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Abstract. To understand the dynamics of a running program, it is often useful to
examine its state at specific moments during its execution. We presentmemory
graphs as a means to capture and explore program states. A memory graph gives
a comprehensive view of all data structures of a program; data items are related
by operations like dereferencing, indexing or member access. Although memory
graphs are typically too large to be visualized as a whole, one can easily focus
on specific aspects using well-known graph operations. For instance, a greatest
common subgraph visualizes commonalities and differences between program
states.
Keywords: program understanding, debugging aids, diagnostics, data types and
structures, graphs

1 A Structured View of Memory

Exploring the state of a program, to view its variables, values, and current execution
position, is a typical task in debugging programs. Today’s interactive debuggers allow
accessing the values of arbitrary variables and printing their values. Typically, values
are shown astexts. Here’s an example output from theGNU debuggerGDB:

(gdb) print *tree
*tree = {value = 7, name = 0x8049e88 "Ada", left = 0x804d7d8,

right = 0x0, left thread = false, right thread = false,
date = {day of week = Thu, day = 1, month = 1, year = 1970,

vptr. = 0x8049f78 〈Date virtual table 〉}, static shared = 4711 }

(gdb) _

Fig. 1.Printing textual data with GDB

Although modern debuggers offer graphical user interfaces instead ofGDB’s com-
mand line, data values are still shown as text. This is useful in the most cases, but
fails badly as soon as references and pointers come into play. Consider Figure 1, for
example: where doestree-> left point to? Of course, one can simply print the
dereferenced value. However, a user will never notice if two pointers point to the same
address—except by thoroughly checking and comparing pointer values.



Fig. 2.The GNU DDD debugger

An alternative to accessing memory in a name/value fashion is to model memory as
a graph . Each value in memory becomes a vertex, and references between values (i.e.
pointers) become edges between these vertices. This view was first explored in theGNU
DDD debugger front-end [6], shown in Figure 2.

In DDD, displayed pointer values are dereferenced by a simple mouse click, allow-
ing to unfold arbitrary data structures interactively.DDD automatically detects if mul-
tiple pointers pointed to the same address and adjusts its display accordingly.DDD has
a major drawback, though: each and every pointer of a data structure must be derefer-
enced manually. While this allows the programmer to set a focus on specific structures,
it is tedious to access, say, the 100th element in a linked list.

To overcome these limitations, we proposememory graphs as a basis for accessing
and visualizing memory contents. A memory graph captures the program state as a
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Fig. 3.A simple memory graph

graph, very much likeDDD does; however, it is extracted automatically from a program.
Since a memory graph encompasses the entire program state, it can be used to answer
questions like:

– Are there any pointers pointing to this address?
– How many elements does this data structure have?
– Is this allocated memory block reachable from within my module?
– Did this tree change during the last function call?

In this paper, we show how to extract and visualize memory graphs, sketching the ca-
pabilities of future debugging tools.

2 An Example Graph

As a simple example of a memory graph, consider Figure 3. The memory graph shows
the state of a program nameduserinfo1. userinfotakes aUNIX user name as argument
and shows the user’s full name and e-mail address.

In our case,userinfowas invoked withzeller as argument. You can see this by
following the edge named “argv” (the program’s arguments). Dereferencing the first
element ofargv (following the edge labeled “()[1]”, we findargv[1]—the argument
“zeller”.2

To fetch the full name,userinfoaccesses the user database via itspwdvariable. By
dereferencing the link namedpwd from the top, you find a node named “{. . .}”. This is
the recordpwdpoints to (i.e.∗pwd). Further descendants include the user id, the group
id, the full name of the user and theUNIX user name “zeller” as well). You see that the
two stringsargv[1] andpwd→ pw nameare disjoint; however,arg points to the same
string asargv[1]. Obviously, such a graph drawing is much more valuable than, say, a
table of variables and values.

If you are interested in a formal definition of memory graphs, see Figure 4.
1 userinfois part of theGNU DDD distribution.
2 In case you are reading the color version of this document, the different vertex colors indicate

different storage areas. Arguments are shown in pink, stack variables in red, heap variables in
blue, and static variables in cyan. The characterc is grey because it resides in a register.



