2000]
* VeriWeb: automatically testing dynamic websites [WWW2002]

How to explore very large state spaces using genetic algorithms? [TACAS2002]

Etc. See my web-page (www.bell-labs.com/~god) for complete references.

e (Current and future work:

PASTE 2004

automatic generation of (nondeterministic) test drivers from static analysis...

goal: more users for VeriSoft by making unit testing a reality in the sw industry!

Page 25 June 2004

Conclusions

* VeriSoft 1s a tool for systematically testing concurrent/reactive sw
e Computes the “product” of OS processes with run-time scheduler
» Islanguage independent (C, C++,...): no static analysis

« Performs a state-less search and makes heavy use of partial-order
reduction algorithms when concurrency

« Can provide full state-space coverage but typically up to some
depth only; first (“bounded”) model checker for C/C++/etc.

* 100’s of non-commercial licenses 1n industry and academia

* Free download at http://www.bell-labs.com/projects/verisoft

PASTE 2004 Page 26 June 2004

