How History Justifies System Architecture (or not)

Thomas Zimmermann Stephan Diehl Andreas Zeller
Computer Science, Saarland University
E-mail: zimmerth@st.cs.uni-sb.de - diehl@acm.org - zeller@acm.org
Abstract schema was changed, thelquery() method was altered,

too”. The more frequently entities have been changed to-
The revision history of a software system conveys impor-gether, the stronger they are coupled.
tant information about how and why the system evolved in As a simple example, consider Figure 1, visualizing the
time. The revision history can also tell us which parts of the evolutionary coupling of some program entities in iU
system are coupled by common changes: “Whenever theCompiler Collection GCC), as obtained from théCC CVS
database schema was changed, g¢higuery() method was history using ourROSE prototype. We see two filegbx-
altered, too.” This “evolutionary” coupling can be com- out.c andsdbout.c (square rectangles) that issue debugging
pared with the coupling as imposed by the system architec-symbols inDBX andSDB format, respectively.
ture; differences indicate anomalies which may be subject Both files contain some program entities, depicted as
to restructuring. vertices—variables such asdbx_debug_hooks in dbxout.c
Our ROSEprototype analyzes fine-grained coupling be- and methodssuch assdb_global_decl(). The numbers in
tween software entities as indicated by common changesbrackets show how frequently the entity has been changed
It turns out that common changes are a good indicator over the revision history o6CG—xcoff_debug_hooks, for
for modularity, that evolutionary coupling should be de- instance, has been changed ten times.
termined between syntactical entities (rather than files or ~ Two entities are related bgdgesf they ever have been
modules), and that common changes can indicate couplingchanged at the same time—that is, they emepledby a
between software entities and non-program artifacts that is common change in theCC CvSarchive. The number as-
unavailable to the analysis of a single version. sociated with each edge indicatesw oftenthe related en-
tities have been changed together. So, we can see that

_ e In all 12 cases wherdbx_debug_hooks was changed,
1. Introduction so wassdb_debug_hooks, and vice versa.

e In all 4 cases whersdb_global_decl() was changed, so

In a software product, two entities aceupledwhenever were the othedebug_hooks variables—in both files.

a change in an entityl implies a change in another en-
tity B—one says thaiB depends omd. Good software e dbx_functions_end() anddbx_symbol_name() have been
design attempts to minimize and encapsulate dependencies changed together, but never with an entitgdout.c.
such that future changes induce as few further changes as

possible. gcc/gec/dbxout.c gcc/gec/sdbout.c

Traditionally,program analysisleduces potential depen- dbx_debug_hooks sdb_debug_hooks
dencies between program entities from source code. In par- [12] 12 [12]
ticular, change impact analysigetermines all part® of a 0 4 10

i >] 4

program that may be affected by a changelin

In this paper, we take an alternate approach to detect de- [10]]
pendencies that is orthogonal to program analysis and ex- xcoff_debug_hooks 4 sdb_gloBal_decl()
ploit.s alternate knpwledge. Re_tther than focusing on po- dbx functions_end()
tential dependencies as determined from program code, we @ @
focus on factual dependencies as indicated byréfiesion 2 | | |

1
history of the software. y dox-symbol_name(

The basic idea is thatommon changesf entities indi- _ _ o
cate “evolutionary” dependencies: “Whenever the database Figure 1. Evolutionary coupling in GCC

These couplings show that the separation of concerns intatectures in terms of given modularity versus detected evo-
dbxout.c andsdbout.c is not yet perfect: The evolutionary lutionary coupling. In Section 6, we apply these methods
coupling shows up some cross-cutting concerns—at leasto further examples. Section 7 discusses related work; Sec-
between the individual debug hooks. In terms of modu- tions 8 and 9 end with conclusion and future work.
larity, it may be wise to introduce aommon abstraction
for debug hooks—_such as a type, a superclass,_ or an asy Analyzing Evolution
pect. This abstraction could then be used by the individual
modules—and, consequently,
to change in future.

In general, using the revision history as additional
knowledge source allows for amproved assessment of
software architectures:

there would only be one pIaceThe data source for all our findings aseitomated revi-
sion archivesas realized in common configuration manage-
ment systems. One of the most popular systems, especially
for open-source projects, is tloencurrent versions system
(CVS). We thus chos€Vs archives as the base for our in-

Detecting coupling between non-program entities. vestigations and implemented a prototype calkerSE to
Think of a simple coupling between a database analyze the evolution afvSarchives.
schema and arsQL query method: Whenever the Each original change to a software system, as stored in

former is changed, the latter must be adapted, too.theCVSarchive, is tagged as follows:
Detecting such a coupling from the software product’s
contents would require a very specific analysis that
knows about syntax and semantics of the database as
well as the query method. However, this coupling can
easily be established from revision history.

e The author of the change, i.e. the user id of the pro-
grammer who committed the change;

e Theextentof the change, i.e. the file and location af-
fected by the change;

