
Isolating Failure-Inducing Thread Schedules

Jong-Deok Choi
IBM T. J. Watson Research Center

P. O. Box 704
Yorktown Heights, NY 10598, USA

jdchoi@us.ibm.com

Andreas Zeller
Universität des Saarlandes

Lehrstuhl für Softwaretechnik
Postfach 15 11 50

66041 Saarbrücken, Germany

zeller@acm.org

ABSTRACT
Consider a multi-threaded application that occasionally fails due to
non-determinism. Using theDEJAVU capture/replay tool, it is pos-
sible to record the thread schedule and replay the application in a
deterministic way. By systematically narrowing down the differ-
ence between a thread schedule that makes the program pass and
another schedule that makes the program fail, the Delta Debugging
approach can pinpoint the error location automatically—namely,
the location(s) where a thread switch causes the program to fail. In
a case study, Delta Debugging isolated the failure-inducing sched-
ule difference from 3.8 billion differences in only 50 tests.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—debug-
ging aids, diagnostics, testing tools, tracing; D.1.3 [Programming
Techniques]: Concurrent Programming

1. INTRODUCTION
The increasing popularity of the Java programming language has
made parallel programming more popular than ever. Unfortunately,
concurrent programs are notoriously difficult to debug. Both the re-
production of failures and the subsequent isolation of errors impose
additional challenges when applied to concurrent programs:

How do I reproduce a failure? Consider a concurrent application
being run on some fixed input several times. Despite the in-
put being constant, the application may fail occasionally. The
reason isnon-determinism:the thread schedule(or thread
execution order) can vary from run to run. While having non-
determinism is convenient for parallel programming, non-
determinism makes it hard to reproduce a failure.

How do I isolate the error? Even if we can reproduce a failing
program run deterministically, we still do not know thecause
of the failure: How come one thread schedule makes the
program fail, and another one makes the program pass? A
thread schedule may be composed of 10,000 thread switches
or more, yet only few of these switches may induce the spe-
cific interaction between threads that make the program fail.

In this paper, we present a novel approach that brings significant
advances in addressing these problems. Our approach uses four
automated building blocks, illustrated in Figure1:

Deterministic replay. The DEJAVU tool [2] captures the execu-
tion of non-deterministic Java applications and allows the
programmer toreplay these executions deterministically—
that is, input and thread schedules are reconstructed from the
recorded execution. This effectively solves the problem of
reproducing failures deterministically.

Test case generation.One ofDEJAVU’s features is that it allows
the application to be executed under a given thread schedule.
We use this to generatealternate schedules:For instance,
we can alter an original passing (or failing) schedule until an
alternate failing (passing) schedule is found.

Isolating failure causes.We useDelta Debugging[21] to auto-
matically isolate the failure cause in a failure-inducing thread
schedule. The basic idea is to systematicallynarrow the dif-
ferencebetween the passing and the failing thread schedule,
until only a minimal difference remains—a difference such
as “The failure occurs if and only if thread switch #3291 oc-
curs at clock time 47,539.” This effectively solves the isola-
tion problem.

Relating causes to errors.Each of the resulting thread differences
occurs at a specific location of the program—for instance,
thread switch #3291 may occur at line 20 offoo.java—giving
a good starting point for locating thread interferences. In case
understanding of the remaining behavior is required,DEJAVU
can be used to replay the resulting thread schedules.

Altogether, these building blocks widely automate the testing and
debugging process; at the same time, our approach ispurely experi-
mental,meaning that no knowledge of the program text is required.
We estimate that our combined approach will considerably ease the
debugging of multi-threaded applications.

This paper is organized as follows: We start with a motivating
example in Section2. Section3 presents howDEJAVU captures
and replays thread schedules. In Section4, we show how to iso-
late failure-inducing thread schedules with Delta Debugging. In
Section5, we discuss the generation of alternate thread schedules.
Section6 presents the results of a case study, using a real-life Java
program. Section7 discusses related work; Section8 closes with
the conclusion and future work.

DejaVu (full replay)

Schedule
generator

Application

DejaVu (schedule replay)

test outcome (pass/fail/unresolved)

schedule

2. Test case generation

Delta
Debugging

Application

DejaVu (schedule replay)

test outcome (pass/fail/unresolved)

schedule

3. Isolating failure causes automatically

passing schedule failing schedule

Failure-inducing thread switch(es)

4. Relating causes to errors
foo.java

The failure-inducing
thread switch occurs
at one specific place
in the application
(= "the error")

repeat
tests
with

fixed
program

original thread schedule (passing or failing)

Application

DejaVu (record)

1. Deterministic replay

recorded
schedule

Application

Figure 1: The testing and debugging process, as proposed in
this paper. Using DEJAVU , we record a thread schedule of a
program run (1). Starting from this schedule (either passing
or failing), we randomly generate alternate thread schedules
and execute them deterministically usingDEJAVU (2). When we
have found both a passing and a failing schedule, Delta Debug-
ging isolates the failure-inducing difference (3). This difference
occurs at a specific location in the program, which is typically
the place to be fixed by the programmer (usingDEJAVU to fully
replay runs if needed) (4). After the fix, the tests are re-run.

