When Do Changes Induce Fixes?

(On Fridays.)

Jacek Sliwerski Thomas Zimmermann Andreas Zeller
International Max Planck Research School Department of Computer Science
Max Planck Institute for Computer Science Saarland University
Saarbriicken, Germany Saarbriicken, Germany
sliwers@mpi-sb.mpg.de {tz, zellery@acm.org
ABSTRACT Which change properties may lead to problems?We can inves-

tigate which properties of a change correlate with inducing
fixes, for instance, changes made on a specific day or by a
specific group of developers.

As a software system evolves, programmers make changes that
sometimes cause problems. We analgxs archives forfix-in-
ducing changes-changes that lead to problems, indicated by fixes.
We show how to automatically locate fix-inducing changes by link- - How error-prone is my product? We can assign anetric to the

ing a version archive (such &vs) to a bug database (such as product—on average, how likely is it that a change induces a
BUGZILLA). In a first investigation of th&10ZILLA andECLIPSE later fix?

history, it turns out that fix-inducing changes show distinct patterns _) _
with respect to their size and the day of week they were applied. How can [filter out problematic changes? When extracting the
architecture via co-changes from a version archive, there is

Categories and Subject Descriptors no need to consider fix-inducing changes, as they get undone
later.

D.2.7 [Software Engineering: Distribution, Maintenance, and _) _

Enhancement-eerrections, version contrpD.2.8 [Metrics]: Com- Can I improve guidance along related changes2Vhen using co-

plexity measures changes to guide programmers along related changes, we

would like to avoid fix-inducing changes in our suggestions.

General Terms This paper describes our first experiences with fix-inducing chang-

Management, Measurement es. We discuss how to extract data from version and bug archives
(Sectior?), and how we link bug reports to changes (Seflion 3).
1. INTRODUCTION In Sectior{ %, we describe how to identify and locate fix-inducing

changes. Sectidn 5 shows the results of our investigation of the
OZILLA andECLIPSE It turns out that fix-inducing changes show

istinct patterns with respect to their size and the day of week they
were applied. Sectiof$ 6 ahl 7 close with related and future work.

2. WHAT'S IN OUR ARCHIVES?

When we mine software histories, we frequently do so in order
to detect patterns that help us understanding the current state ofy
the system. Unfortunately, not all changes in the past have been
beneficial. Any bug database will show a significant fraction of
problems that are reported some time after some change has bee

made.
In this work, we attempt to identify thosghanges that caused For our analysis we need all changes and all fixes of a project.
problems The basic idea is as follows: We get this data fronversion archivedike CvS andbug tracking

systemdike BUGZILLA.
A cvsarchive contains information about changes: Who changed
what, when, why, and how? ghange’ transforms a revision; to
2. We extract the associated change from the version archive, & revisionr2 by inserting, deleting, or changing lines. We will later
thus giving us théocation of the fix. investigate cha.nges. on the line level. .Several chanages ., 6,
form atransactiont if they were submitted tevs by the same
3. We determine thearlier changeat this location that was ap- developer, at the same time, and with the same log message, i.e.,
plied before the bug was reported. they have been made with the same intention, e.g. to fix a bug or to
introduce a new feature. AGVS records only individual changes
to files, we group these to transactions witkliding time window
approach[[12].
A Cvs archive also lacks information about tipeirposeof a
change: Did it introduce a new feature or did it fix a bug? Although
it is possible to identify such reasons solely with log messades [7],
we combine bothCvSs and BUGZILLA for this step because this
Permission to make digital or hard copies of all or part of this work for increases the precision of our approach.
personal or classroom use is granted without fee provided that copies are A BUGZILLA database collects bug reports that are submitted by
not made or distributed for profit or commercial advantage and that copies areporterwith ashort descriptiorand asummary After a bug has
bear this notice and the full citation on the first page. To copy otherwise, to peen submitted, it is discussed by developers and users who pro-

republish, to post on servers or to redistribute to lists, requires prior specific vide additionalcommentsind may creatattachments After the
permission and/or a fee.

MSR’05, May 17, 2005, Saint Louis, Missouri, USA
Copyright 2005 ACM 1-59593-123-6/05/000555.00.

1. We start with a bug report in the bug database, indicating a
fixed problem.

This earlier change is the one tltausedhe later fix. We call such
a changdix-inducing.