Detecting coupling without program analysis. Revision
histories are available for almost every non-trivial
software project. To establish coupling between stored
artifacts (typically files), it is not required to analyze e Therationaleof the change, i.e. the reason of why the
the artifact contents. A light-weight analysis can easily change was made;
associate textual changes to syntactic entities, such
that coupling can be established on a finer-grained ® Thedateof the change.

basis (say, coupling between functions Storecjir‘aﬁle)'AIthough CvVs allows changes that affect several files

Comparing evolutionary and specified coupling. the coupling between the individual changes is lost upon
“Evolutionary” coupling from revision history and archival. Thus, the coupling between changes has to be
“analytical” coupling from program analysis can restored. This problem occurs for all tools that attempt
be determined independent of each other, and thustO analyzeCVsS histories. As an example, consider the
compared with each other. In the ideal case, every cvs2c script which summarizeSvS archives to change log
evolutionary coupling should also be a analytical files [2]. When can merge duplicate changes into a single
coupling, thus justifying the system architecture. transaction?

Mismatches indicate possible targets for restructuring. The way adopted byvs2cl is called the “Right Way"—
changes from different authors, with different rationales, or

Earlier work has leveraged release or revision histories more than three minutes apart are not considered coupled

to detectcoarse-grained couplingetween modules [3], and thus part of different transactionROSE adopts pre-

files [6] or classes [1]. The present work is the first, though, cisely this approach. In fact, there are not that many alter-
that relates changes to individyabgram entitiedike func- natives:

tions, methods, and attributes. It thus detditts-grained

couplingbetween these entities, allowing for a much better ~® Choosing a smaller time window results in the risk

understanding of commonalities and anomalies—as shown Of longer transactions being split. That is, dvs

e The contentof the change, i.e. the actual text or data
inserted or deleted;

in the GCCexample above. needs more than three minutes for a transaction, the

The remainder of this paper is organized as follows: In changes would be considered part of different trans-
Section 2, we show how to obtain and summarize evolu- actions. In our experience as programmers, we never
tionary coupling from revision archives. Sections 3 and 4 had any transactions that would take longer than three
present more findings from the evolution ®CC and the minutes.

GNU Data.- Display DebuggeDPD). These findings moti-) 1ROSE stands foReengineering Of Software Evolutioit;is a non-
vate Section 5, where we show how to assess system archiRational tool.

e Choosing a larger time window, though, may result in matrix gives an indication of how evident the coupling is—
unrelated transactions to be merged. We found it un- a coupling supported by many common changes is more
likely that a programmer can start and complete a to- evident than a coupling supported by few common changes.

tally new task in less than three minutes. Formally, S is computed as follows. L&t be the set of
changed entities to be considered. Thegraupingis a list
These problems are specific to the analysis\o$ archives; of setsG1, ..., Gy whereG; C €. Each setG; stands for

more sophisticated version control systems do not lose they single change affecting its elements. Note that the sets

coupling of changes. In the remainder of this paper, an “in- &, should usually not be disjoint—that is, we have changes
dividual” change is the change to a single file; a “logical affecting multiple entities.

change” can be composed of several individual changes and For each paie;, e;) € £ x & of entities, we compute
may thus affect multiple files. Unless stated otherwise, ats absolute number of occurrences
“change” stands for a logical change.

Besides restoring the coupling between changexsSE Seren = [{Gile1 € Gi Aeg € Gi}|
does a Ilght-wglght syntactical anaIyS|s_ Of. t.he Program \yie call the resulting matri¥ the support matrixas it indi-
source to associate the change extent tp individual PrograM. »ies how much evidence is there for each dependency. In
entities such as functions, methods, attributes and variables

. . .) particular,S, . is the number of set§; containinge.
Thus, it can induce that a chaqge to, say, line Sehadh.c In the next step, we want to know ttetrengthof the
affected the declaration of tluptions variable.

Whil v d . hetl coupling: Of all changes to an entity, how often (as a per-
led C|iewe can eaS|hy hetermmew ?t. ngesarelccc;q— centage) was some other specific entity affected? For this
pied, e'Fermlnmg whether prpgraemtltlesare coupled 1S meansROSEcomputes theonfidence matrix’ which con-
not so simple. In fact, coupling between entities is not a

tains therelative numbers of occurrences
matter of “whether”, but rather of “how much”.
Figure 1 illustrates this problem. Thdebug_hooks Sey ez
variables are strongly coupled (every change in one vari- Sere1
The coupling between the functodss funcions.end and GIVEN & SUPPOTt matrs, we can easily comput by di-
- - viding every row by its element on the diagonal. In our

dbx_symbol_name, though, is much weaker: Only a third of . o : . :
. . . example, this results in in the confidence matrix shown in
the respective changes also involved the other function. We S :
; .) Table 2. Zero entries indicate that there is no dependency
thus require a means to express #widence of coupling,

based on the numbers of common chanaes between two entities with respect to the grouping criteria.
) ges. . Note that whileS is symmetricC is not.
OurROSEprototype uses a simple approach to determine