2. A SIMPLE EXAMPLE
As a simple motivating example, consider the shared queue pro-
gramIntQueue.javain Figure2 (adapted from [19]). The IntQueue
class realizes a queue of integers.enqueue(elem)enqueues an in-
teger numbereleminto the queue;dequeue()returns and dequeues
the first element from the queue.

Internally, the queue is realized as an integer arraylink where the
entrylink[elem] is the successor ofelem; the attributesheadandtail
hold the first and last element, respectively. A value of 0 indicates
a non-existing element; ifheadis 0, the queue is empty.

To allow concurrent access by multiple threads, the programmer of
IntQueuehas encapsulated all accesses tolink into critical sections
marked with thesynchronizedkeyword; this Java feature prevents
a thread from entering the critical section while the section is exe-
cuted by another thread. (To be more precise,synchronized(object)

1 class IntQueue {

2 // The queue holds integers in the range
3 // of [1..numberOfElements - 1]
4 static final int numberOfElements = 100;
5

6 // link[N] is N’s successor in the queue
7 int link [] = new int[numberOfElements];
8

9 int head ; // First element of queue
10 int tail ; // Last element of queue
11

12 // Constructor
13 IntQueue () {

14 head = 0;
15 tail = 0;
16 for (int i = 0; i < numberOfElements;
17 i++) {

18 link[i] = 0;
19 }

20 }

23

24 // Enqueue ELEM.
25 public void enqueue (int elem) {

26 link[elem] = 0;
27

28 if (head == 0)
29 head = elem;
30 else {

31 synchronized (this) {

32 link[tail] = elem;
33 }

34 }

35

36 tail = elem;
37 }

38

39 // Return first element of queue.
40 // No error checking.
41 public int dequeue () {

42 int elem = head;
43 if (elem == tail)
44 tail = 0;
45

46 synchronized (this) {

47 head = link[head];
48 }

49

50 return elem;
51 }

52

53 // Print elements of queue
54 public void print () {

55 for (int e = head; e != 0; e = link[e])
56 System.out.print(e + " ");
57 System.out.println();
58 }

59 }

Figure 2: IntQueue.java—an erroneous shared queue. This
class may exhibit failures if multiple threads access theenqueue
and dequeuemethods concurrently.

places alockonobject, preventing other threads to enter the critical
section using the same object as the lock; the lock is released when
the thread leaves the synchronized block.)

In most situations, theIntQueueclass works fine. Figure3 shows
how the queue is accessed by three threads: First, threadA en-
queues the number 11; later, threadB dequeues it; and later again,
following A, threadC enqueues the number 95.

There are situations, though, whereIntQueuefails—for instance,

Clock Thread A Thread B Thread C
1 enqueue(11)
2 26 link[elem] = 0; // link[11] = 0

3 28 if (head == 0) // 0 == 0

4 29 head = elem; // head = 11

5 36 tail = elem; // tail = 11

6
1
−→ dequeue()

7 42 elem = head // elem = 11

8 43 if (elem == tail) // 11 == 11

9 44 tail = 0; //

10 47 head = link[head]; // head = 0

11 50 return elem; // return 11

12
2
−→ enqueue(95)

13 26 link[elem] = 0; // link[95] = 0

14 28 if (head == 0) // 0 == 0

15 29 head = elem; // head = 95

16 36 tail = elem; // tail = 95

Figure 3: A passing thread schedule〈6, 12〉 (or 〈6, 12, 17, 17, 17〉 in the “padded” form)

Clock Thread A Thread B Thread C
1 enqueue(11)
2 26 link[elem] = 0; // link[11] = 0

3 28 if (head == 0) // 0 == 0

4 29 head = elem; // head = 11

5
1
−→ dequeue()

6 42 elem = head // elem = 11

7 36 tail = elem; // tail = 11
2
←−

8
3
−→ 43 if (elem == tail) // 11 == 11

9 44 tail = 0; //

10
4
−→ enqueue(95)

11 26 link[elem] = 0; // link[95] = 0

12 28 if (head == 0) // 11 == 0

13 32 link[tail] = elem; // link[0] = 95

14 36 tail = elem; // tail = 95

15 47 head = link[head]; // head = 0
5
←−

16 50 return elem; // return 11

Figure 4: A failure-inducing thread schedule〈5, 7, 8, 10, 15〉

Clock Thread A Thread B Thread C
1 enqueue(11)
2 26 link[elem] = 0; // link[11] = 0

3 28 if (head == 0) // 0 == 0

4 29 head = elem; // head = 11

5
1
−→ dequeue()

6 42 elem = head // elem = 11

7 36 tail = elem; // tail = 11
2
←−

8
3
−→ 43 if (elem == tail) // 11 == 11

9 44 tail = 0; //

10 47 head = link[head]; // head = 0

11 50 return elem; // return 11

12 . . .

13
4
−→ enqueue(95)

14 26 link[elem] = 0; // link[95] = 0

15 28 if (head == 0) // 11 == 0

16 29 head = elem; // head = 95

17 36 tail = elem; // tail = 95

Figure 5: A generated passing schedule〈5, 7, 8, 13, 17〉

the one in Figure4. In this example, thescheduleof the threads
is different from Figure3. In particular,B’s invocation ofdequeue
starts whileA’s execution ofenqueuehas not finished yet; likewise,
threadC starts itsenqueueoperation whileB’s dequeuehas not
yet returned. At the end of this different schedule, we obtain a
different result: Asheadis 0, the queue is empty—C’s enqueuing
had no effect. Except for the different schedule, everything else is
unchanged; as the schedule is non-deterministic, the program will
show non-deterministic failures.