What can one do with fix-inducing changes? Here are some po-
tential applications:

Bug 42233 Al
JUnit code generated for
BugDB TestSuite is wrong [JUnit]
Link Bugs

with Changes

&

Fixed Bug
42233

A

1.18

[+

Change History

>

117 1.19

Figure 1: Link transactions to bug reports

bug has been confirmed, itdssignedo a developer who is respon-
sible to fix the bug and finally commits her changes to the version
control archive.BUGZILLA also captures thstatusof a bug, e.g.,
UNCONFIRMEINEWASSIGNED RESOLVEDor CLOSEDand

the resolution e.g.,FIXED, DUPLICATE or INVALID . Details

on the lifecycle of a bug can be found in tBBGZILLA documen-
tation [10, Sections 6.3 and 6.4].

For our analysis, we mirror bothvs andBUGZILLA in a local
database. Our mirroing techniques fovs are described irf [12].
To mirror aBUGZILLA database, we use ML export feature.
Additionally, we import attachments and activities directly from the
web interface o0BUGZILLA . Our localBUGZILLA database schema
is similar to the one described in|[2].

3. IDENTIFYING FIXES

In order to locate fix-inducing changes, we first need to know
whether a change is a fix. A common practice among developers is
to include abug report numbein the comment whenever they fix a
defect associated with iCubran¢ and Murphy|[4] as well as Fis-
cher, Pinzger, and Gall[[5] 6] exploited this practice to link changes
with bugs. Figur€]l sketches the basic idea of this approach.

In our work, we refine these techniques by assigning everytirik
between a transactiarand a bug two independent levels of con-
fidence: asyntacticlevel, inferring links from aCvs log to a bug
report, and asemanticlevel, validating a link via the bug report
data. These levels are later used to decide which links shall be
taken into account in our experiments.

3.1 Syntactic Analysis

In order to finds links to the bug database, we split every log
message into a stream of tokens. A token is one of the following
items:

e abug numberif it matches one of the following regular ex-
pressions (given ifRLEX syntax):

— bug[# \t]*[0-9]+ ,

— pr[# *[0-9]+ :

— show_bug\.cgi\?id=[0-9]+
— \[[0-9]+]

, or

e aplain numberif it is a string of digits[0-9]+

e akeyword if it matches the following regular expression:
fix(e[ds])?|bugs?|defects?|patch

e aword, if it is a string of alphanumeric characters

Every number is a potential link to a bug. For each link, we initially
assign a syntactic confidensgnof zero and raise the confidence
by one for each of the following conditions that is met:

1. The number is Aug number

2. The log message containkeyword
or the log message contains omlain or bug numbers

Thus the syntactic confidensgnis always an integer number be-
tween 0 and 2. As an example, consider the following log mes-

Sagfsl':ixed bug 53784: .class file missing

from jar file export

The link to the bug number 53784 gets a syntactic confidence
of 2 because it matches the regular expressiobfny and
contains the keywortixed

52264, 51529
The links to bugs 52264 and 51529 have syntactic confi-
dence 1 because the log message contains only numbers.

Updated copyrights to 2004

The link to the bug number 2004 has a syntactic confidence
of 0 because there is no syntactic evidence that this number
refers to a bug.

3.2 Semantic Analysis

In the previous section, we inferred links that point from a trans-
action to a bug report. To validate a lifk b) we take information
about its transaction and check it against information about its
bug reporth. Based on the outcome we assign the link a semantic
level of confidence.

Initially, a link (¢, b) has semantic confidence of 0 which is raised
by 1 whenever one of the following conditions is met:

The bugb has been resolved &XED at least oncE].

The short description of the bug repéris contained in the
log message of the transaction

The author of the transactieas been assigned to the b

One or more of the files affected by the transactidmave
been attached to the big

This list is not meant to be exhaustive. One could for example
check whether a change has been committed to the repository with-
in a small timeframe around the time when a bug has been gfpsed.

Consider the following examples from ECLIPSE, which all have
low confidence levels:

e Updated copyrights to 2004
The potential bug report number “2004” is markedraslid
and thus the semantic confidence of the link is zero.

e Fixed bug mentioned in bug 64129,
comment 6
The number “6” appears in the comment for a fix. The syn-
tactic confidence is 1, but the semantic confidence is 0.