The formal structure of memory graphs

Let G = (V, E, root) be a memory graph containing a setV of vertices, a setE of edges, and
a dedicated vertexroot:

Vertices. Each vertexv ∈ V has the formv = (val, tp,addr), standing for a valueval of type
tp at memory addressaddr.

As an example, the C declaration
int i = 42;

results in a vertexvi = (42, int,0x1234), where0x1234is the (hypothetical) memory
address ofi .

Edges. Each edgee ∈ E has the forme = (v1, v2,op), wherev1, v2 ∈ V are the related
vertices. The operationop is used in constructing the expression of a vertex (see below).

As an example, the C declaration of the record (“struct”)f ,
struct foo { int val; } f = {47};

results in two verticesvf = ({. . . }, struct foo,0x5678) andvf.val = (47, int,0x9abc), as
well as an edgeef.val = (v f , vf.val,opf.val) from v f to vf.val:

{...} 47
().valf

<Root>

Root. A memory graph contains a dedicated vertexroot ∈ V that references all base variables
of the program. Each vertex in the memory graph is accessible from root.

In the previous examples,i and f are base variables; thus, the graph contains the edges
ei = (root, vi ,opi ) ande f = (root, v f ,op f ).

Operations. Edge operations construct the name of descendants from their parent’s name.
In an edgee = (v1, v2,op), each operationop is a function that takes the expression of
v1 to construct the expression ofv2. We denote functions byλx.B—a function that has
a formal parameterx and a bodyB. In our examples,B is simply a string containingx;
applying the function returnsB wherex is replaced by the function argument.
Operations on edges leading fromroot to base variables initially set the name; soopi =

λx."i" andop f = λx."f" hold.
Deeper vertices are constructed based on the name of their parents. For instance,opf.val =

λx." x.val" holds, meaning that to access the name of the descendant, one must append
".val" to the name of its parent.
In our graph visualizations, the operation body is shown as edge label, with the formal
parameter replaced by"()" (that is, we useop("()" ) as label). This is reflected in the
figure above.

Names. The following functionnameconstructs a name for a vertexv using the operations on
the path fromv to the root vertex. As there can be several parents (and thus several names),
we non-deterministically choose a parentv′ of v along with the associated operationop:

name(v) =

{
op
(
name(v′)

)
for some(v′, v,op) ∈ E if ∃(v′, v,op) ∈ E

"" otherwise (root vertex)

As an example, see how a name forvf.val is found:name(vf.val) = opf.val(name(vf )) =

opf.val(op f ("" )) = opf.val("f" ) = "f.val"

For details on the construction of memory graphs from data structures, see Figure 7.

Fig. 4.The structure of memory graphs
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Fig. 5.Memory graphs within a debugging environment

3 Obtaining Memory Graphs

How does one obtain a memory graph? Figure 5 gives a rough sketch. At the bottom is
the debuggee, the program to be examined. Its state is accessed via a standard debugger
such asGDB. The memory graph extractor queriesGDB for variable names, types, sizes,
and values. SinceGDB is controlled via the command line, the dialogue between mem-
ory graph extractor andGDB is actually human-readable, as shown in Figure 6 (bold
face stands forGDB commands as generated by the memory graph extractor).

...
(gdb) output &(pwd)
(passwd **) 0xbffff478
(gdb) output sizeof(pwd)
4
(gdb) output *(pwd)
{

pw_name = 0x8057830 "zeller",
pw_passwd = 0x8057837 "x",
pw_uid = 501,
pw_gid = 100,
pw_gecos = 0x8057839 "Andreas Zeller",
pw_dir = 0x8057848 "/home/zeller",
pw_shell = 0x8057855 "/bin/bash"

}

(gdb) set variable $v17 = pwd
(gdb) output &((*$v17).pw_name)
(char **) 0x40133ce0
(gdb) output sizeof((*$v17).pw_name)
4
(gdb) output (*$v17).pw_name
0x8057830 "zeller"
(gdb) output strlen((*$v17).pw_name) + 1
7
(gdb) output &((*$v17).pw_passwd)
(char **) 0x40133ce4
(gdb) output sizeof((*$v17).pw_passwd)
4
(gdb)
...

