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Abstract. To understand the dynamics of a running program, it is often useful to
examine its state at specific moments during its execution. We preseiniry

graphs as a means to capture and explore program states. A memory graph gives
a comprehensive view of all data structures of a program; data items are related
by operations like dereferencing, indexing or member access. Although memory
graphs are typically too large to be visualized as a whole, one can easily focus
on specific aspects using well-known graph operations. For instance, a greatest
common subgraph visualizes commonalities and differences between program
states.

Keywords: program understanding, debugging aids, diagnostics, data types and
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1 A Structured View of Memory

Exploring the state of a program, to view its variables, values, and current execution
position, is a typical task in debugging programs. Today'’s interactive debuggers allow
accessing the values of arbitrary variables and printing their values. Typically, values
are shown agexts. Here’s an example output from ti@NU debuggeiGDB:

(gdb) print *tree
*tree = {value = 7, _name = 0x8049e88 "Ada", _left = 0x804d7d8,

_right = 0x0, left _thread = false, right _thread = false,

date = ({day_of week = Thu, day = 1, month = 1, year = 1970,

_vptr. = 0x8049f78 (Date virtual table )}, static shared = 4711 }
(gdb) _

Fig. 1. Printing textual data with GDB

Although modern debuggers offer graphical user interfaces instead®§ com-
mand line, data values are still shown as text. This is useful in the most cases, but
fails badly as soon as references and pointers come into play. Consider Figure 1, for
example: where doeigsee-> _left point to? Of course, one can simply print the
dereferenced value. However, a user will never notice if two pointers point to the same
address—except by thoroughly checking and comparing pointer values.
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Fig. 2. The GNU DDD debugger

An alternative to accessing memory in a name/value fashion is to model memory as
a graph. Each value in memory becomes a vertex, and references between values (i.e.
pointers) become edges between these vertices. This view was first exploredivithe
DDD debugger front-end [6], shown in Figure 2.

In DDD, displayed pointer values are dereferenced by a simple mouse click, allow-
ing to unfold arbitrary data structures interactivelpD automatically detects if mul-
tiple pointers pointed to the same address and adjusts its display accorBibDlfas
a major drawback, though: each and every pointer of a data structure must be derefer-
enced manually. While this allows the programmer to set a focus on specific structures,
it is tedious to access, say, the 100th element in a linked list.

To overcome these limitations, we propasemory graphs as a basis for accessing
and visualizing memory contents. A memory graph captures the program state as a
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graph, very much lik®DD does; however, it is extracted automatically from a program.
Since a memory graph encompasses the entire program state, it can be used to answer
questions like:

— Are there any pointers pointing to this address?

— How many elements does this data structure have?

— Is this allocated memory block reachable from within my module?
— Did this tree change during the last function call?

In this paper, we show how to extract and visualize memory graphs, sketching the ca-
pabilities of future debugging tools.

2 An Example Graph

As a simple example of a memory graph, consider Figure 3. The memory graph shows
the state of a program namederinfd. userinfotakes aJNIX user name as argument
and shows the user’s full name and e-mail address.

In our caseuserinfowas invoked withzeller as argument. You can see this by
following the edge namedatgVv’ (the program’s arguments). Dereferencing the first
element ofargv (following the edge labeled “()[1]", we findrgV{1]—the argument
“zeller.?

To fetch the full nameyserinfoaccesses the user database vig\is variable. By
dereferencing the link namgaivd from the top, you find a node namef .}". This is
the recordowd points to (i.e «pwd). Further descendants include the user id, the group
id, the full name of the user and thiNIX user name Zeller’ as well). You see that the
two stringsargV{1] andpwd — pw_nameare disjoint; howevemrg points to the same
string asargV{1]. Obviously, such a graph drawing is much more valuable than, say, a
table of variables and values.

If you are interested in a formal definition of memory graphs, see Figure 4.

1 userinfois part of thesnu ppD distribution.

2n case you are reading the color version of this document, the different vertex colors indicate
different storage areas. Arguments are shown in pink, stack variables in red, heap variables in
blue, and static variables in cyan. The charactisrgrey because it resides in a register.