Support expression like (i)+= 3; and new

int[] {1}[0] + syntax error improvement

“1” and “3” are (mistakenly) interpreted as bug report num-
bers here. Since the bug reports 1 and 3 have been fixed, the
links both get a semantic confidence of 1.

INotice that only 27% of all bugs in th®IOZILLA project are
FIXED (47% forECLIPSB.

2For this check, we need a mapping between s and
BUGZILLA user account®f a project. FOECLIPSE we mapped

the accounts of the most active developers manuallyiaziLLA ,

we derived a simple heuristic based on the observation that email
addresses were used as logins for bp#s andBUGZILLA.

3Cubrant and Murphy already applied this as a standalone tech-
nigue to relate bugs to transactions in th&iPIKAT tool [4].

e Fixed bug 53784: .class file missing FS-Apr-OS
from jar file export. = Bug 42233 was reported.
The bug 53784 has not been closed, but resolvad\TER
Its short description is: “Different results when running un-
der debugger” and author of the change has not been assignec
this bug. Thus the semantic confidence of the link is 0.

However, there exists a bug 53284 with the following short

&

c() was
I changed I 42233

&l

a() was b() was Fixed Bug

>

description: “.class file missing from jar file export”. If the changed changed |/
comment had contained a correct number, the link would be 12-Feb-03 23-May-03 10-Jun-03 Changed:
assigned the semantic confidence 3. a0 b0 <O
3.3 Results Figure 2: Locate fix-inducing changes for bug 42233
We identified 25,317 links fOECLIPSE connecting 47% of fixed
bugs with 29% of transactions and 53,574 linksN@ZILLA , con- $ cvs annotate -r 1.17 Foo.java

necting 55.30% of fixed bugs with 43.91% of transactions. Ta-
bles[1 and 2 summarize the distribution of links across different 19:1.11 (john 12-Feb-03): public int a() {
classes of syntactic and semantic levels for both projects. 20:1.11 (john 12-Feb-03): return i/0;
Based on a manual inspection of several randomly chosen links
(see Sectiop 3]2 for some examples), we decided to use only those 39:1.10 (mary 12-Jan-03): public int b() {
links whose syntactic and semantic levels of confidence satisfy the fol40: 1.14 (kate 23-May-03): return 42;
lowing condition: ...
_ 59:1.10 (mary 17-Jan-03): public void c() {
sem > 1V (sem =1 A syn > 0) 60:1.16 (mary 10-Jun-03): int i=0;
Notice that we disregard less than 10% of links for both projects. .
Our heuristics can be ported to almost any project that contains
in the log messages links to a bug database. In some cases it may be Figure 3: CVS annotations for Foo.java
necessary to implement further or different conditions to raise the
confidence levels. However, the quality of the linking will always

depend on the investigated project. e We say that a suspett.,) is apartial fixif r, is a fix.
Some bugs are fixed more than once. It may happen that one
4. LOCATING FIX-INDUCING CHANGES of the previous attempts was fixed by a later one, or that the
A fix-inducing change is a change that later gets undone by a fix. bug is fixed across several transactions.
In this section, we show how to automatically locate fix-inducing e We say that a suspe@t,,) is aweak suspedf there exists
changes. a pair(rq, r) which is not a suspect.
Suppose that a changec ¢, which is known to be a fix for bug A weak suspect indicates a revision for which there exists

b (thus a link(t, b) must exist), transforms the revision = 1.17 an alternative evidence of being fix-inducing, e.g, revision

of Foojava intory = 1.18 (see Figurg]), i.ed introduces new 1.14 may be a suspect for bug 42233 in Figife 2, but it still

I!nes tor, or changes and removes linesref First, we dete_ct the can be a strong candidate for another bug.

lines L that have been touched byn r,. These are the locations of) . .

the fix. To locate them, we use tBwS diff command. In our exam- o We say that a suspept,,) is ahard suspectf itis neither

ple, we assume that line 20 and 40 have been changed and line 60 & Partial fix, nor a weak suspect.

has been deleted, thus the fix locations.irare L = {20; 40; 60}. A hard suspect indicates a revision for which there is no real
Next, we call thecvs annotatecommand for revisiom; = 1.17 evidence of being fix-inducing.