061762 =

this evidence. For each pair of entities, we count the number ClA B C D E =
of changes that affecte_d. this pair of entities—that is, how Al 1 68 0 0 0 0
often have the_two entities been changed together. As a Ble6/7 1 0 0 0 0
result, we obtain a tqble @fnange c_ounts.j’able 1 shows cl o 0O 1 39 0 0
such a table for a project with six directories. D| o 0O 1 1 23 1/3
E| O 0O 0 29 1 89
S|A B C DEF F/o o o 18 1 1
Proposal Al8 6 0 0 0 O
Appendices Bf6 7 0 0 0 O
Third PartyAPI C|{ 0O 0 9 3 0 O Table 2. Confidence matrix C
Data Acquisiton D| 0O 0 3 3 2 1))
Test Cases EO O O 2 9 8 The strongest dependencies are those that have both high
Visualization Flo o o 1 8 8 confidence and high support. To find these dependencies,

we use 3D bar charts to emphasize strong dependencies as
shown in Figure 2.
Table 1. Support matrix S The bar chart combines both confidence and support in-
formation. Confidence is indicated by the height of each
This table can be read as followg: has been changed bar, while support is encoded by the color; the darker the
together withA eight times—that is, the overall number of color, the higher the support. In Figure 2, we immediately
changes toA was eight. Out of these eight changes, six also see that for example the dependency betwBeand F' is
affected B, and none affected the other components. The much stronger than the one betwderand F'. It is also in-
table is symmetrical, as we cannot tell whether a changeteresting to note the light grey bars in the middle represent-
in A induced a change iR, or vice versa, or notat all. The ing dependencies with high confidence but little support.

6

Support Third Party API
89 W Proposal Appendices
57 3
3-4 Data Acquisition
1-2
9 8
Test Cases 8 Visualization
Figure 3. Supportgraph G of the ROSE project
s sum up, the support graph for directories grouped by logical
changes actually reflects the module structure@$E
None of the visualizations above is suitable for fine-
grained analysis. For instance, a large open-source sys-
Figure 2. Dependency strength between tem likeMOZILLA contains more than 77,000 files; conse-
items. Greater height indicates higher confi- quently, we obtain a matrix with 77,00077,000 entries. A
dence, darker color indicates higher support. fine-grained analysis, counting program entities rather than

files, would result in even larger matrices.

In addition to the table and the bar chart, we can gainin- To select particular information in the matrices we can

sight into the dependencies between the entities by drawinguse filtering. LetB be a support or confidence matrix, as
the graph described above. Then, we can ughrasholdt to obtain a

filtered matrix A:
G = {57 {(61,62) |€1,62 c g andSel’e2 > 0}}

and labelling its edges with support values (or alternatively 4Bt _ 0 if Bejep, <t
with the confidence). For our above example, the graph is evez | A, ., otherwise
shown in Figure 3.
In the graph there are two important aspects: As an example, we can examine the filtered confidence

Existence of edgesEntities that are related are connected Matrix C“ which only contains values greater than the
by edges and sets of entities with many interrelations threshold. In practice, it is very useful to use wpport
form clusters. In the example graph we see for exam- s a filter for the confidence matrix®:‘*—that is, we only
ple that D, E and F are related to each other. keep entries with a support greater or equal to

. In practice filtering reduces the number of non-zero en-

Abse_n_ce of edgesThe absence of edges indicates that €N tries considerably, but it does not change the size of the ma-
tmes are not related. In the example graph we imme- trix. Instead we can remove entities with no strong depen-
diately see that there are two unconnected subgraphs. yoncies by restricting the matrices taedluced entity set

Actually, the above example stems from S archive of €' = {€|Se.e > t}. As can be seen from the filtered matrix
the ROSEtool—that is, we applie®OSEto itself. A and B in Figure 4 all dependencies of D are weak, thus it makes
are directories containing the project proposal, whereas theS€nse to completely remove the row and column of D from
other directories contain the source code and test cases o€ matrix.
our implementation. To get an overview of huge matrices and select inter-
For ROSE we also found that there is no dependency be- esting partsROSE presents its findings asteractive pix-
tween E (test cases) and C (third party API), but betweenelmaps shown in Figure 4. Here every pixel represents one
E and D (data acquisition) as well as E and F (visualiza- entry of the matrix; the value is encoded by color (darker
tion tool). This very much matches the structure of our sys- pixels = higher values). A user can select individual parts
tem, as the tests never directly invoke the third party library, and ask for details on the specific entry; she can also have
but only the visualization and data acquisition methods. To 3D bar charts drawn in a separate window.

mmo w >

A
B
C
D
E
F

ABCDEF ABCDEF ABCDEF

TMOO W >
TMOO >

ABCEF

Figure 4. Pixelmap of matrices S, C, C* and
C restricted to £*. Rows depend on columns.

3. Example: The GCC Compiler

The GNU Compiler Collection GCC) is one of the most
popular open source projects. It stands out due to its porta-
bility and its support for a variety of programming lan-
guages, like CC++, ADA, FORTRAN or JAVA. These char-
acteristics are reflected in the revision archive&safC. The
20,839 files split up into about 274 file extensions. The
revision history ofGCC consists of more than 160,000 in-
dividual changes that we grouped to about 35,000 logical
changes; we analyzed all changes between 1997-08-11 (the
creation of theCvS archive) and 2003-03-12.