For a programmer, isolating the causes for non-deterministic fail-
ures in a concurrent program is among the least gratifying tasks.
Hence, several approaches have been suggested that address the
problem. Static analysisattempts to identify the statements that
may happen in parallel or not [10, 11, 12, 13]; this is a prerequi-
site for detecting data races statically [18]. A wide range of meth-
ods has been proposed and evaluated for detecting deadlocks stat-
ically [4]. Dynamic analysiscan detect shared memory accesses
at run time [3, 8, 14, 16]. All these approaches require complete
knowledge about the program to be analyzed.

In this paper, we promote a different approach, focusing on the
thread schedulerather than on the program code. We look at the
differencebetween a failure-inducing schedule (as the one in Fig-
ure 4) and another schedule where the failure does not occur (as
the one in Figure3). Our goal now is to relate the failure to a small
set ofrelevant differences—differences that determine whether the
failure occurs or not.

Why do we focus on differences? The schedule in Figure5 is very
much like the failing schedule in Figure4. This schedule is suc-
cessful, though—the element 95 is properly enqueued. This tells us
that the first three thread switches at clock time 5, 7, and 8 are not
relevant for producing the failure. The only remaining difference
between the schedules in Figures4 and5 is whether threadB exe-
cutes lines 47 before threadC takes over control or not. Thus, we
can relate the failure to lines 47 in thedequeuemethod and their in-
terference withenqueue—a certainly helpful hint withinIntQueue
and an even more helpful hint ifIntQueuewere part of a larger
program.

To find such a relevant difference (and, among others, a schedule
like the one in Figure5), we use apurely experimentalapproach.
That is, rather than reasoning about the program code, we run a
series ofexperimentsunderaltered schedulesand test whether the
failure still occurs or not. The advantages are that

• the program can be treated like a black box—it suffices that
the program can be executed;

• the failure can be an arbitrary behaviour of the program; it
suffices that one can distinguish failure from success.

The disadvantage is that our approach istest-basedand hence in-
herits the disadvantages of tests when compared to static analysis—
we can not determine properties for all runs of a program like the
general absence of deadlocks. Like all tests, we require an observ-
able failure. Should a failure occur, though, we can narrow down
the cause automatically.

For this experimental approach, we need an infrastructure tocap-
ture, replay, and alterthread schedules of existing programs. Such
an infrastructure exists, it is calledDEJAVU and discussed in the
following section.

3. CAPTURING AND REPLAYING
THREAD SCHEDULES

DEJAVU1 [2] is a tool for deterministic capture and replay of Java
programs. It is part of Jalapeño [1], a research virtual machine
for Java developed at the IBM T. J. Watson Research Center. The
aim of DEJAVU is to make failuresreproducable: Once a (non-
deterministic) run is captured, it can be replayed deterministically
again and again.DEJAVU can operate in three modes:

Record. When recording,DEJAVU executes a Java program,record-
ing its input and its thread schedule to be replayed later.

Full Replay. When replaying,DEJAVU reads the original input and
the thread schedule back again and executes the program in
question such that the original (non-deterministic) behavior
is restored deterministically.

1DEJAVU stands for Deterministic Java Replay Utility.

Schedule Replay.This mode is actually a mixture between record
and full replay. In this mode, the program is executed and the
input is recorded (as in record mode). The thread schedule,
though, isreplayedfrom a previously recorded run.2

To understand howDEJAVU captures and replays thread schedules,
let us give a brief overview of Jalapeño’s thread package. On a
uniprocessor system, athread scheduleof a program is essentially
a sequence oftime slices. Each interval in this sequence contains
execution events of a single thread. Consequently, interval bound-
aries correspond to points wherethread switchesoccur and where
control passes from on thread to another.

Three factors can cause thread switches in Jalapeño

1. timer interrupts (such as inIntQueue.java),

2. timed events (such assleepand timedwait), and

3. synchronization events.

In Jalapẽno, thread switches due to timer interrupts or timed events
arenon-deterministic,while thread switches due to synchronization
events are deterministic. We will now discuss howDEJAVU records
and replays these events.

3.1 Preemptive Thread Switching
Due To Timer Interrupts

Jalapẽno employs type-accurate garbage collectors to avoid mem-
ory leaks associated with conservative garbage collection and to
allow copying garbage collection. This means that every reference
to a live object must be identified during garbage collection. Iden-
tifying such references in the frames of a thread’s activation stack
is particularly problematic. Jalapeño reference mapsspecify these
locations for predefinedsafe pointsin a method.

Definition 1 (Safe point) A safe point in Jalapẽno is a program
location where the compiler that created the method body is able
to describe where the live references exist.

At garbage-collection time, Jalapeño guarantees that every method
executing on every mutator thread is stopped at one of these safe
points so that the garbage collector can have precise information on
the references to live objects.

To make good on this guarantee, Jalapeño’s own thread package
performs quasi-preemptive thread switching only when the current
running thread is at a predeterminedyield point.