because this was the last revision without the fix; in contrast, revi-

sionry = 1.18 already contains the applied fix. The annotations

prepend each line with the most recent revision that touched this

line. Additionally, Cvsincludes the developer and the date in the

output. We show an excerpt of the annotated file in Figlire 3. The

CVS annotatecommand is only reliable for text files, th%qjs we ig- 5. FIRST RESULTS

nore all files that are marked as binary in the repository. We extracted fix-inducing changes for two large open-source
We scan the output and take for each line L the revisionr projects: ECLIPSEandMOZILLA . We considered all changes and

that annotates link These revisions are candidates for fix-inducing bugs until January 20, 2005; our database contains 78,954 trans-

changes. We ad(,) to the candidate sef, which is in our actions forECLIPSEand 109,658 transactions fB1OZILLA . They

exampleS = {(1.11,1.18); (1.14,1.18); (1.16,1.18)}. account for 278,010 and 392,972 individual revisions for both proj-
From this set, we remove paifs,,) for which it is not possi- ects, respectively.

ble thatr, induced the fix,—for instance, becausg, was com- . . .

mitted to CVS after the bug fixed byr, has been reported. In 9-1 FiX-Inducing Transactions are Large

particular, we say that such a péit,,) is a suspectf r, was In our first experiment, we examined if the span of the trans-

committed after théatestreported bug linked with the revision. action (i.e. the number of files touched) correlates with the fact

Suspect changes could not contribute to the failure observed in thethat the transaction is fix-inducing. Taljle 3 presents the average

bug report. In FigurE]Z the paifd.14,1.18) and(1.16,1.18) are sizes of transactions fa&CLIPSE The transactions are split into

examples of suspects. four classes, depending on whether the transaction is a fix, fix-in-
We investigate suspects further on: ducing, both, or none. For instance, the top-left cell means that

We say that a revisiom is fix-inducingif there exists a pair
(r,r2) € S which is not a hard suspect. We say that a transac-
tion ¢ is fix-inducingif one of its revisions is fix-inducing.

syn/sem 0 1 2 3 4 total

0 270 (1%) 1,287 (5%) 2,057 (8%) 1,439 (6%) 2(0%) 5,055 (20%)
1 324 (1%) 4,152 (16%) 9,265 (37%) 1,581 (6%) 5(0%) 15,327 (61%)
2 110 (0%) 1,922 (8%) 2,421 (10%) 482 (2%) 0(0%) 4,935 (19%)

total 704 (3%) 7,361 (29%) 13,743 (54%) 3,502 (14%) 7 (0%) 25,317 (100%)

Table 1: Distribution of links accross different classes of syntactic and semantic confidence levels in ECLIPSE

syn/sem 0 1 2 3 4 total
0 560 (1%) 2,899 (5%) 4,281 (8%) 639 (1%) 8(0%) 8,387 (16%)
1 1,211 (2%) 9,059 (17%) 16,336 (30%) 2,241 (4%) 22 (0%) 28,669 (54%)
2 478 (1%) 5,250 (10%) 9,133 (17%) 1,645 (3%) 12(0%) 16,518 (31%)

total 2,249 (4%) 17,208 (32%) 29,750 (55%) 4,525 (8%) 42 (0%) 53,574 (100%)

Table 2: Distribution of links accross different classes of syntactic and semantic confidence levels in MOZILLA

fix-inducing —fix-inducing all Day of Week
fix 3.824-26.32 2.08 7.42 2.73 7.87 % of revisions Mon Tue Wed Thu Fri Sat Sun avg
—fix 11.30863.02 2721494 3.8126.32 P(fix) 18.4 20.9 200 22.3 240 147 16.9 20.8
all 7.49+44.37 2.6%13.66 3.52£22.81 P(bug) 11.3 104 111 121 122 11.7 116 114
P(bugn fix) 46 48 46 52 56 45 45 49
Table 3: Average sizes of fix and fix-inducing transactions for P(-bugn —fix) 74.9 73.5 73.5 70.8 63.4 78.1 76.0 72.7
ECLIPSE P(bugl fix) 25.1 22.9 23.3 235 23.2 30.3 26.4 23.7
P(bug| —fix) 82 71 81 88 87 84 86 81
fix-inducing —fix-inducing all
fix 5.79+37.37 212 9.74 4.39-30.05 Table 5: Distribution of fixes and fix-inducing changes across
-fix 4.614+30.59 1.9%10.30 3.05:21.39 day of week in ECLIPSE
all 5.19+34.12 1.9410.13 3.5825.23 Day of Week
Table 4: Average sizes of fix and fix-inducing transactions for % of revisions Mon Tue Wed Thu Fri Sat Sun avg
MOZILLA P(fix) 425 465 49.7 459 484 50.2 61.1 485