Fig. 6.Dialogue between memory graph extractor and GDB

You can see how the memory graph extractor queriesGDB for the address and size
of thepwdvariable, then, having found it is a pointer, queries the object pointed to by
dereferencingpwd. The objectpwd points to is a C struct (a record), so the memory
graph extractor goes on querying the addresses, sizes and values of the individual mem-
bers. Note the usage of an internalGDB variable$v17 here; this is done to avoid the
transmission of long expression names (such that we can use, say,$vn→ valueinstead
of list→ next→ next→ next→ · · · → value)

Once the entire graph is extracted, it can be made available for the programmer to
display or examine; it can also be shown in a debugging environment where additional
manipulations become available.

The formal details of obtaining memory graphs are listed in Figure 7; special caveats
about C programs are given in Figure 8.



Unfolding data structures

To obtain a memory graphG = (V, E, root), as formalized in Figure 4, we use the following
scheme:

1. Letunfold(parent,op,G) be a procedure (sketched below) that takes the name of a parent
expressionparentand an operationop and unfolds the elementop(parent), adding new
edges and vertices to the memory graphG.

2. InitializeV = {root} andE = ∅.
3. For each base variablenamein the program, invokeunfold(root, λx." name" ).

Theunfoldprocedure works as follows. Let(V, E, root) = G be the members ofG, let expr=
op(parent) be the expression to unfold, lettp be the type ofexpr, and letaddr be its address.
The unfolding then depends on the structure ofexpr:

Aliases. If V already has a vertexv′ at the same address and with the same type (formally,
∃v′ = (val′, tp′,addr′) ∈ V · tp= tp′∧addr= addr′), do not unfoldexpragain; however,
insert an edge(parent, v′,op) to the existing vertex.

As an example, consider the C statements:
struct foo f; int *p1; int *p2; p1 = p2 = &f;

If f has already been unfolded, we do not need to unfold its aliases*p1 and*p2 . However,
we insert edges fromp1 andp2 to f .

Records. Otherwise, ifexpr is a record containingn membersm1,m2, . . . ,mn, add a ver-
tex v = ({. . . }, tp,addr) to V , and an edge(parent, v,op) to E. For eachmi ∈

{m1,m2, . . . ,mn}, invokeunfold(expr, λx." x. mi " ,G), unfolding the record members.

As an example, consider the “Edges” example in Figure 4. Here, the recordf is created as
a vertex and its memberf.val has been unfolded.

Arrays. Otherwise, if expr is an array containingn membersm[0],m[1], . . . ,m[n − 1],
add a vertexv = ([. . . ], tp,addr) to V , and an edge(parent, v,op) to E. For each
i ∈ {0,1, . . . ,n}, invokeunfold(expr, λx." x[ i ]" ,G), unfolding the array elements.

Arrays are handled very much like records, so no example is given.

Pointers. Otherwise, ifexpris a pointer with address valueval, add a vertexv = (val, tp,addr)
to V , and an edge(parent, v,op) to E. Invokeunfold(expr, λx."*( x)" ,G), unfolding the
elementexprpoints to (assuming that∗p is the dereferenced pointerp),

In the “Aliases” example above, we would end up with the following graph:

{...}
f

<Root>

0x...

0x...

p1

p2

*()

*()

Atomic values. Otherwise,exprcontains an atomic valueval. Add a vertexv = (val, tp,addr)
to V , and an edge(parent, v,op) to E.

As an example, seef in the figure above.

For more details on C structures, see Figure 8.

Fig. 7.The construction of memory graphs



Dealing with C data structures

In the programming language C, pointer accesses and type conversions are virtually unlimited,
which makes extraction of data structures difficult. Here are some challenges and how we dealt
with them.

Invalid pointers. In C, uninitialized pointers can contain arbitrary addresses. A pointer ref-
erencing invalid or uninitialized memory can quickly introduce lots of garbage into the
memory graph.