The formal structure of memory graphs

Let G = (V, E, root) be a memory graph containing a 80f vertices, a seE of edges, and

a dedicated vertesoot:

Vertices. Each vertexw € V has the formy = (val, tp, addr), standing for a valugal of type
tp at memory addreszddr.

As an example, the C declaration
int i = 42;

results in a vertexj; = (42, int, 0x1234, where0x1234is the (hypothetical) memorny

address of .

Edges. Each edgee € E has the forme = (v1, vo, 0p), Wherevq, vo € V are the related

vertices. The operatioop is used in constructing the expression of a vertex (see belgw).

As an example, the C declaration of the record (“strutt”)

struct foo { int val; } = {47}
results in two vertices; = ({. ..}, struct foqg 0x5678 andvsyg = (47, int, 0x9abg, as
well as an edgey.ya) = (v, Vf.val, OPfyal) from v t0 viyal:

f ().val
<Root > {...} 47

Root. A memory graph contains a dedicated veniat € V that references all base variab
of the program. Each vertex in the memory graph is accessible from root.
In the previous examples, andf are base variables; thus, the graph contains the &
g = (root, vj, op) andes = (root, v, Opsf).
Operations. Edge operations construct the name of descendants from their parent’'s nam
In an edges = (v1, v2, Op), €ach operatiowp is a function that takes the expression

v1 to construct the expression 0. We denote functions byx.B—a function that has

a formal parametex and a bodyB. In our examplesB is simply a string containing;
applying the function returnB wherex is replaced by the function argument.
Operations on edges leading fraoot to base variables initially set the name;&®p =
AX."i"andopy = Ax."f" hold.
Deeper vertices are constructed based on the name of their parents. For irgiapges
Ax." x.val"'  holds, meaning that to access the name of the descendant, one must
"val" tothe name of its parent.
In our graph visualizations, the operation body is shown as edge label, with the
parameter replaced BY)" (thatis, we use@p("()" ) as label). This is reflected in t
figure above.
Names. The following functionnameconstructs a name for a vertexusing the operations g
the path fronv to the root vertex. As there can be several parents (and thus several n
we non-deterministically choose a parehbf v along with the associated operatiop

op(namev’)) for some(v’, v, 0p) € E if 3(v/, v, 0p) € E

namev) =
) otherwise (root vertex)

As an example, see how a name @4 is found: namevs.ya) = Op g (Namevs)) =
Opt val(0ps (")) = opryg('f" ) = "fval

For details on the construction of memory graphs from data structures, see Figure 7.

Fig. 4. The structure of memory graphs
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Fig. 5. Memory graphs within a debugging environment

3 Obtaining Memory Graphs

How does one obtain a memory graph? Figure 5 gives a rough sketch. At the bottom is
the debuggee, the program to be examined. Its state is accessed via a standard debugger
such assDB. The memory graph extractor quer@BB for variable names, types, sizes,

and values. SinceDB is controlled via the command line, the dialogue between mem-

ory graph extractor an@DB is actually human-readable, as shown in Figure 6 (bold

face stands fo6DB commands as generated by the memory graph extractor).

. (gdb) set variable $v17 = pwd

(gdb) output &(pwd) (gdb) output &((*$v17).pw_name)
(passwd **) Oxbffff478 (char **) 0x40133ce0
(gdb) output sizeof(pwd) (gdb) output sizeof((*$v17).pw_name)
4 4
(gdb)  output *(pwd) (gdb) output (*$v17).pw_name
{ 0x8057830 “zeller"
pw_name = 0x8057830 "zeller", (gdb) output strlen((*$v17).pw_name) + 1
pw_passwd = 0x8057837 "X, 7
pw_uid = 501, (gdb) output &((*$v17).pw_passwd)
pw_gid = 100, (char **) 0x40133ce4
pw_gecos = 0x8057839 "Andreas Zeller", (gdb) output sizeof((*$v17).pw_passwd)
pw_dir = 0x8057848 "/home/zeller", 4

pw_shell = 0x8057855 "/bin/bash" (gdb)