bug) 39.1 441 41.2 40.8 46.2 449 26.4 415

(
P(
. . . S P(bugn fix) 19.4 236 22.8 21.6 269 19.6 13.2 21.9
the average size of transactions which are fexgdinduce later on)
a fix is 3.82 (with a standard deviatiog" of 26.32). P(-bugn —fix) 37.8 33.0 31.9 349 32.3 245 257 319
Additionally, Table[3 shows that fix-inducing transactions are P(bug] fix) 45.7 50.8 45.8 47.1 55.6 39.1 21.6 45.2
roughly three times larger than non fix-inducing transactions. Ta- P(bug| —fix) 34.1 38.3 36.7 35.5 37.3 50.6 33.9 38.1
ble[4 presents the same breakdown f@dZILLA which shows
a similar trend. Table 6: Distribution of fixes and fix-inducing changes across
Such data can be automatically retrieved from all projects that day of week in MOZILLA
supply both a version archive and a bug database. It is especially
worthy when deciding where to spend effortgumality assurance.
If we were in charge of thECLIPSEproject, for instance, we would 5 MmoOZILLA (see Tablgp). Friday is the day where mBSLIPSE
take care that large extensions are well reviewed and tested, as theSSevelopers do fixes, fMOZILLA this is Sunday.

have a high potential for inducing later fixes. We used fix-inducing fixes to investigate whether non-fixes or
) ; fixes are more likely to be fix-inducing. Tadl¢ 5 shows that for
5.2 Don't Program on Frldays ECLIPSE the average likelihood of introducing a fix-inducing change

We broke down changes by the day of the week when they were is ajmost three times higher for fixes, indicated®gbug| fix), than
applied. We distinguished betwebugsas indicated by fix-inducing for regular changes, indicated B}(bug| —fix). This does not hold
changes, anfixesas detected by links to the bug database. Bugs for MozILLA (see TablE]6). The risk that a fix will be later undone
may be also fixes, we refer to such change$amducing fixes is highest folECLIPSEon Saturdays, and fatOZILLA on Fridays.
they have been previously been used for visualization by Baker and Ajmost every second change MOZILLA is a fix and two out
Eick [1]. Finally, there are changes that are no bugs and no fixes. of five changes are fix-inducing. In the future we will investigate

: _) . _fix) — MOZILLA to find out what makeBIOZILLA risky.

P(fix) + P(bug) — P(bugn fix) + P(~bugn ~fix) = 100% Besides the day of week, one can easily determine further prop-

We measured the frequencies of the categories mentioned aboveerties of a change that correlate with inducing fixes—such as the
Table[$ presents the results fB€LIPSE The likelihood P(bug) development group, or the involved modules. Again, all this data is
that a change will induce a fix is highest on Friday. The same holds automatically retrieved for arbitrary projects.

6. RELATED WORK 8. REFERENCES

To our knowledge, this is the first work that shows how to locate [1] M. J. Baker and S. G. Eick. Visualizing software systems. In
fix-inducing changes in version archives. However, fix-inducing Proceedings of the 16th International Conference on
changes have been used previously under the rd@pendencies Software Engineeringpages 59-70. IEEE Computer Society
by Purushothaman and Perly [9] to measure the likelihood that Press, May 1994.
small changes introduce errors. Baker and Eick proposed a similar [2] N. Barnes. Bugzilla database schema. Technical report,

concept offix-on-fix change§l]. Fix-on-fix changes are less gen- Ravenbrook Limited, July 2004,
eral than fix-inducing changes because they require both changes http://www.ravenbrook.com/project/p4dti/master/design/
to be fixes. bugzilla-schema/.

