
When Do Changes Induce Fixes?
(On Fridays.)

Jacek Śliwerski
International Max Planck Research School
Max Planck Institute for Computer Science

Saarbrücken, Germany

sliwers@mpi-sb.mpg.de

Thomas Zimmermann Andreas Zeller
Department of Computer Science

Saarland University
Saarbrücken, Germany

{tz, zeller}@acm.org

ABSTRACT
As a software system evolves, programmers make changes that
sometimes cause problems. We analyzeCVS archives forfix-in-
ducing changes—changes that lead to problems, indicated by fixes.
We show how to automatically locate fix-inducing changes by link-
ing a version archive (such asCVS) to a bug database (such as
BUGZILLA). In a first investigation of theMOZILLA andECLIPSE
history, it turns out that fix-inducing changes show distinct patterns
with respect to their size and the day of week they were applied.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—corrections, version control; D.2.8 [Metrics]: Com-
plexity measures

General Terms
Management, Measurement

1. INTRODUCTION
When we mine software histories, we frequently do so in order

to detect patterns that help us understanding the current state of
the system. Unfortunately, not all changes in the past have been
beneficial. Any bug database will show a significant fraction of
problems that are reported some time after some change has been
made.

In this work, we attempt to identify thosechanges that caused
problems.The basic idea is as follows:

1. We start with a bug report in the bug database, indicating a
fixed problem.

2. We extract the associated change from the version archive,
thus giving us thelocationof the fix.

3. We determine theearlier changeat this location that was ap-
plied before the bug was reported.

This earlier change is the one thatcausedthe later fix. We call such
a changefix-inducing.

What can one do with fix-inducing changes? Here are some po-
tential applications:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’05, May 17, 2005, Saint Louis, Missouri, USA
Copyright 2005 ACM 1-59593-123-6/05/0005 ...$5.00.

Which change properties may lead to problems?We can inves-
tigate which properties of a change correlate with inducing
fixes, for instance, changes made on a specific day or by a
specific group of developers.

How error-prone is my product? We can assign ametric to the
product—on average, how likely is it that a change induces a
later fix?

How can I filter out problematic changes? When extracting the
architecture via co-changes from a version archive, there is
no need to consider fix-inducing changes, as they get undone
later.

Can I improve guidance along related changes?When using co-
changes to guide programmers along related changes, we
would like to avoid fix-inducing changes in our suggestions.

This paper describes our first experiences with fix-inducing chang-
es. We discuss how to extract data from version and bug archives
(Section 2), and how we link bug reports to changes (Section 3).
In Section 4, we describe how to identify and locate fix-inducing
changes. Section 5 shows the results of our investigation of the
MOZILLA andECLIPSE: It turns out that fix-inducing changes show
distinct patterns with respect to their size and the day of week they
were applied. Sections 6 and 7 close with related and future work.

2. WHAT’S IN OUR ARCHIVES?
For our analysis we need all changes and all fixes of a project.

We get this data fromversion archiveslike CVS andbug tracking
systemslike BUGZILLA .

A CVSarchive contains information about changes: Who changed
what, when, why, and how? Achangeδ transforms a revisionr1 to
a revisionr2 by inserting, deleting, or changing lines. We will later
investigate changes on the line level. Several changesδ1, . . . , δn

form a transactiont if they were submitted toCVS by the same
developer, at the same time, and with the same log message, i.e.,
they have been made with the same intention, e.g. to fix a bug or to
introduce a new feature. AsCVS records only individual changes
to files, we group these to transactions with asliding time window
approach [12].

A CVS archive also lacks information about thepurposeof a
change: Did it introduce a new feature or did it fix a bug? Although
it is possible to identify such reasons solely with log messages [7],
we combine bothCVS and BUGZILLA for this step because this
increases the precision of our approach.

A BUGZILLA database collects bug reports that are submitted by
a reporterwith ashort descriptionand asummary. After a bug has
been submitted, it is discussed by developers and users who pro-
vide additionalcommentsand may createattachments. After the

BugDB

Bug 42233
JUnit code generated for
TestSuite is wrong [JUnit]
...