Definition 2 (Yield point) A yield point in Jalapẽno is a safe point
located at a method prologue (i.e. a function invocation) or at a
loop back-edge.

To achieve some measure of fairness among Java threads, they are
preempted at the first yield point after a periodic timer interrupt.

2The fourth possible mode, recording the thread schedule but
replaying the input is infeasible as the non-deterministic thread
schedule might alter the way the input is accessed, thus not match-
ing the replayed input.

3.2 Replaying Preemptive Thread Switches
Since preemptive thread switches occur only at yield points, count-
ing the number of yield points executed since the start of the exe-
cution can uniquely identify each thread switching event.DEJAVU
uses this cumulative number of yield points executed at each pre-
emptive thread switch as the global clock value of the thread switch.

• During record mode,DEJAVU captures and stores the global
clock values of preemptive thread switches.3

• During full replay modeandschedule replay mode, DEJAVU
reads a global clock from the recorded schedule, sets an in-
ternal counter to the read value, decrements the counter at ev-
ery yield point, then forces a thread switch when the counter
reaches zero.DEJAVU repeats this for all recorded global
clock values until the program terminates.

3.3 Replaying Other Thread Switches
To ensure deterministic threading behavior during replay,DEJAVU
records the wall-clock values read during execution in record mode
and replays them during replay. In fact, reproducing wall-clock val-
ues is a special case of replaying non-deterministic events such as
reading values from a random-number generator.DEJAVU captures
these non-deterministic input values during record mode and reuses
them during replay. Therefore,timed thread eventsthat depend on
wall-clock values, such assleepand timedwaits, will execute de-
terministically, and will reproduce the recorded behavior.

In full replay mode, one must also take care to replaysynchro-
nization events.WhenDEJAVU fully replays an application up to
a synchronization operation (say,monitorenter), it replays the en-
tire program state of the Jalapeño JVM as well, including its thread
package, which maintains thelock stateof each thread and lock
variable plus the dispatch queue of threads. Therefore, the syn-
chronization operation will succeed or fail during replay mode de-
pending on whether it succeeded or failed during record mode. If it
fails, moreover, the next thread to be dispatched during replay mode
(as determined by the thread package) will be the same thread dis-
patched during record mode. This is because the data structure used
by the thread package in selecting the next active thread will also
be exactly reproduced byDEJAVU—that is, the non-deterministic
synchronization event will be faithfully reproduced.

3.4 Replaying Generated Thread Schedules
The simple replay mechanism ofDEJAVU based on the global clock
values also offers a simple mechanism foralternate thread switch-
ing. One can simply generate a sequence of global clock values
for an alternate thread schedule. In schedule replay mode,DEJAVU
then uses these values in deciding when to force a thread switch, as
it does during full replay mode.

Obviously, a deterministic behavior of a program in schedule replay
mode is desirable—that is, for a given schedule, a program should
show the same behavior in every execution. It turns out that both
factors for thread switches are deterministic during schedule replay
mode:

1. Preemptive thread switchesare determined by the given thread
schedule.

3For optimization purposes, only thedifferencebetween two con-
secutive clock values is actually stored.

2. Synchronization eventsare deterministic in Jalapeño.

There may be other sources for non-determinism; a program may
read random values from external devices, for instance. Such sources
will be recordedin schedule replay mode and be replayed deter-
ministically in full replay mode. If the input in schedule replay
mode is fixed, though (that is, the program can be automatically
tested), the program behavior depends uniquely on the given thread
schedule.

This is howDEJAVU becomes a foundation for our approach: We
can useDEJAVU as testbedto determine how different schedules
affect the outcome of the program.

4. NARROWING
SCHEDULE DIFFERENCES

In this section, we show how to isolate failure-inducing schedule
differences. We start with some formal notation for thread sched-
ules and differences, abstracting somewhat fromDEJAVU.

4.1 Identifying Thread Schedules
Let us start with a denotation of thread schedules. Within this paper,
we are only interested in non-deterministic thread switches caused
by timer interrupts. (As discussed in Section3.4, both timed events
and synchronization events are deterministic inDEJAVU.) Hence,
we need not care about identifying specific threads; we denote
thread schedules simply by the clock times where thread switches
occur.

Definition 3 (Thread Schedule) LetT be the set of all thread sched-
ules. Athread scheduleT ∈ T with T = 〈t1, t2, . . . , tn〉 is a list
of n clock times t1, . . . , tn. Each ti is the clock time where a non-
deterministic thread switch caused by a timer interrupt occurs.

As an example, consider Figure3. Here, we assume a simple log-
ical clock counting executed statements. As thread switches occur
at clock times 6 and 12, the thread schedule in Figure3 can thus be
denoted asT = 〈6, 12〉.

For convenience, we want schedules to be ordered (orvalid):

Definition 4 (Valid Schedule) A thread schedule T= 〈t1, . . . , tn〉
is calledvalid if ti ≤ ti+1 holds for all1≤ i ≤ n.

4.2 Testing Thread Schedules
We assume a program run is uniquely determined by the specific
thread schedule—that is, all other circumstances stay unchanged
(and are being faithfully replayed byDEJAVU or a similar tool).
Consequently, we can distinguish the outcome of a program run
depending only on the schedule. According to thePOSIX 1003.3
standard for testing frameworks [9], we distinguish three outcomes:

• The testsucceeds(PASS, written here as✔)

• The test hasproduced the failureit was intended to capture
(FAIL , written here as✘)

• The test producedindeterminate results(UNRESOLVED, writ-
ten here as).4

4POSIX 1003.3 also lists UNTESTED and UNSUPPORTEDoutcomes,
which are of no relevance here.