In order to locate fix-inducing changes, we need firstden- [3] D. Cubrank. Project History as a Group Memory: Learning
tify fixesin the version archive. Mockus and Votta developed a From the PastPhD thesis, University of British Columbia,

technique that identifies reasons for changes (e.qg., fixes) in the log Canada, Dec. 2004.
message of a transactidr] [7]. In our approach, we refine the tech- [4] D. Cubrant and G. C. Murphy. Hipikat: Recommending

niques ofCubrant and Murphy|[4] and of Fischer, Pinzger, and pertinent software development artifacts Firoc. 25th

Gall [6,/5], who identified references_to bug databases in log mes- International Conference on Software Engineering (IGSE)
sages and éjste(éthese references to infer links Gwdarchives to pages 408418, Portland, Oregon, May 2003.

BUGZILLA databases. [5] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating

Cubrant and Murphy additionally inferred links in the other di- bug report data for feature tracking. Pioc. 10th Working
rection, fromBUGZILLA databases tovVSarchives, by relating bug Conference on Reverse Engineering (WCRE 20@8joria
activities to changes. This has the advantage to identify fixes that British Columbia. Canada. Nov. 2003. IEEE '
are not referenced in log messages. For more details about this ' ') ' ;
approach, we refer t0 [3].

Rather than searching for fix-inducing changes, one can also di-
rectly determinefailure-inducing changesyhere the presence of
the failure is determined by an automated test. This was explored
by Zeller, applying Delta Debugging on multiple versions| [11].

[6] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking
systems. IrProc. International Conference on Software
Maintenance (ICSM 2003Amsterdam, Netherlands, Sept.
2003. IEEE.

[7]1 A. Mockus and L. G. Votta. Identifying reasons for software
changes using historic databasesPtac. International

7. CONCLUSION Conference on Software Maintenance (ICSM 20payes

As soon as a project has a bug database as well as a version 120-130, San Jose, California, USA, Oct. 2000. IEEE.
archive, we can link the two to identify those changes that caused [8] Proc. International Workshop on Mining Software

a problem. Such fix-inducing changes have a wide range of appli- Repositories (MSR 2004Fdinburgh, Scotland, UK, May
cations. In this paper, we examined the properties of fix-inducing 2004.
changes in thECLIPSEandMOZILLA projects and found, among

! o ' [9] R. Purushothaman and D. E. Perry. Towards understanding
others, that the larger a change, the more likely it is to induce a the rhetoric of small changes. In MSR 2004 [8], pages 90-94.
fix; checking for other correlated properties is straight-forward. We [10] The Bugzilla TeamThe Bugzilla Guide - 2.18 Releaskan

also found that in thECLIPSEproject, fixes are three times as likely 2005. http://www.bugzilla.org/docs/2 18/Htm|/ '

to induce a later change than ordinary enhancements. Such finding .
: . - 11] A. Zeller. Yesterday, my program worked. Today, it does not.
can be generated automatically for arbitrary projects. i] Why? InProceedin)és 03; goir?t 7th European Sof)tlware

Besides the appl_lcatlon_s I|§ted in Secfién 1, our future work will Engineering Conference (ESEC) and 7th ACM SIGSOFT
focus on the following topics: . h)
International Symposium on the Foundations of Software

Which properties are correlated with inducing fixes? These can Engineering (FSE-7)volume LNCS 1687. Springer Verlag,
be properties of the change itself, but also properties or met- 1999.
rics of the object being changed. This is a wide area with [12] T. Zimmermann and P. WeiRgerber. Preprocessing CVS data
several future applications. for fine-grained analysis. In MSR 2004 [8], pages 2-6.

How do we disambiguate earlier changes?f a fixed location has
been changed multiple times in the past, which of these chang-
es should we consider as inducing the fix? We are currently
evaluating a number of disambiguation techniques.

How do we present the results?Simply knowing which changes
are fix-inducing is one thing, but we also need to present our
findings. We are currently exploring visualization techniques
to help managers as well as programmers.

For ongoing information on the project, see

http://www.st.cs.uni-sb.de/softevo/

Acknowledgments.

This project is funded by the Deutsche Forschungsgemeinschatft,
grant Ze 509/1-1. Christian Lindig and the anonymous MSR re-

viewers provided valuable comments on earlier revisions of this

paper.

http://www.st.cs.uni-sb.de/softevo/

	Introduction
	What's in our Archives?
	Identifying Fixes
	Syntactic Analysis
	Semantic Analysis
	Results

	Locating Fix-Inducing Changes
	First Results
	Fix-Inducing Transactions are Large
	Don't Program on Fridays

	Related Work
	Conclusion
	References