Change History
1.17 1.18 1.19

Fixed Bug
42233

Link Bugs
with Changes

Figure 1: Link transactions to bug reports

bug has been confirmed, it isassignedto a developer who is respon-
sible to fix the bug and finally commits her changes to the version
control archive.BUGZILLA also captures thestatusof a bug, e.g.,
UNCONFIRMED, NEW, ASSIGNED, RESOLVED, or CLOSEDand
the resolution, e.g.,FIXED, DUPLICATE, or INVALID . Details
on the lifecycle of a bug can be found in theBUGZILLA documen-
tation [10, Sections 6.3 and 6.4].

For our analysis, we mirror bothCVS andBUGZILLA in a local
database. Our mirroing techniques forCVS are described in [12].
To mirror aBUGZILLA database, we use itsXML export feature.
Additionally, we import attachments and activities directly from the
web interface ofBUGZILLA . Our localBUGZILLA database schema
is similar to the one described in [2].

3. IDENTIFYING FIXES
In order to locate fix-inducing changes, we first need to know

whether a change is a fix. A common practice among developers is
to include abug report numberin the comment whenever they fix a
defect associated with it.̌Cubraníc and Murphy [4] as well as Fis-
cher, Pinzger, and Gall [5, 6] exploited this practice to link changes
with bugs. Figure 1 sketches the basic idea of this approach.

In our work, we refine these techniques by assigning every link(t, b)
between a transactiont and a bugb two independent levels of con-
fidence: asyntacticlevel, inferring links from aCVS log to a bug
report, and asemanticlevel, validating a link via the bug report
data. These levels are later used to decide which links shall be
taken into account in our experiments.

3.1 Syntactic Analysis
In order to finds links to the bug database, we split every log

message into a stream of tokens. A token is one of the following
items:

• a bug number, if it matches one of the following regular ex-
pressions (given inFLEX syntax):

– bug[# \t]*[0-9]+ ,
– pr[# \t]*[0-9]+ ,
– show_bug\.cgi\?id=[0-9]+ , or
– \[[0-9]+\]

• aplain number, if it is a string of digits[0-9]+

• akeyword, if it matches the following regular expression:
fix(e[ds])?|bugs?|defects?|patch

• aword, if it is a string of alphanumeric characters

Every number is a potential link to a bug. For each link, we initially
assign a syntactic confidencesynof zero and raise the confidence
by one for each of the following conditions that is met:

1. The number is abug number.

2. The log message contains akeyword,
or the log message contains onlyplain or bug numbers.

Thus the syntactic confidencesynis always an integer number be-
tween 0 and 2. As an example, consider the following log mes-
sages:

• Fixed bug 53784: .class file missing
from jar file export
The link to the bug number 53784 gets a syntactic confidence
of 2 because it matches the regular expression forbug and
contains the keywordfixed .

• 52264, 51529
The links to bugs 52264 and 51529 have syntactic confi-
dence 1 because the log message contains only numbers.

• Updated copyrights to 2004
The link to the bug number 2004 has a syntactic confidence
of 0 because there is no syntactic evidence that this number
refers to a bug.

3.2 Semantic Analysis
In the previous section, we inferred links that point from a trans-

action to a bug report. To validate a link(t, b) we take information
about its transactiont and check it against information about its
bug reportb. Based on the outcome we assign the link a semantic
level of confidence.

Initially, a link (t, b) has semantic confidence of 0 which is raised
by 1 whenever one of the following conditions is met:

• The bugb has been resolved asFIXED at least once.1

• The short description of the bug reportb is contained in the
log message of the transactiont.

• The author of the transactiont has been assigned to the bugb.2

• One or more of the files affected by the transactiont have
been attached to the bugb.

This list is not meant to be exhaustive. One could for example
check whether a change has been committed to the repository with-
in a small timeframe around the time when a bug has been closed.3

Consider the following examples from ECLIPSE, which all have
low confidence levels:

• Updated copyrights to 2004
The potential bug report number “2004” is marked asinvalid
and thus the semantic confidence of the link is zero.

• Fixed bug mentioned in bug 64129,
comment 6
The number “6” appears in the comment for a fix. The syn-
tactic confidence is 1, but the semantic confidence is 0.

• Support expression like (i)+= 3; and new
int[] {1}[0] + syntax error improvement
“1” and “3” are (mistakenly) interpreted as bug report num-
bers here. Since the bug reports 1 and 3 have been fixed, the
links both get a semantic confidence of 1.