To distinguish valid from invalid pointers, we use amemory map. Using debugger infor-
mation, we detect individual memory areas like stack frames, heap areas requested via the
malloc function, or static memory; a pointer is valid only if it points within a known area.

Dynamic arrays. In C, one can allocate arrays of arbitrary size on the heap via themalloc
function. While the base address of the array is typically stored in a pointer, C offers no
means to find out how many elements were actually allocated; keeping track of the size is
left to the discretion of the programmer (and can thus not be inferred by us).

A similar case occurs when a C struct contains arrays that grow beyond its boundaries, as
in struct foo { int member; int array[1]; } . Although array is de-
clared to have only one element, it is actually used as dynamic array, expanding beyond
the struct boundaries. Such structs are allocated such that there is sufficient space for both
the struct and the desired number of array elements.

To determine the size of a dynamic array, we again use the memory map as described ear-
lier: an array cannot cross the boundaries of its memory area. For instance, if we know the
array lies within a memory area of 1000 bytes, the array cannot be longer than 1000 bytes.

Unions. The biggest obstacle in extracting data structures are Cunions. Unions (also known
as variant records) allow multiple types to be stored at the same memory address. Again,
keeping track of the actual type is left to the discretion of the programmer; when extracting
data structures, this information is not generally available.

To disambiguate unions, we employ a couple of heuristics, such as expanding the individ-
ual union members and checking which alternative contains the smallest number of invalid
pointers. Another alternative is to search for atype tag—an enumeration type within the
enclosing struct whose value corresponds to the name of a union member. While such
heuristics mostly make good guesses, it is safer to provide explicit disambiguation rules—
either hand-crafted or inferred from the program.

Strings. A char array in C has several usages: It can be used for strings, but is also frequently
used as placeholder for other objects. For instance, themalloc function returns anchar
array of the desired size; it may be used for strings, but also for other objects.

Generally, we interpretchar arrays as strings only if no other type claims the space. Thus,
if a we have both achar array pointer and pointer of another type both pointing to the
same area, we use the second pointer for unfolding.

Few of these problems exist in other programming languages. Most languages are far more
unambiguous when it comes to interpreting memory contents; in object-oriented languages,
unions are obsoleted by dynamic binding.

Fig. 8.Dealing with C data structures
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Fig. 9.Finding out what has changed

4 Graph Differences

An important application for memory graphs iscomparing program states—that is,
answering the question “What has changed between these two states?”

If the state is given in a name/value fashion, comparing states is difficult as soon
as pointers come into play. For instance, we might like to invoke theuserinfoprogram
with a differentUNIX user name. In this alternate run, all pointers can have different
values (depending on the available memory), but still the same semantics. With a graph
abstracting from concrete values, comparing program states becomes a rather simple
graph operation—namely, the detection of the greatest common subgraph.

The construction details of the greatest common subgraph is described in Figure 10.
In Figure 9, we see the result. The upper graph again shows theuserinfostate, as in
Figure 3. The lower graph shows theuserinfostate when invoked withUNIX user name
zimmerth; the common subgraph of the two graphs is outlined. One can clearly see the
remaining differences.

If we knew, for instance, that the first run works fine, but the second does not, we
know that the cause for the failure must be somewhere in the difference between the
program state. Comparing memory graphs gives us this ability.



Comparing Memory Graphs

Since they abstract from concrete locations, memory graphs allow comparing program states
on astructural level . As an example, consider these two memory graphs. What has changed?

G1

G2

As a human, you can quickly see that the element 15 has been inserted into the list. To detect
this automatically, though, requires some graph operations. The basic idea is to compute a
maximum common subgraph of G1 andG2 and to flag all the vertices that do not occur in both
G1 andG2.
How does one compute a maximum common subgraph? Barrow and Burstall [1] first observed
that a maximum subgraph can be obtained by using acorrespondence graph . In our notation,
their algorithm looks like this:

1. Create the set of all pairs of vertices(v1, v2) with the same value and the same type, one
from each graph. Formally,v1 ∈ V1, v2 ∈ V2 andval1 = val2 ∧ tp1 = tp2 holds where
(val1, tp1,addr1) = v1 and(val2, tp2,addr2) = v2.