We assume the existence of an (automated)testing function:

Definition 5 (stest) The function stest: T → {✘, ✔, } deter-
mines for a thread schedule T∈ T whether some specific failure
occurs (✘) or not (✔) or whether the test is unresolved ().

In case of theIntQueueclass, we would for instance definestestto
return✔ if the queue holds the value 95; to return✘ if the queue is
empty, and to return in all other cases.

Let us now assume that for some program, we have a passing run,
determined by a scheduleT✔, and a failing run, determined by a
scheduleT✘. (In the IntQueueexample,T✔ = 〈6, 12〉 andT✘ =

〈5, 7, 8, 10, 15〉 hold.) The notions of “passing” and “failing” run
are determined by the test outcome:

Axiom 6 (Passing and Failing Runs)stest(T✔) = ✔ and
stest(T✘) = ✘ hold.

In the IntQueueexample, Axiom6 holds as demonstrated in Fig-
ures3 and4.

Axiom 7 (Invalid Schedule) If T is an invalid schedule,
stest(T) = holds.

4.3 Identifying Differences
Let us now turn to thedifferencebetween two schedules—the dif-
ference we eventually want to narrow. Formally, a difference is a
mappingδ that can be applied to one schedule (in our case,T✔) to
obtain the other schedule (T✘):

Definition 8 (Schedule Difference)Aschedule differencebetween
two schedules T✔ and T✘ is a mappingδ : T → T with δ(T✔) =

T✘. The set of all differences is denoted asC = T T .

What isδ made of? In this paper, we assume a simple decomposi-
tion. First, we decomposeδ into a number ofthread switch changes
δi , each representing the difference between thei -th thread switch
of T✔ and T✘. For convenience, we assume that both schedules
have the same length; this can be achieved bypaddingschedules
with “dummy” thread switches that would occur after the execu-
tion of the program in question ended.

In our example, we end up with the “padded” scheduleT✔ =

〈6, 12, 17, 17, 17〉 (assuming execution ends at clock time 16) and
the original scheduleT✘ = 〈5, 7, 8, 10, 15〉. The differenceδ is
δ = δ1 ◦ · · · ◦ δ5. Applying δi changest✔i to t✘i ; for example,
δ2(T✔) = 〈6, 7, 17, 17, 17〉 holds.

Definition 9 (Difference Decomposition)A schedule differenceδ
between two schedules T✔ = 〈t✔1, . . . , t✔n〉 and T✘ = 〈t✘1, . . . , t✘n〉

is defined asδ = δ1 ◦ δ2 ◦ · · · ◦ δn where

• eachδi : T → T maps t✔i to t✘i ; that is,
δi (T✔) = 〈t✔1, . . . , t✔i−1, t✘i , t✔i+1, . . . t✔n

• the composition◦ : C × C → C is defined as
(δi ◦ δ j)(T) = δi

(
δ j (T)

)
.

To get precise results, we want the differences to be as small as
possible. Hence, we decompose eachδi into a number ofatomic
changesδi,1, δi,2, . . . , each narrowing the difference between the
i -th thread switch ofT✔ andT✘ by one clock time unit (or, in other
words,moving t✔i one clock unit towardst✘i).

In our example, ast✔2 = 12 andt✘2 = 7, δ2 is composed of
|t✔2 − t✘2| = 5 atomic changesδ2 = δ2,1 ◦ · · · ◦ δ2,5. Applying
any δ2, j to T✔ decreasest✔2 by one: for example,δ2,1(T✔) =

〈6, 11, 17, 17, 17〉 holds.

Definition 10 (Atomic Decomposition) The differencesδi in Def-
inition 9 can be decomposed further into atomic differences

δi = δi,1 ◦ δi,2 ◦ · · · ◦ δi,|t✔ i−t✘ i |

where eachδi, j is defined as

δi, j (T✔) = δi, j
(
〈t✔1, t✔2, . . . , t✔n〉

)
= 〈t✔1, t✔2, . . . , t✔i−1, t✔

′
i , t✔i+1, . . . , t✔n〉

where t✔′i is the value altered byδi, j ; that is,

t✔
′
i =

{
t✔i + 1 if t✔i < t✘i

t✔i − 1 if t✔i > t✘i

To round things up, let us prove the decomposition actually works:

Corollary 11 (δ maps) Given two schedules T✔ and T✘ of length n
and a thread differenceδ = δ1 ◦ . . . δn with δi and δi, j defined
according to Definitions8, 9, and10, thenδ(T✔) = T✘ holds.

PROOF. Each δi, j , as defined in Definition10, decreases the
difference between t✔i and t✘i by one. Eachδi consists of|t✔i−t✘i |

elementsδi, j (Definition9). Consequently, eachδi makes t✔i equal
to t✘i , and thusδ maps T✔ to T✘.

The number of atomic deltas can quickly become very large; in fact,
the number is quadratic in proportion to the length of the schedules
to be compared.