1Notice that only 27% of all bugs in theMOZILLA project are
FIXED (47% forECLIPSE).
2For this check, we need a mapping between theCVS and
BUGZILLA user accountsof a project. ForECLIPSE, we mapped
the accounts of the most active developers manually; forMOZILLA ,
we derived a simple heuristic based on the observation that email
addresses were used as logins for bothCVS andBUGZILLA .
3Čubraníc and Murphy already applied this as a standalone tech-
nique to relate bugs to transactions in theirHIPIKAT tool [4].

• Fixed bug 53784: .class file missing
from jar file export.
The bug 53784 has not been closed, but resolved asLATER.
Its short description is: “Different results when running un-
der debugger” and author of the change has not been assigned
this bug. Thus the semantic confidence of the link is 0.

However, there exists a bug 53284 with the following short
description: “.class file missing from jar file export”. If the
comment had contained a correct number, the link would be
assigned the semantic confidence 3.

3.3 Results
We identified 25,317 links forECLIPSE, connecting 47% of fixed

bugs with 29% of transactions and 53,574 links forMOZILLA , con-
necting 55.30% of fixed bugs with 43.91% of transactions. Ta-
bles 1 and 2 summarize the distribution of links across different
classes of syntactic and semantic levels for both projects.

Based on a manual inspection of several randomly chosen links
(see Section 3.2 for some examples), we decided to use only those
links whose syntactic and semantic levels of confidence satisfy the fol-
lowing condition:

sem > 1 ∨ (sem = 1 ∧ syn > 0)

Notice that we disregard less than 10% of links for both projects.
Our heuristics can be ported to almost any project that contains

in the log messages links to a bug database. In some cases it may be
necessary to implement further or different conditions to raise the
confidence levels. However, the quality of the linking will always
depend on the investigated project.

4. LOCATING FIX-INDUCING CHANGES
A fix-inducing change is a change that later gets undone by a fix.

In this section, we show how to automatically locate fix-inducing
changes.

Suppose that a changeδ ∈ t, which is known to be a fix for bug
b (thus a link(t, b) must exist), transforms the revisionr1 = 1.17
of Foo.java into r2 = 1.18 (see Figure 2), i.e.,δ introduces new
lines tor2 or changes and removes lines ofr1. First, we detect the
linesL that have been touched byδ in r1. These are the locations of
the fix. To locate them, we use theCVSdiff command. In our exam-
ple, we assume that line 20 and 40 have been changed and line 60
has been deleted, thus the fix locations inr1 areL = {20; 40; 60}.

Next, we call theCVSannotatecommand for revisionr1 = 1.17
because this was the last revision without the fix; in contrast, revi-
sion r2 = 1.18 already contains the applied fix. The annotations
prepend each line with the most recent revision that touched this
line. Additionally, CVS includes the developer and the date in the
output. We show an excerpt of the annotated file in Figure 3. The
CVS annotatecommand is only reliable for text files, thus we ig-
nore all files that are marked as binary in the repository.

We scan the output and take for each linel ∈ L the revisionr0

that annotates linel. These revisions are candidates for fix-inducing
changes. We add(r0, r2) to the candidate setS, which is in our
exampleS = {(1.11, 1.18); (1.14, 1.18); (1.16, 1.18)}.

From this set, we remove pairs(ra, rb) for which it is not possi-
ble thatra induced the fixrb—for instance, becausera was com-
mitted to CVS after the bug fixed byrb has been reported. In
particular, we say that such a pair(ra, rb) is a suspectif ra was
committed after thelatestreported bug linked with the revisionrb.
Suspect changes could not contribute to the failure observed in the
bug report. In Figure 2 the pairs(1.14, 1.18) and(1.16, 1.18) are
examples of suspects.

We investigate suspects further on:

Bug 42233 was reported.

1.14 1.16
b() was
changed

c() was
changed

a() was
changed

1.11 1.18

Fixed Bug
42233

Changed:
a() b() c()

12-Feb-03 23-May-03 10-Jun-03

3-Apr-03

Figure 2: Locate fix-inducing changes for bug 42233

$ cvs annotate -r 1.17 Foo.java
. . .

19: 1.11 (john 12-Feb-03): public int a() {
20: 1.11 (john 12-Feb-03): return i/0;

. . .
39: 1.10 (mary 12-Jan-03): public int b() {
40: 1.14 (kate 23-May-03): return 42;

. . .
59: 1.10 (mary 17-Jan-03): public void c() {
60: 1.16 (mary 10-Jun-03): int i=0;

. . .