Fig. 6. Dialogue between memory graph extractor and GDB

You can see how the memory graph extractor quesieB for the address and size
of the pwd variable, then, having found it is a pointer, queries the object pointed to by
dereferencingpwd The objectpwd points to is a C struct (a record), so the memory
graph extractor goes on querying the addresses, sizes and values of the individual mem-
bers. Note the usage of an inter@bB variable $v17 here; this is done to avoid the
transmission of long expression names (such that we can uséysay, valueinstead
of list - next— next— next— ... — value

Once the entire graph is extracted, it can be made available for the programmer to
display or examine; it can also be shown in a debugging environment where additional
manipulations become available.

The formal details of obtaining memory graphs are listed in Figure 7; special caveats
about C programs are given in Figure 8.



Unfolding data structures

To obtain a memory grap@ = (V, E, root), as formalized in Figure 4, we use the followi
scheme:

ng

1. Letunfold(parent op, G) be a procedure (sketched below) that takes the name of a parent

expressiomparentand an operatioop and unfolds the elememip(parend, adding ne
edges and vertices to the memory gr&ah

2. Initialize V = {root} andE = @.

3. For each base variabt@amein the program, invokenfold(root, AX." namé ).

Theunfold procedure works as follows. L&Y, E, root) = G be the members @b, letexpr=

op(parend be the expression to unfold, Igt be the type oexpr, and letaddr be its address.

The unfolding then depends on the structurexjr.

Aliases. If V already has a vertex' at the same address and with the same type (form
Jv’ = (val, tp/, addr) € V -tp = tp’ Aaddr = addr’), do not unfoldexpragain; howeve
insert an edgéparent v’, op) to the existing vertex.

As an example, consider the C statements:

struct foo f; int *pl; int *p2; pl = p2 = &f;
If f has already been unfolded, we do not need to unfold its affadeand*p2 . However,
we insert edges frompl andp2 tof .

Records. Otherwise, ifexpris a record containing membersmy, my, ..., mp, add a ver;
tex v = ({...},tp,addr to V, and an edgegparent v, op) to E. For eachm; ¢

{mq, my, ..., mp}, invokeunfold(expr, Ax." x. m;", G), unfolding the record members.

As an example, consider the “Edges” example in Figure 4. Here, the redsicteated a:
a vertex and its membéwval  has been unfolded.

Arrays. Otherwise, ifexpris an array containingy membersm[0], m[1],..., m[n — 1],
add a vertexv = ([...],tp,addr) to V, and an edgé&parent v, op) to E. For each
i €{0,1,...,n}, invokeunfoldexpr, Ax." x[ i]" , G), unfolding the array elements.

Arrays are handled very much like records, so no example is given.

Pointers. Otherwise, ifexpris a pointer with address valval, add a vertex = (val, tp, addr)
toV, and an edgéparent v, op) to E. Invokeunfold(expr, Ax."*( x)" , G), unfolding the
elementexprpoints to (assuming thatp is the dereferenced pointe,

In the “Aliases” example above, we would end up with the following graph:

pl

<Root >

p2

0x. ..

Atomic values. Otherwisegexprcontains an atomic valual. Add a vertexy = (val, tp, addr)
to V, and an edgéparent v, op) to E.

As an example, sefein the figure above.

For more details on C structures, see Figure 8.

ally,

D

Fig. 7. The construction of memory graphs



Dealing with C data structures

In the programming language C, pointer accesses and type conversions are virtually un

limited,

which makes extraction of data structures difficult. Here are some challenges and how we dealt

with them.

Invalid pointers. In C, uninitialized pointers can contain arbitrary addresses. A pointe

ref-

erencing invalid or uninitialized memory can quickly introduce lots of garbage intp the

memory graph.