3.1. Coarse-Grained Analysis

To develop a feel for the nature GiCC, we first analyzed
coupling between file types. Therefore, we summarized the
most frequent file extensions into categories, e.g. C files,
C++files, ADA files, and so on and determined the coupling
between them (see Figure 5). It turned out that most cate-

ADA: .ads .adb
C..c

C++: .cc.cpp
Fortran: .f
C-Header: .h | B
Makefile: .in .am
Java .java

.out .out+ .out++
Texinfo: .texi

Figure 5. Coupling between file types in GCC.
Rows depend on columns; darker color indi-
cates higher confidence.

within directory gcc/gec/configli3gé/. In file i386.c

the initializations of the array#86_cost, i486_cost,
pentium_cost, pentiumpro_cost, and k6é_cost are very
strongly coupled with a confidence of 90% to 100%
and a support of 11 changes. These arrays all contain
the costs of different assembler operations for specific
Intel related processors. Furthermore, it turns out that
these arrays are of typeocessor_costs, defined in file
i386.h. This dependency is reflected in an evolutionary
coupling betweemrocessor_costs and the above cost
arrays with a confidence of 82% and a support of 9.
In other words, we have rediscovered the dependency
between theost arrays and their type definition.

gories are loosely coupled, except for one exception: AboutAssistance in program understanding.A coupling be-

90% of the logical changes that contained@uT file also
contained alAVA file; this is so becaus®UT files contain
expected output of th@AvA test suite. Another notewor-
thy exceptions are C implementation files that depend on C
header files (no big surprise hergEXINFO documentation
(but not vice versa), andDA files.

As the support for those inter-category coupling was
rather small, we decided to concentrate our fine-granular
analysis on methods and declarations of C source files.

3.2. Fine-Grained Analysis

The amount of coupling between methods and declarations

tween two functions appears inside the fiten.c in
directory gcc/gec/. This file contains routines that
are used byGCC for lazy code motion optimiza-
tion, e.g. global common subexpression elimina-
tion. Between some of these routines exist coupling:
compute_antinout_edge() andcompute_available() with
support 15 and 100% confidena@mpute_available()
and compute_antinout_edge() again with support 15
and 94% confidencegompute_nearerout() and com-
pute_laterin() with support 11 and 92% confidence. For
Icm.c this is a valuable information for program com-
prehension.

in GCC was overwhelming. We found exactly 3,424,012 Guidance for software development.In the same di-

evolutionary dependencies between 92,948 program enti-
ties. Because of this huge number, we concentrated on de-
pendencies with a minimum support of 8 and at least 80%
confidence. For this characteristics we found 115 depen-
dencies. Cutting down the minimum support to 4 resulted
in 6,484 dependencies. A selection of interesting couplings
is described below.

Discover dependenciesOne example for coupling be-
tween program entities of different files is contained

rectory we discovered a coupling between a method
and an enumeration withimoplev.c: In 23 cases
dump_file was changed together with function
rest_of_compilation(). The reason is obviougbplev.c
performs optimization passes during compilation,
dump_file contains an enumeration of all available
dump formats that may be used for debugging pur-
poses, andest_of_compilation() controls the dumping

to files. So each time when a dump format is added or
modified, a change irest_of_compilation() is required,

File f1 — File f, Support | Confidence
options.h options.C 60 100 %
HelpCB.h HelpCB.C 26 100 %
CallNode.h ListNode.h 16 100 % Directory
.- ddd/
UndoBuffer.h | UndoBuffer.C 30 97 %
DataDisp.h DataDisp.C 117 95 %
0,
AppData.h resources.C 134 95 % ™ DDD Source
Table 3. Coupling between files in DDD

too. Such an information may be used to guide a — B, Libraries
developer towards locations where related changed Pics
are typically applied. Icons

Overall, we find that althouglGCC history has several | |
changes that span multiple files, few of these changes in-
dicate bad programming practice or a need for major re- |
structuring. In other words, history confirms the system ar-
chitecture ofGCC.

e g g 5 s s e S Tests

Figure 6. Coupling between files in DDD.

4. Example: The DDD Debugger Rows depend on columns; darker color in-
' ' dicates higher confidence.

Let us now turn to another open source project where things

are not as nice as iBCC. The GNU Data Display Debug-

ger ODD) is a graphical front-end for several command- code directory oDDD. Two examples are theatches and
line debuggers. Compared taGCC, DDD is a rather small tests directories. This kind of coupling manifests itself in
project consisting of 1,511 files. Its revision history consists the thin rectangles at the lower left of the pixelmap.

of about 18,302 individual changes that can be grouped to

6,203 logical changes between 1995-02-09 and 2001-08-244.2. Fine-Grained Analysis

4.1. Coarse-Grained Analysis After analyzing coupling between files, we increased the
granularity, and examined coupling between classes, meth-

On the file level we found very promising and strong de- ods and declarations. We found a total of 1,228,042 depen-

pendencies, especially between header and C source fileslencies. Again, we filtered the result of our analysis to get