Figure 3: CVS annotations for Foo.java

• We say that a suspect(ra, rb) is apartial fix if ra is a fix.

Some bugs are fixed more than once. It may happen that one
of the previous attempts was fixed by a later one, or that the
bug is fixed across several transactions.

• We say that a suspect(ra, rb) is aweak suspectif there exists
a pair(ra, rc) which is not a suspect.

A weak suspect indicates a revision for which there exists
an alternative evidence of being fix-inducing, e.g, revision
1.14 may be a suspect for bug 42233 in Figure 2, but it still
can be a strong candidate for another bug.

• We say that a suspect(ra, rb) is ahard suspectif it is neither
a partial fix, nor a weak suspect.

A hard suspect indicates a revision for which there is no real
evidence of being fix-inducing.

We say that a revisionr is fix-inducing if there exists a pair
(r, rx) ∈ S which is not a hard suspect. We say that a transac-
tion t is fix-inducingif one of its revisions is fix-inducing.

5. FIRST RESULTS
We extracted fix-inducing changes for two large open-source

projects:ECLIPSEandMOZILLA . We considered all changes and
bugs until January 20, 2005; our database contains 78,954 trans-
actions forECLIPSEand 109,658 transactions forMOZILLA . They
account for 278,010 and 392,972 individual revisions for both proj-
ects, respectively.

5.1 Fix-Inducing Transactions are Large
In our first experiment, we examined if the span of the trans-

action (i.e. the number of files touched) correlates with the fact
that the transaction is fix-inducing. Table 3 presents the average
sizes of transactions forECLIPSE. The transactions are split into
four classes, depending on whether the transaction is a fix, fix-in-
ducing, both, or none. For instance, the top-left cell means that

syn / sem 0 1 2 3 4 total

0 270 (1%) 1,287 (5%) 2,057 (8%) 1,439 (6%) 2 (0%) 5,055 (20%)
1 324 (1%) 4,152 (16%) 9,265 (37%) 1,581 (6%) 5 (0%) 15,327 (61%)
2 110 (0%) 1,922 (8%) 2,421 (10%) 482 (2%) 0 (0%) 4,935 (19%)

total 704 (3%) 7,361 (29%) 13,743 (54%) 3,502 (14%) 7 (0%) 25,317 (100%)

Table 1: Distribution of links accross different classes of syntactic and semantic confidence levels in ECLIPSE

syn / sem 0 1 2 3 4 total

0 560 (1%) 2,899 (5%) 4,281 (8%) 639 (1%) 8 (0%) 8,387 (16%)
1 1,211 (2%) 9,059 (17%) 16,336 (30%) 2,241 (4%) 22 (0%) 28,669 (54%)
2 478 (1%) 5,250 (10%) 9,133 (17%) 1,645 (3%) 12 (0%) 16,518 (31%)

total 2,249 (4%) 17,208 (32%) 29,750 (55%) 4,525 (8%) 42 (0%) 53,574 (100%)

Table 2: Distribution of links accross different classes of syntactic and semantic confidence levels in MOZILLA

fix-inducing ¬fix-inducing all

fix 3.82±26.32 2.08± 7.42 2.73± 7.87
¬ fix 11.30±63.02 2.77±14.94 3.81±26.32

all 7.49±44.37 2.61±13.66 3.52±22.81

Table 3: Average sizes of fix and fix-inducing transactions for
ECLIPSE

fix-inducing ¬fix-inducing all

fix 5.79±37.37 2.12± 9.74 4.39±30.05
¬ fix 4.61±30.59 1.91±10.30 3.05±21.39

all 5.19±34.12 1.97±10.13 3.58±25.23

Table 4: Average sizes of fix and fix-inducing transactions for
MOZILLA

the average size of transactions which are fixesand induce later on
a fix is 3.82 (with a standard deviation “±” of 26.32).

Additionally, Table 3 shows that fix-inducing transactions are
roughly three times larger than non fix-inducing transactions. Ta-
ble 4 presents the same breakdown forMOZILLA which shows
a similar trend.

Such data can be automatically retrieved from all projects that
supply both a version archive and a bug database. It is especially
worthy when deciding where to spend efforts inquality assurance.
If we were in charge of theECLIPSEproject, for instance, we would
take care that large extensions are well reviewed and tested, as these
have a high potential for inducing later fixes.