To distinguish valid from invalid pointers, we usermory map. Using debugger infor-

mation, we detect individual memory areas like stack frames, heap areas requested via the

malloc function, or static memory; a pointer is valid only if it points within a known a
Dynamic arrays. In C, one can allocate arrays of arbitrary size on the heap viantlirc

ea.

function. While the base address of the array is typically stored in a pointer, C offers no

means to find out how many elements were actually allocated; keeping track of the
left to the discretion of the programmer (and can thus not be inferred by us).

A similar case occurs when a C struct contains arrays that grow beyond its bounda
in struct foo { int member; int array[1]; } . Althougharray is de-

size is

ries, as

clared to have only one element, it is actually used as dynamic array, expanding beyond

the struct boundaries. Such structs are allocated such that there is sufficient space
the struct and the desired number of array elements.

for both

To determine the size of a dynamic array, we again use the memory map as described ear-

lier: an array cannot cross the boundaries of its memory area. For instance, if we kn
array lies within a memory area of 1000 bytes, the array cannot be longer than 100(

Unions. The biggest obstacle in extracting data structures aneiths. Unions (also known

as variant records) allow multiple types to be stored at the same memory address.

ow the
bytes.

Again,

keeping track of the actual type is left to the discretion of the programmer; when extracting

data structures, this information is not generally available.

To disambiguate unions, we employ a couple of heuristics, such as expanding the i
ual union members and checking which alternative contains the smallest number of
pointers. Another alternative is to search fotype tag—an enumeration type within th
enclosing struct whose value corresponds to the name of a union member. Whi

ndivid-
invalid
e

e such

heuristics mostly make good guesses, it is safer to provide explicit disambiguation rules—

either hand-crafted or inferred from the program.

Strings. A char array in C has several usages: It can be used for strings, but is also freq
used as placeholder for other objects. For instancepidioc function returns archar
array of the desired size; it may be used for strings, but also for other objects.

Generally, we interprathar arrays as strings only if no other type claims the space. T
if a we have both &har array pointer and pointer of another type both pointing to
same area, we use the second pointer for unfolding.

uently

hus,
the

Few of these problems exist in other programming languages. Most languages are far more

unambiguous when it comes to interpreting memory contents; in object-oriented lang
unions are obsoleted by dynamic binding.

Fig. 8. Dealing with C data structures

uages,
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4 Graph Differences

An important application for memory graphs éemparing program states—that is,
answering the question “What has changed between these two states?”

If the state is given in a name/value fashion, comparing states is difficult as soon
as pointers come into play. For instance, we might like to invokeutfeginfoprogram
with a differentUNIX user name. In this alternate run, all pointers can have different
values (depending on the available memory), but still the same semantics. With a graph
abstracting from concrete values, comparing program states becomes a rather simple
graph operation—namely, the detection of the greatest common subgraph.

The construction details of the greatest common subgraph is described in Figure 10.
In Figure 9, we see the result. The upper graph again showsseminfostate, as in
Figure 3. The lower graph shows thserinfostate when invoked witbNIX user name
zimmerth the common subgraph of the two graphs is outlined. One can clearly see the
remaining differences.

If we knew, for instance, that the first run works fine, but the second does not, we
know that the cause for the failure must be somewhere in the difference between the
program state. Comparing memory graphs gives us this ability.



Comparing Memory Graphs

Since they abstract from concrete locations, memory graphs allow comparing program states
on astructural level. As an example, consider these two memory graphs. What has changed?

list
next next
Gy
list

G2

As a human, you can quickly see that the element 15 has been inserted into the list. T

0 detect

this automatically, though, requires some graph operations. The basic idea is to compute a

maximum common subgraph of G; andG, and to flag all the vertices that do not occur in b
G1 andG».

pth

How does one compute a maximum common subgraph? Barrow and Burstall [1] first observed

that a maximum subgraph can be obtained by usingreespondence graph. In our notation
their algorithm looks like this:

1. Create the set of all pairs of verticasg, vp) with the same value and the same type,

from each graph. Formally; € Vi, vo € Vp andvaly = valp A tpg = tpy holds where

(valy, tpg, addry) = v1 and(valy, tp,, addry) = vo.