Some of them are listed in Table 3. the most interesting couplings. This time we used a mini-
Figure 6 visualizesall dependencies between files in mal support of 5 and a minimal confidence of 60%. Still,

DDD. The files are sorted by the containing directory. The more than 700 dependencies match these criteria.

large block at the upper left represents thel/ directory

of DDD. This directory contains the source code and some Coupling within files. In file UndoBuffer.C we found a

pictures. This structure is clearly visible in the pixelmap, very strong coupling: Each time when functigio()
and it turns out that these two components are very loosely ~ Was modified, functiorundo() was modified, too and
coupled. vice versa. The support for this dependency is 15,
DDD uses some third party libraries, visualized at the and the confidence 100% in both directions. A sim-
bottom right. Although there is some coupling between the ilar coupling was found in the same file for functions
DDD core and these components, no evolutionary depen- redo-action() andundo_action(). Again we found 100%

dencies can be found between them. This makes sense as confidence, but only a support of 7.
changes on external libraries are usually checked-in sepa- Another easy understandable coupling revealed within
rately. But still, some directories are related with the source file ddd.C which contains the main program bbD.

2We chose DDD because it was co-written and maintained by the third The fleldscommand,me()nubar[] _andsource,menubar[]
author in the time period under examination, and he did not mind being are COUple_d with 100% confidence and a support of
faced with his sins. 10 to the fielddata_menubar[]. It turned out thatll

menubars irldd.C are coupled among themselves with 5. Metrics for Evolutionary Coupling
a high support and a strong confidence—a coupling

that is not detectable by program analysis. We have now shown how to obtain and use evolutionary

coupling forGCCandDDD, and also presented some anec-
Weird dependencies.The couplings described above all dotical evidence thasCCis better structured thabDD. Let

occured within single files. BubDD also contains us now investigate how tquantifythis evidence. Just how

strong evolutionary couplings across files. For exam- well does the system evolution justify its architecture? To

ple between filalisp-read.C and filePosBuffer.C: Each this end, we define indices that summarize the overall den-

time when functionis_single_display_cmd() is modi- sity and coupling.

fied, the functionPosBuffer::filter() is changed, too. The evolutionary density indegDI relates the number of

The support for this dependency is 6. At first glance, non-zero entries to the total number of entries of the support

these two methods have no recognizable dependencymatrix:

However, theDDD maintainer confirmed that the two

functions must typically be changed together. This is EDI — [{(e1,€2)[Se, e, >0 A €1 # eal]

another example where our approach reveals depen- €2 —|€]

dencies that may not be recognized by traditional pro-

gram analysis.

The EDI relates the number of actual dependencies to
that of possible dependencies. A loweb! indicates a
lower coupling: The lower theEDI, the better the modu-
Complex coupling. One example for a coupling with a |ayity,

very large support was found between the struct Thegpy for the file-level ofGCCis 0.03886, whereas for
Appdata defined in file AppData.h and the field he program-entity level it is 0.00079 (see Table 5). This
ddd.resources] defined in fileresources.C. Both code means that 4% of all possible dependencies between files,
entities were changed '12.8 times in thg same logical ¢ only 0,08% between all program entities exist.
change. ForppData, this is a 96% confidence. The For most of the entities that we deal with there exists a
AppData struct holds the global configuration bbD; hierarchical ordering, e.g. functions are defined within files,
ddd_resources[] contains about 200 definitions which fjjeg are contained within directories. TEBI does not take
relate resource names to memberafData. into account the hierarchical structure. To this end we in-
Again, this is a dependency which is usually out of troduce another metric. Oncg again_assuming that fur_wctions
reach for program analysis. Note that the coupling be- Nave been grouped by checkin time intervals, comparing the
tweenAppData and ddd_resources[] is also visible at number of rela_ted f_unc_uons W|t.h|n the same file with that
file level (see Table 3). of related functions in dlfferent files can be used to measure
the strength of the coupling of these files.

In more general terms, we assume that there is a disjoint
partitioning P = {p1,...,pr} of the entities€. Then the
sets of all possible internal and external dependencies are

Increasing granularity does not always result in dependen-
cies with a higher confidence. For example the fidgs
tions.handoptions.Care related very strongly on file level
with a high support of 60 and a confidence of 100%. In
the fine-granular analysis it turned out that this coupling re- EXTRA = {(e1,€2) |1 € pi,ea € pj,i # j}
sulted from many dependencies with a small support. In
our exampleoptions.h contained the function prototypes,
andoptions.C their implementation. Most of the 60 simul-
Faneous c_:hanges added new optm_m@tmD. This resulted number of external dependencies to the actual number of
in many fine-granular couplings with a low support of one internal dependencies:

or two changes. Hence, many weak, fine-granular depen-

INTRA = {(61,62) |€1 € pi, €2 € pj7i :j}

The evolutionary coupling indekCl relates the actual

dencies may form a strong, coarse coupling, and a weak, |{(61 ¢s) € EXTRA |S N 0}’
. . . .) e1,e

coarse-granular coupling may result in a single strong, fine- ECI = NTRA S Lo 5

granular dependency. {(e1,e2) € |Seres > 0}

Overall, we find that the evolution history bDD shows A lower ECI indicates a lower ratio of external to internal
several weaknesses in the system architecture: too oftengdependencies: As with th#bl, the lower theECI, the better
a conceptual change must be applied to several unrelatedhe modularity.
locations. In particular, there is a risk that programmers un- An ECI greater than 1 indicates that there are more ex-
aware ofDDD evolution history might perform incomplete ternal then internal dependencies. In some open source
changes, thus endangering the stability of the system. projects, we found a lot of weak dependencies and so

decided to also compute fitered ECI considering only
stronger dependencies:

Eor — [{(e1,€2) € EXTRA[S,, e, > 5 A Ceyep >}
“ |{(e1,e2) €INTRA[Sc, ¢, > 5 A Coy e, >}

Note thateCl = ECIJ holds.

To compare different systems we use in this paper the

following particular indices:

e The program-entity-levetDI is based on the support
matrix for program entities (functions, methods, at-
tributes) grouped by checkin time interval.

e The file-levelEDI is based on the support matrix for
files grouped by checkin time interval.

e The entity/fileECI is based on the support matrix for
program entities grouped by checkin time interval. A
partition contains all program entities defined in the
same file.

e The file/directoryECI is based on the support matrix
for files grouped by checkin time interval. A partition
contains all files defined in the same directory.

In the following section, we give some examples of find-

ings that we made with the above approach for different

kinds of entities and software archives.

6. Comparing Evolutionary Coupling

In addition toGCC andDDD we analyzed three additional
open source projects: tieYTHON language, thé\PACHE
web server and th@PENSSLtoolkit.

PYTHON ThePYTHON project consists of 5,693 files with

57,815 revisions between 1990-08-09 and 2003-03-

File f1 — File f, Support | Confidence
cgsupport.py | _CGmodule.c 6 100 %
filesupport.py | _Filemodule.c 16 94 %
ctlsupport.py Ctimodule.c 38 72 %
sndsupport.py | Sndmodule.c 15 71 %
Qdmodule.c gdsupport.py 30 71 %

Table 4. Coupling between files in PYTHON

APACHE APACHE is a rather small project with 1,207
files and 19,419 revisions between 1996-01-14 and
2003-05-05. We found both coarse-grained and fine-
grained dependencies. One interesting observation for
APACHE s the extreme low filtereHCI{ . Such alow
value is usually achieved by changing single or only a
few entities and immediately commiting this modifica-
tion to the revision archive.

OPENSSL The basis for our analysis GfPENSSLis a his-
tory of 2,532 files with 23,124 revisions between 1998-
12-21 and 2003-05-07. Again we found dependen-
cies on file and on function-level. The higcCI for
OPENSSLmay have various reasons. Beside the obvi-
ous one, a high coupling between files an a need for
restructuring, higleCl values may also result by ran-
dom checkins into the revision archive, e.g. empty log
messages or changes of the complete work instead of
splitting it up into logical changes.

The results of all analyzed projects are compared in Ta-
ble 5 and 6. It turns out that theDI differs dramatically
depending on the granularity. For instanceDD, the file-
level EDI is 18.2%, meaning that 18.2% of all dependencies
between files actually exist. This is by far the largest cou-
pling of all systems we examined. The fine-grained entity-
level EDI, though, tells a different story; her®pD is only
average. Regardless of granularity, the density of coupling

29. We expected to find dependencies between files;q generally higher ilpDD than inGCC
of different programming languages, because some Thegc), relating external to internal dependencies, is

PYTHON functionality is implemented in C. Actually

very low for DDD at the file level—which is most probably

we found such dependencies; for a selection, see Tae to the fact that most of tHeDD code (and thus all de-
ble 4. None of these dependencies could be uncoveredyendencies between files) are contained within one single
by program analysis—although the coding convention gjrectory. Again, the more fine-granulBc! at entity level

dictates that C implementations B¥ THON modules

increases precision: on average, there are 4 times as many

share the same base name. Note that only the supporfjependencies across files than internal dependencies. The
affects the fine-granular search, the confidence has aCpig surprise here IGPENSSLwith anEDI of more than 100;

tually no influence.

Performing the fine-granular turned out to be difficult.
At the time of writing this paper, our disk space was

this is either a sign of bad modularity or a change policy
that simply involves changing nearly all files at once. Our
findings can thus be summarized mgasuring evolution-

not yet sufficient to hold the dependencies between theary coupling at the file level can be misleading and should
106,596 source code entities. Therefore we could notgenerally be replaced by coupling at the level of program

calculate the fine-graindgelCl. For theECI calculation,

entities.

we used an estimated valued provided by the query an- Like all metrics, theECI and EDI indices can only be

alyzer of the database.

as good as the data they rely upon. In particuaysual

File Program Entity
Files | # Dependencies EDI | # Entities | # Dependencie$ EDI
GCC 20,839 16,877,141 3.886 % 92,948 6,848,024| 0.079 %
DDD 1,511 414,900 18.185 % 20,524 2,456,084| 0.583 %
PYTHON 5,693 512,288| 1.581%| 106,596| ~126,592,039 ~1.114 %
APACHE 1,207 138,724 9.530 % 15,038 1,837,938/ 0.813%
OPENSSL| 2,532 562,304| 8.774 % 21,240 19,953,046| 4.423 %