5.2 Don’t Program on Fridays
We broke down changes by the day of the week when they were

applied. We distinguished betweenbugsas indicated by fix-inducing
changes, andfixesas detected by links to the bug database. Bugs
may be also fixes, we refer to such changes asfix-inducing fixes;
they have been previously been used for visualization by Baker and
Eick [1]. Finally, there are changes that are no bugs and no fixes.

P (fix) + P (bug)− P (bug∩ fix) + P (¬bug∩ ¬fix) = 100%

We measured the frequencies of the categories mentioned above.
Table 5 presents the results forECLIPSE. The likelihoodP (bug)
that a change will induce a fix is highest on Friday. The same holds

Day of Week

% of revisions Mon Tue Wed Thu Fri Sat Sun avg

P (fix) 18.4 20.9 20.0 22.3 24.0 14.7 16.9 20.8
P (bug) 11.3 10.4 11.1 12.1 12.2 11.7 11.6 11.4
P (bug∩ fix) 4.6 4.8 4.6 5.2 5.6 4.5 4.5 4.9
P (¬bug∩ ¬fix) 74.9 73.5 73.5 70.8 63.4 78.1 76.0 72.7

P (bug| fix) 25.1 22.9 23.3 23.5 23.2 30.3 26.4 23.7
P (bug| ¬fix) 8.2 7.1 8.1 8.8 8.7 8.4 8.6 8.1

Table 5: Distribution of fixes and fix-inducing changes across
day of week in ECLIPSE

Day of Week

% of revisions Mon Tue Wed Thu Fri Sat Sun avg

P (fix) 42.5 46.5 49.7 45.9 48.4 50.2 61.1 48.5
P (bug) 39.1 44.1 41.2 40.8 46.2 44.9 26.4 41.5
P (bug∩ fix) 19.4 23.6 22.8 21.6 26.9 19.6 13.2 21.9
P (¬bug∩ ¬fix) 37.8 33.0 31.9 34.9 32.3 24.5 25.7 31.9

P (bug| fix) 45.7 50.8 45.8 47.1 55.6 39.1 21.6 45.2
P (bug| ¬fix) 34.1 38.3 36.7 35.5 37.3 50.6 33.9 38.1

Table 6: Distribution of fixes and fix-inducing changes across
day of week in MOZILLA

for MOZILLA (see Table 6). Friday is the day where mostECLIPSE
developers do fixes, forMOZILLA this is Sunday.

We used fix-inducing fixes to investigate whether non-fixes or
fixes are more likely to be fix-inducing. Table 5 shows that for
ECLIPSE, the average likelihood of introducing a fix-inducing change
is almost three times higher for fixes, indicated byP (bug| fix), than
for regular changes, indicated byP (bug| ¬fix). This does not hold
for MOZILLA (see Table 6). The risk that a fix will be later undone
is highest forECLIPSEon Saturdays, and forMOZILLA on Fridays.

Almost every second change inMOZILLA is a fix and two out
of five changes are fix-inducing. In the future we will investigate
MOZILLA to find out what makesMOZILLA risky.

Besides the day of week, one can easily determine further prop-
erties of a change that correlate with inducing fixes—such as the
development group, or the involved modules. Again, all this data is
automatically retrieved for arbitrary projects.

6. RELATED WORK
To our knowledge, this is the first work that shows how to locate

fix-inducing changes in version archives. However, fix-inducing
changes have been used previously under the namedependencies
by Purushothaman and Perry [9] to measure the likelihood that
small changes introduce errors. Baker and Eick proposed a similar
concept offix-on-fix changes[1]. Fix-on-fix changes are less gen-
eral than fix-inducing changes because they require both changes
to be fixes.

In order to locate fix-inducing changes, we need first toiden-
tify fixes in the version archive. Mockus and Votta developed a
technique that identifies reasons for changes (e.g., fixes) in the log
message of a transaction [7]. In our approach, we refine the tech-
niques ofČubraníc and Murphy [4] and of Fischer, Pinzger, and
Gall [6, 5], who identified references to bug databases in log mes-
sages and used these references to infer links fromCVS archives to
BUGZILLA databases.

Čubraníc and Murphy additionally inferred links in the other di-
rection, fromBUGZILLA databases toCVSarchives, by relating bug
activities to changes. This has the advantage to identify fixes that
are not referenced in log messages. For more details about this
approach, we refer to [3].