one

2. Form thecorrespondence graph C whose nodes are the pairs from (1). Any two vertex

pairsv = (v1, v2) andv’ = (vg, v5) in C are connected if

— the operations of the edgés;, u’l, opy) in G1 and(vp, 1/2, opy) in Gy are the same,

i.e.op; = opy, or
— neither(vy, v’l, opy) nor (v, v’2, opy) exist.
3. The maximal common subgraph then corresponds teithémum clique in C—that is, &
complete subgraph @ that is not contained in any other complete subgraph. This
mum clique can efficiently be computed using the algorithm of Bron and Kerbosch

For our purposes, the resulting maximum clique (i.e. the set of corresponding vertices)
suffices: Any vertex that is not in the clique indicates a difference bet@gesmdG,.

The following figure shows the pairs obtained in (1). Since this is pretty unambiguous, fi
the maximum clique is trivial—it is simply the one set of pairs. But it is plain to see thg
element 15 inG, has no counterpart iG1.

By highlighting inserted or deleted vertices this way, future debugging tools can quickly

pare program states and identify what has changed between two states of a program run.

haxi-
2].

already

nding
t the

com-

Fig. 10. Detecting differences



5 Querying Memory Graphs

As a last memory graph, consider Figure 11. This memory graph was obtained from the
GNU compiler as it compiled the C statement

z[i] = z[i] * (z[0] + 1.0);

The graph shows the statement asgster transfer language (RTL) tree, the internal
representation of the intermediate language used b@khecompiler. (TheGNU com-
piler first converts its input into a syntax tree, which is transformed Rito, which,
after a series of optimizations, is then finalized into assembler language.)

This graph shows only a subset of the faNlU compiler state, whose memory graph
at this time has about 40,000 vertices. However, even this subset is already close to the
limits of visualization: if theRTL expression were any larger, we would no longer be
able to depict it.

Nonetheless, we can use this graph to debug programs. It turns oGtiBatashes
when its internaRTL expression takes this form. This is so becauseRfistree is not
a tree; it contains a cycle in the lower right edge. This cycle causes an endless recursion
in the GNU compiler, eventually eating up all available heap space.

We do not assume that programmers can spot cycles immediately from the visual-
ization in Figure 11. However, we can imagine traditional graph properties (such as the
graph being complete, cycle-free, its spanning tree having a the maximum depth and so
forth) being computed for memory graphs, for instance in a debugging environment. A
click on a button could identify the cycle and thus immediately point the programmer
to the failure cause.

6 Drawing Memory Graphs

The figures in this paper were drawn in a straight-forward way usingp®iegraph
layouter from AT&T’sgraphvizpackage [3]. While these layouts are nice, they do not
scale to large memory graphs (with 1,000 vertices and more).

More promising areinteractive graph renderings that allow the user to navigate
along the graph. We are currently experimenting withhtBeiewemprogram that creates
hyperbolic visualizations of very large graphs [4].

Figure 12 shows a screenshoh@viewer® The actual program is interactive: click-
ing on any vertex brings it to front, showing detailed information. By dragging and
rotating the view, the programmer can quickly follow and examine data structures. If
future successors DD will have an interactive graph drawing interface, it may look
close to this.

Another idea to be explored for presentatiosusnmarizingarts of the graph. For
instance, rather than showing allelements of a linked list, it may suffice to present
only the basishapeof the list—in the style okhape analysis [5], for instance.

Finally, there are several pragmatic means to reduce the graph size: for instance, one
can prune the graph at a certain depth, or, simpler still, restrict the view to a particular
module or variable.

3 Colors have been altered to fit printing needs.
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Fig. 12.The RTL tree from Figure 11 as visualized b§viewer

7 Conclusion

Capturing memory states into a graph is new, and so are the applications on these
graphs. Realizing appropriate navigation tools, efficient analysis and extraction meth-
ods and useful visual representations are challenges not without reward.

More information on memory graphs can be found at

http://www.st.cs.uni-sh.de/memgraphs/
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