Corollary 12 (Number of Atomic Deltas) For two thread sched-
ules T✔ and T✘ of length n, the number of atomic differencesδi, j is∑n

i=1 |t✔i − t✘i |.

Between the scheduleT✔ in Figure3 and the scheduleT✘ in Fig-
ure4, there are|6−5|+|12−7|+|17−8|+|17−10|+|17−15| =
1+5+9+7+2= 24 atomic differences, each moving one thread
switch by one clock time closer to the other.

4.4 Testing Differences
Having established a notation for schedule differences, let us now
define a functiontest that appliesa number of differences to the
passing schedule and tests the program in question under the altered
schedule. For convenience, we define sets of atomic differences:

Definition 13 (c✔, c✘) Let T✔ and T✘ be given, valid thread sched-
ules; letδ be their difference as described. The set c✘ is defined as
the set of atomic differences inδ; the set c✔ is defined as c✔ = ∅.

Tests δ1,1 δ2,1δ2,2δ2,3δ2,4δ2,5 δ3,1δ3,2δ3,3δ3,4δ3,5δ3,6δ3,7δ3,8δ3,9 δ4,1δ4,2δ4,3δ4,4δ4,5δ4,6δ4,7 δ5,1δ5,2 Schedule Outcome
T✔ · 〈6, 12, 17, 17, 17〉 ✔
T✘ 2 〈5, 7, 8, 10, 15〉 ✘

(1) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 · · · · · · · · · 〈5, 7, 8, 17, 17〉 ✔
(2) 2 · · 〈5, 7, 8, 10, 17〉 ✘
(3) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 · · · · · 〈5, 7, 8, 13, 17〉 ✔
(4) 2 · · · 〈5, 7, 8, 11, 17〉 ✔

Result 2

Figure 6: How Delta Debugging isolates a failure-inducing thread switch. Delta Debugging gradually narrows the difference between
T✔ (Figure 3) and T✘ (Figure 4) until only one difference remains: Thread switch #4 at clock time 10 (instead of 11) causes the failure.

We can now define atest function testthat determines the outcome
for a given set of differences. This means thattest must run the
program under the givengeneratedschedule.

Definition 14 (test) The function test: 2c✘ → {✘, ✔, }

is defined as follows: Let c⊆ c✘ be a test case with
c = {δ1,1, δ2,1, . . . , δn,mn}. Then, test(c) = stest

(
(δ1,1 ◦ δ2,1 ◦

· · · ◦ δn,mn)(T✔)
)

holds.

Using Axiom6, we can deduce the outcomes oftest(c✔) andtest(c✘):

Corollary 15 (Passing and failing test case)The following holds:

test(c✔)= test(∅) = stest(T✔) = ✔
test(c✘)= test

(
{δ1,1, δ2,1, . . . , δn,mn}

)
= stest

(
δ(T✔)

)
= ✘

4.5 Isolating Relevant Differences
Our next step now is to isolate aminimalset of differences that is
relevant to produce the error. Unfortunately, this comes at a price:
Relying ontestalone, isolating a minimal set of differences is an
NP-complete problem. The reason is simple: In the worst case,
each subset ofc✘ must be tested, andc✘ has 2|c✘| subsets.

In practice, though, we are already happy with anapproximation:
What we want is a set of atomic differences where each single re-
maining difference isrelevantfor the failure—that is, it cannot be
removed without making the failure disappear. We call this prop-
erty1-minimality,defined as

Definition 16 (1-minimal difference) Let c′✔ and c′✘ be two sets
of differences. Their difference1 = c′✘ − c′✔ is 1-minimal if

∀δi ∈ 1 · test
(
c′✔ ∪ {δi }

)
6= ✔ ∧ test

(
c′✘ − {δi }

)
6= ✘

holds.5

To determine the setsc′✔ andc′✘ as well as their 1-minimal differ-
ence, we use theDelta Debuggingapproach. Delta Debugging [21]
is a technique that automatically isolates failure-inducing circum-
stances; its main application is to simplify failure-inducingpro-
gram input.The basic idea of Delta Debugging is to systematically
narrow the difference between a passing and a failing program run,
using test outcomes to direct the narrowing process.

Let us illustrate the use of Delta Debugging by applying it to our
well-known example, as shown in Figure6. At the top, we see the
24 atomic differences betweenT✔ and T✘. The first and second
line shows the initial testsT✔ (no difference applied, “·”) and T✘

5A− B denotes the set difference betweenA andB.

(all differences applied, “2”), the resulting schedules and the test
outcome. Now, Delta Debugging starts.

(1) The Delta Debugging algorithm splits the initial difference
1 = c✘ = {δ1,1, . . . , δ5,2} into two subsets11 ∪ 12 =
1 with 11 = {δ1,1, . . . , δ3,9} and12 = {δ4,1, . . . , δ5,2}.
First,11 is tested. The resulting schedule is〈5, 7, 8, 17, 17〉.
With this schedule, threadsB andC do not interfere. The
test passes (test(11) = ✔), so we have narrowed down the
failure-inducing difference to thread switch #4 and #5.

(2) The remaining set of differences is again split into two halves.
In this example, we assume an “intelligent” splitting that
splits differences according to the thread switches they are
applied upon. It turns out that applying the differences for
thread switch #4 alone causes the failure; whether thread
switch #5 occurs immediately after threadC has finished en-
queuing or later makes no difference.