Rather than searching for fix-inducing changes, one can also di-
rectly determinefailure-inducing changes,where the presence of
the failure is determined by an automated test. This was explored
by Zeller, applying Delta Debugging on multiple versions [11].

7. CONCLUSION
As soon as a project has a bug database as well as a version

archive, we can link the two to identify those changes that caused
a problem. Such fix-inducing changes have a wide range of appli-
cations. In this paper, we examined the properties of fix-inducing
changes in theECLIPSEandMOZILLA projects and found, among
others, that the larger a change, the more likely it is to induce a
fix; checking for other correlated properties is straight-forward. We
also found that in theECLIPSEproject, fixes are three times as likely
to induce a later change than ordinary enhancements. Such findings
can be generated automatically for arbitrary projects.

Besides the applications listed in Section 1, our future work will
focus on the following topics:

Which properties are correlated with inducing fixes? These can
be properties of the change itself, but also properties or met-
rics of the object being changed. This is a wide area with
several future applications.

How do we disambiguate earlier changes?If a fixed location has
been changed multiple times in the past, which of these chang-
es should we consider as inducing the fix? We are currently
evaluating a number of disambiguation techniques.

How do we present the results?Simply knowing which changes
are fix-inducing is one thing, but we also need to present our
findings. We are currently exploring visualization techniques
to help managers as well as programmers.

For ongoing information on the project, see

http://www.st.cs.uni-sb.de/softevo/

Acknowledgments.
This project is funded by the Deutsche Forschungsgemeinschaft,
grant Ze 509/1-1. Christian Lindig and the anonymous MSR re-
viewers provided valuable comments on earlier revisions of this
paper.

8. REFERENCES
[1] M. J. Baker and S. G. Eick. Visualizing software systems. In

Proceedings of the 16th International Conference on
Software Engineering, pages 59–70. IEEE Computer Society
Press, May 1994.

[2] N. Barnes. Bugzilla database schema. Technical report,
Ravenbrook Limited, July 2004.
http://www.ravenbrook.com/project/p4dti/master/design/
bugzilla-schema/.

[3] D. Čubraníc. Project History as a Group Memory: Learning
From the Past. PhD thesis, University of British Columbia,
Canada, Dec. 2004.

[4] D. Čubraníc and G. C. Murphy. Hipikat: Recommending
pertinent software development artifacts. InProc. 25th
International Conference on Software Engineering (ICSE),
pages 408–418, Portland, Oregon, May 2003.

[5] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating
bug report data for feature tracking. InProc. 10th Working
Conference on Reverse Engineering (WCRE 2003), Victoria,
British Columbia, Canada, Nov. 2003. IEEE.

[6] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking
systems. InProc. International Conference on Software
Maintenance (ICSM 2003), Amsterdam, Netherlands, Sept.
2003. IEEE.

[7] A. Mockus and L. G. Votta. Identifying reasons for software
changes using historic databases. InProc. International
Conference on Software Maintenance (ICSM 2000), pages
120–130, San Jose, California, USA, Oct. 2000. IEEE.

[8] Proc. International Workshop on Mining Software
Repositories (MSR 2004), Edinburgh, Scotland, UK, May
2004.

[9] R. Purushothaman and D. E. Perry. Towards understanding
the rhetoric of small changes. In MSR 2004 [8], pages 90–94.

[10] The Bugzilla Team.The Bugzilla Guide - 2.18 Release, Jan.
2005. http://www.bugzilla.org/docs/2.18/html/.

[11] A. Zeller. Yesterday, my program worked. Today, it does not.
Why? InProceedings of Joint 7th European Software
Engineering Conference (ESEC) and 7th ACM SIGSOFT
International Symposium on the Foundations of Software
Engineering (FSE-7), volume LNCS 1687. Springer Verlag,
1999.

[12] T. Zimmermann and P. Weißgerber. Preprocessing CVS data
for fine-grained analysis. In MSR 2004 [8], pages 2–6.

http://www.st.cs.uni-sb.de/softevo/

	Introduction
	What's in our Archives?
	Identifying Fixes
	Syntactic Analysis
	Semantic Analysis
	Results

	Locating Fix-Inducing Changes
	First Results
	Fix-Inducing Transactions are Large
	Don't Program on Fridays

	Related Work
	Conclusion
	References