Table 5. Summarized results for the evolutionary density index EDI (lower EDI = less density)

File/Directory Entity/File Entity/File (Filtered)
Across| # Within | ECI # Across| # Within ECI | # Across| # Within | ECI{ 5
GCC 14,379,559 2,497,582 5.757| 5,364,194| 1,483,830, 3.615| 125,368| 83,344| 1.504
DDD 82,988| 331,912| 0.250| 2,006,400 449,684 4.462| 26,945 14,017| 1.922
PYTHON 293,930| 218,358| 1.346
APACHE 102,476 36,248 | 2.827| 1,694,512| 143,426 11.815| 11,664| 17,277| 0.675
OPENSSL 504,122 58,182 | 8.665| 19,757,530 195,516| 101.053| 150,687| 19,174| 7.859

Table 6. Summarized results for the evolutionary coupling index ECI (lower ECI = less coupling).
“# Across” is the number of dependencies across directory boundaries (left) or file boundaries
(right). “# Within” counts dependencies within directories or files, respectively.

change policies can lead to imprecise resulisour anal- 7. Related Work
ysis of theMOZILLA CVS archive, for example, we found
virtually no dependencies across module boundaries. TheAmong the first approaches that analyze different program
reason is that each submitted logical change is split into in-revisions to detect coupling and interference between mod-
dividual changes at the module level. Each module main- ules is theNORA/RECStool of Snelting [5]. NORA/RECS
tainer reviews “her” changes and separately checks themusesconcept analysiso detect fine-grained coupling be-
into theCvS archive. Consequently, the coupling between tweenvariant configurationssuch as the (optional) exis-
changes is lost—and cannot be reconstructed froncttge tence of NFS and the (optional) existence of raname()
archive. We are currently investigating alternate sources,function. In general, there is no conceptual difference be-
such as th&1OZILLA bug database, to restore change cou- tween changes applied to create new revisions or changes
pling. applied to create new variants; hence, the approach could
also be used to detect coupling between changes. Nonethe-
Another source for imprecision imise.Any analysis of less,NORA/RECSrelies uniquely on variants, while we use
evolutionary coupling contains some noise due to changeshe much richer revision history to detect coupling.
that are unrelated, but nonetheless coupled within the revi- To our knowledge, the first work that leverages ped-
sion archive. A typical example would be a programmer uct historyto detect coupling within a system is the paper
who fixes a bug in the program and, incidentally, an unre- of Gall, Hajek, and Jazayeri [3]. They have used tioiE-
lated typo in the documentation in the same logical change,SAR system to analyze the coupling within a large telecom-
thus suggesting an evolutionary coupling between the bugmunication switching system, and found that the history of
and the typo. 20 releases can indeed show up coupling within a system. A
similar work was conducted by Bieman, Andrews and Yang
To reduce such noise, we have determined a filte@d on classes [1], using 39 releases of a commercial object-
which only includes evolutionary coupling with a support oriented system.
greater than 1 and a confidence greater than 0.5. Surprise: In contrast to these two approaches, we do not analyze
While the ECI of GCC andDDD shrinks by 50%, theCl release histories of the entire system, tavision histories
of APACHE and OPENSSLshrinks by more than a magni- of the individual product files. This results in many more
tude when filtered. These results suggests filtating is individual changes and thus a finer granularity. The finer
a necessity to reduce nois@/e are currently investigating granularity also allows us to relate program entities with
whethereECl andEDI stabilize with increasing filter thresh- each other: While the above approaches show up coupling
olds and when which threshold should be used in practice. between modules or classes, we are able to deterfiniae

grained couplingbetween individual functions, methods, (rather than syntactic entities), our fine-grained ap-
and attributes. proach brings a higher precision and a better under-
The HIPIKAT project [6] supports program understand- standing of commonalities and anomalies.
ing by detecting related files. Two files may be “related” if
they occur in the same individual change ta\s archive ~ According to IEEE Standard 1471 [4], the system architec-
(as in our approach); by means of a “What's related” but- ture consists of two parts:
ton, a programmer can havBPIKAT suggest files that are
closely related to the file under consideration. In contrast to
our approachHIPIKAT determines coarse-grained relation-
ships between files only.
In HIPIKAT, though, “related” is more than evolution-
ary coupling: Two artifacts may also be related if they re-
fer to the same bug report number, if they appear together

in project e-mail, or if the respective log messages contain 2. The principles guiding its design and evolutidinese

1. The fundamental organization of a system embodied in
its components, their relationships to each other and
to the environment.Reengineering this organization
is typically addressed by traditional program analysis;
analyzing revision histories can reveal additional in-
sights.

similar text. Itis yet unclear Whethel’ e-mail and |Og meS' are princip|es Wh|Ch evo'utionary Coup”ng may un-
sages can be sufficiently precise to assess the quality of @ cover from the revision history by observation and
system’s architecture. However, exploiting and integrating induction—including facts that are never made explicit

these additional data sources can be Very useful f0r making or that are even in contrast to Stated princip'eS.

suggestions to programmers. We'd expect fine-grained re-

lationships between program entities, as in our approach, toConsequently, observing the revision history can justify the

increase the quality dIPIKAT's suggestions even further. ~ organization and principles of the system architecture—or
Regarding metrics, the paper of Bieman, Andrews and find out where reality diverges from policy.