(3) The remaining failure-inducing difference is now whether
thread switch #4 occurs at clock time 10 or 17. Again, Delta
Debugging splits the set of differences in two; making thread
switch #4 occur at clock time 13 makes the program pass the
test. This schedule is the one shown in Figure5.

(4) Finally, the remaining difference is again split in two—and
the final passing test has reduced the difference to a mini-
mum. The failure is determined by whether thread switch #4
occurs at clock time 10 (failure) or clock time 11 (success).
Looking up the involved code pinpoints the error:C begins
enqueuing beforeB has finished updatinghead.

In this textbook example, Delta Debugging has required only 4 tests
to isolate a minimal failure-inducing difference between a passing
schedule and a failing schedule; in fact, Delta Debugging acted like
a simple binary search. This may not necessarily be the case in all
situations, as the following problems may occur:

Invalid schedules. In Figure6, applying onlyδ5,1 andδ5,2 would
result in theinvalid schedule〈6, 12, 17, 17, 15〉 and thus in a
test outcome of . Delta Debugging would then simply test
the next alternative. Since an actual execution of the program
is not required, such unresolved outcomes are cheap.

Other failures. A valid schedule may uncover another program
behavior—neither the passing one fromT✔ nor the failing
one fromT✘. Such outcomes can either be treated as failures
(in case it does not matter which failure is induced by the
difference to be found) or as unresolved outcomes (in which
case Delta Debugging tries the next alternative).

Let C be the set of all possible circumstances (i.e. schedules). Lettest: 2C → {✘, ✔, } be a testing function that determines for a test case
c ⊆ C whether some given failure occurs (✘) or not (✔) or whether the test is unresolved ().

Now, letc✔ andc✘ be test cases withc✔ ⊆ c✘ ⊆ C such thattest(c✔) = ✔ ∧ test(c✘) = ✘. c✔ is the “passing” test case (typically,c✔ = ∅

holds) andc✘ is the “failing” test case.

The Delta Debugging algorithm dd(c✔, c✘) isolates the failure-inducing difference betweenc✔ and c✘. It returns a pair(c′✔, c′✘) =

dd(c✔, c✘) such thatc✔ ⊆ c′✔ ⊆ c′✘ ⊆ c✘, test(c′✔) = ✔, andtest(c′✘) = ✘ hold andc′✘ − c′✔ is 1-minimal—that is, no single circumstance
of c′✘ can be removed fromc′✘ to make the failure disappear or added toc′✔ to make the failure occur.

Thedd algorithm is defined asdd(c✔, c✘) = dd2(c✔, c✘, 2) with

dd2(c′✔, c′✘, n) =



dd2(c′✔, c′✔ ∪1i , 2) if ∃i ∈ {1, . . . , n} · test(c′✔ ∪1i) = ✘

dd2(c′✘ −1i , c′✘, 2) if ∃i ∈ {1, . . . , n} · test(c′✘ −1i) = ✔

dd2
(
c′✔ ∪1i , c′✘, max(n− 1, 2)

)
else if∃i ∈ {1, . . . , n} · test(c′✔ ∪1i) = ✔

dd2
(
c′✔, c′✘ −1i , max(n− 1, 2)

)
else if∃i ∈ {1, . . . , n} · test(c′✘ −1i) = ✘

dd2
(
c′✔, c′✘, min(2n, |1|)

)
else ifn < |1|

(c′✔, c′✘) otherwise

where1 = c′✘ − c′✔ = 11 ∪12 ∪ · · · ∪1n with all 1i pairwise disjoint, and∀1i · |1i | ≈ (|1| /n) holds.
The recursion invariant fordd2 is test(c′✔) = ✔ ∧ test(c′✘) = ✘ ∧ n ≤ |1|.

Figure 7: The Delta Debugging algorithm in a nutshell. The functiondd isolates the failure-inducing difference between two test
casesc✔ and c✘. For a full description of the algorithm and its properties, see [21].

Multiple relevant thread switches. It may well be a failure is in-
duced by applyingmultiple schedule differences in conjunc-
tion only and that applying a subset leads to unresolved test
outcomes. Delta Debugging isolates this 1-minimal set of
thread differences, but requires a larger number of tests.

In general, as a program is supposed to run under any given thread
schedule, we expect very few unresolved test outcomes (and very
few failure-inducing schedule differences), so the number of tests
performed by Delta Debugging will typically be close to a binary
search—that is, approximately log2(n) tests forn atomic differ-
ences. Sincen grows only quadratically with the length of the
schedules, the number of tests will not grow without bounds. The
formal definition of the Delta Debugging algorithm is shown in Fig-
ure 7; for a full discussion of the algorithm and its complexity,
see [21].

Let us now put this approach into practice. We have the tool (DE-
JAVU), we have the method (Delta Debugging)—but we also need
two schedules, a passing and a failing one. The next section dis-
cusses how to obtain these schedules.

5. GENERATING ALTERED SCHEDULES
Let us now assume we have a program test that fails. How do we
get analternate thread schedulethat passes the test? Or vice versa:
assume we have a program that passes. Can we try to obtain a
schedule where the program fails?