2. Form thecorrespondence graph C whose nodes are the pairs from (1). Any two vertex
pairsv = (v1, v2) andv′ = (v′1, v

′
2) in C are connected if

– the operations of the edges(v1, v
′
1,op1) in G1 and(v2, v

′
2,op2) in G2 are the same,

i.e.op1 = op2, or
– neither(v1, v

′
1,op1) nor (v2, v

′
2,op2) exist.

3. The maximal common subgraph then corresponds to themaximum clique in C—that is, a
complete subgraph ofC that is not contained in any other complete subgraph. This maxi-
mum clique can efficiently be computed using the algorithm of Bron and Kerbosch [2].

For our purposes, the resulting maximum clique (i.e. the set of corresponding vertices) already
suffices: Any vertex that is not in the clique indicates a difference betweenG1 andG2.
The following figure shows the pairs obtained in (1). Since this is pretty unambiguous, finding
the maximum clique is trivial—it is simply the one set of pairs. But it is plain to see that the
element 15 inG2 has no counterpart inG1.

By highlighting inserted or deleted vertices this way, future debugging tools can quickly com-
pare program states and identify what has changed between two states of a program run.

Fig. 10.Detecting differences



5 Querying Memory Graphs

As a last memory graph, consider Figure 11. This memory graph was obtained from the
GNU compiler as it compiled the C statement

z[i] = z[i] * (z[0] + 1.0);

The graph shows the statement as aregister transfer language (RTL) tree, the internal
representation of the intermediate language used by theGNU compiler. (TheGNU com-
piler first converts its input into a syntax tree, which is transformed intoRTL, which,
after a series of optimizations, is then finalized into assembler language.)

This graph shows only a subset of the fullGNU compiler state, whose memory graph
at this time has about 40,000 vertices. However, even this subset is already close to the
limits of visualization: if theRTL expression were any larger, we would no longer be
able to depict it.

Nonetheless, we can use this graph to debug programs. It turns out thatGCCcrashes
when its internalRTL expression takes this form. This is so because thisRTL tree is not
a tree; it contains a cycle in the lower right edge. This cycle causes an endless recursion
in theGNU compiler, eventually eating up all available heap space.

We do not assume that programmers can spot cycles immediately from the visual-
ization in Figure 11. However, we can imagine traditional graph properties (such as the
graph being complete, cycle-free, its spanning tree having a the maximum depth and so
forth) being computed for memory graphs, for instance in a debugging environment. A
click on a button could identify the cycle and thus immediately point the programmer
to the failure cause.

6 Drawing Memory Graphs

The figures in this paper were drawn in a straight-forward way using theDOT graph
layouter from AT&T’sgraphvizpackage [3]. While these layouts are nice, they do not
scale to large memory graphs (with 1,000 vertices and more).

More promising areinteractive graph renderings that allow the user to navigate
along the graph. We are currently experimenting with theh3viewerprogram that creates
hyperbolic visualizations of very large graphs [4].

Figure 12 shows a screenshot ofh3viewer.3 The actual program is interactive: click-
ing on any vertex brings it to front, showing detailed information. By dragging and
rotating the view, the programmer can quickly follow and examine data structures. If
future successors toDDD will have an interactive graph drawing interface, it may look
close to this.

Another idea to be explored for presentation issummarizingparts of the graph. For
instance, rather than showing alln elements of a linked list, it may suffice to present
only the basicshapeof the list—in the style ofshape analysis [5], for instance.

Finally, there are several pragmatic means to reduce the graph size: for instance, one
can prune the graph at a certain depth, or, simpler still, restrict the view to a particular
module or variable.
3 Colors have been altered to fit printing needs.
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Fig. 11.An RTL tree in the GNU compiler. Can you spot the cycle?



Fig. 12.The RTL tree from Figure 11 as visualized byh3viewer

7 Conclusion

Capturing memory states into a graph is new, and so are the applications on these
graphs. Realizing appropriate navigation tools, efficient analysis and extraction meth-
ods and useful visual representations are challenges not without reward.

More information on memory graphs can be found at

http://www.st.cs.uni-sb.de/memgraphs/
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