Yang on classes [1] introduces the metriezP, PCC and

SPC which count the absolute numbers of dependencies.g. Future Work

Roughly, thePCC is the support matrix for classes and the

SPC (.)f a class is the sum of the va_lues In Its row (without The present work summarizes our first experiences with
the diagonal element). These metrics are suitable to detec&volutionary coupling between program entities. Obvi-

change-prone classes. Being based on absolute numberausly’ this is only a starting point. Our future work will
the metrics can not be used for comparing systems, such a8,cus on the following topics:

our EDI andECI metrics.
Programmer support. Right now, ROSE s just a set of

8. Conclusion scripts that extracts information froevSarchives and
stores it in a database. We are currently porRa$Es
Our conclusions can be summarized as follows: facilities to theECLIPSE programming environment.

This will allow a “What's related” feature in the same
style asHIPIKAT, but relying on fine-grained relation-
ships between program entities.

1. Fine-grained analysis of revision histories allows to
detect evolutionary coupling between program entities
such as functions, methods, or attributes.

Aspect identification. If program entities have been
changed together several times, the common abstrac-
tions behind the individual changes may be candidates
for aspectqas in aspect-oriented programming). An
evolutionary coupling would then be turned into a sin-
gle syntactic entity, such that future changes can be
made in one place only.

2. Evolutionary coupling augments analytical coupling as
determined from program analysis. Evolutionary cou-
pling can show up factual dependencies that are un-
available to program analysis; on the other hand, an-
alytical coupling shows dependencies that were (yet)
never exercised in history.

3. Mismatches between evolutionary coupling and ana-
lytical coupling show up weaknesses in the system
architecture; they also suggest possible restructurings
that would avoid such evolutionary coupling in the fu-
ture.

Richer models. Our model only considers pairwise cou-
pling between entities. We are exploring alternative
models that allow for detecting relationships between
multiple entities: “Whenever and B were changed,
so was_”. Other possible enhancements include addi-

4. Compared with coarse-grained approaches that rely tional information about the change, such as nature or

only on a release history (rather than a revision his- rationale, and additional data sources such as problem
tory), on coarse-grained relationships between files databases.

10

Merging and splitting. ROSEis currently unable to detect
splitting and merging of version histories. Changes
that are applied to some side branch of the history are
not detected until merged back into the main trunk. On
the other hand, this merging typically takes place as
a large number of changes being committed in a sin-
gle transaction (and thus ending up being related in
our analysis). Similar problems occur with renaming
files. We are currently working on identifying logical
changes in the presence of splitting, merging, and re-
naming.

Integration with program analysis. Traditional program
analysis is concerned withotential dependencidse-
tween entities: “A change here may affect these other
places.”. Evolutionary coupling introducésctual de-
pendencies “A change here has affected these other
places”. It would be nice to see how these dependen-
cies can be combined to form a better platform for pro-
gram understanding.

At the dawn of the last century, the philosopher George San-
tayana famously remarked that those who do not learn from
history would be condemned to repeat it. Software has been
around long enough that we can exploit its history—to avoid
repeating the same mistakes over and over, and to restruc-
ture the system such that it can face further evolution.

Acknowledgments. Holger Cleve, Carsten @g, Stephan
Neuhaus, Peter Weil3gerber, and the anonymous reviewers
provided useful and constructive comments on earlier revi-
sions of this paper. Michael Burch developed the interactive
pixelmap.

References

[1] J. M. Bieman, A. A. Andrews, and H. J. Yang. Understanding
change-proneness in OO software through visualization. In
Proc. 11th International Workshop on Program Comprehen-
sion, pages 44-53, Portland, Oregon, May 2003.

[2] K. Fogel and M. O’'Neill. cvs2cl.pl: CVS-log-message-to-
ChangelLog conversion scripBept. 2002. http://www.red-
bean.com/cvs2cl/.

[3] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical cou-
pling based on product release historyPimoc. International
Conference on Software Maintenance (ICSM ,98pshing-
ton D.C., USA, Nov. 1998. |IEEE.

[4] IEEE Architecture Working Group. |IEEE recommended
practice for architectural description of software-intensive
systems. |IEEE Standard 1471-2000, 2000.

[5] G. Snelting. Reengineering of configurations based on mathe-
matical concept analysi®\CM Transactions on Software En-
gineering and Methodology (TOSEM)(2):146-189, 1996.

[6] D. Cubran€ and G. C. Murphy. Hipikat: Recommending per-
tinent software development artifacts. Rroc. 25th Inter-
national Conference on Software Engineering (ICSEges
408-418, Portland, Oregon, May 2003.

11