One approach to obtain such alternate schedules could be togener-
ate random thread schedules,replaying the program usingDEJAVU
with these schedules until an alternate outcome is found. However,
we prefer an alternate schedule that is asclose as possibleto the
original schedule, as this reduces the number of tests required to
narrow down the failure-inducing difference.

Hence, we do not generate completely random schedules, but start

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

N
um

be
r

of
 th

re
ad

 s
w

itc
he

s

�

Time

Distribution of thread switches

Original schedule
Generated schedules

Figure 8: A sampling of 50,000 generated random sched-
ules. Schedules are generated by moving thread switches, with
smaller offsets being more likely than larger offsets.

from anexisting scheduleinstead. Starting from a given schedule

T = 〈t1, t2, . . . , tn
〉

,

we generatefuzz schedulesof the form

T ′ =
〈
f (t1), f (t2), . . . , f (tn)

〉
,

where f (t) is aperturbation functionthat randomly returns some
time interval t ′ = f (t) with t ′ ∈ [0;∞] with t being the most
likely outcome—a simpleGaussian distributioncentered aroundt ,
as depicted in Figure8.

We start with a very narrow distribution around the thread switches
of the original schedule, and continually widen the distribution (and
thus increase the differences to the original schedule) until an alter-
nate outcome is found. Eventually, with a sufficient wide Gaussian
distribution, we obtain completely random schedules.

25 public class Scene { ...
44 private static int ScenesLoaded = 0;
45 (more methods. . .)
81 private
82 int LoadScene(String filename) {

84 int OldScenesLoaded = ScenesLoaded;
85 (more initializations. . .)
91 infile = new DataInputStream(...);
92 (more code. . .)

130 ScenesLoaded = OldScenesLoaded + 1;
131 System.out.println("" +

ScenesLoaded + " scenes loaded.");
132 ...
134 }

135 ...
733 }

Figure 9: Introducing a race condition in 205 raytrace. The
code in bold face, added to the original code, introduces a race
condition on ScenesLoaded.

Unfortunately, the chances of obtaining an alternate schedule can-
not be determined in advance. Confidence in a program increases,
though, with the number of alternate schedules tested. As soon as
an alternate schedule is found, we can pass it over to Delta Debug-
ging to isolate the failure-inducing schedule difference.

6. A CASE STUDY
Let us now put all building blocks together and apply them on a
real program. Test #205 of theSPEC JVM98Java test suite [17],
named205 raytrace is a multi-threaded ray-tracing program, pro-
cessing a 3D-scene depicting a dinosaur. Being part of a test suite,
205 raytracehas no known errors; a failure would typically indi-
cate an error in the Java tool chain being tested.

In 205 raytrace, the file Scene.javacontains an interesting com-
ment. Each ray-tracing thread calls the methodLoadSceneto be
rendered once. This can lead to problems if shared data is ac-
cessed, which is whyLoadSceneis marked assynchronized. The
comment says that the programmer attempted to change the code
“so the MT [multi-threaded] version could have the data only read
once, but this did not work.” We simulated this failure by making
LoadScenenon-synchronized (removing the keyword) and intro-
ducing a simple observable race condition inLoadScene, as shown
in Figure9. Whenever a thread switch would occur during exe-
cution of LoadScene, causing the method to be called again, the
ScenesLoadedvariable would not be properly updated.

This code change leads to a failure the first time it is executed—the
shared variableScenesLoadednever increased to more than 1. Us-
ing DEJAVU, we recorded the failing thread scheduleT✘ (contain-
ing 3770 thread switches);DEJAVU was able to replay the failing
schedule (and the failure) accurately.

Using the fuzz approach described in Section5, we generated ran-
dom schedules, starting from the failing one, until, after 66 tests,
we had generated an alternate scheduleT✔ where the failure would
not occur. BothT✔ andT✘ are shown in Figure10—it turns out that
T✔ has a far higher granularity thanT✘, meaning that the amount
of time between thread switches is larger.

ComparingT✔ andT✘ reveals that the average distance between a
thread switch inT✔ and the matching thread switch inT✘ is more
than a million yield points. Overall, 3,842,577,240 atomic deltas,

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

1.6e+08

1.8e+08

0 10 20 30 40 50 60 70 80 90 100

T
im

e
(#

 y
ie

ld
 p

oi
nt

s)

�

Thread switches

Thread Schedule

Failing Schedule
Passing Schedule

Figure 10: A passing and a failing schedule of theSPEC JVM98
ray-tracer program. This difference has to be minimized in
order to isolate the failure cause.

1e+11

1e+12

1e+13

1e+14

0 5 10 15 20 25 30 35 40 45 50

D
el

ta
s

�

Tests executed

Delta Debugging Log

cpass
cfail

Figure 11: Narrowing down the failure-inducing thread switch.
After only 50 tests, Delta Debugging isolates the single failure-
inducing difference from 3,842,577,240 atomic differences.

each moving a thread switch by one yield point, have to be applied
to turn T✔ into T✘. Some of these 3.8 billion schedule differences
are relevant for the failure. So, as described in Section4, we used
Delta Debugging to narrow down the difference.

The Delta Debugging run is summarized in Figure11. As in Fig-
ure6, we grouped deltas according to their respective thread switch.
After just 12 tests (or 408 seconds)6, only one group of deltas re-
mained, all applying to thread switch #33. Yet, this group still con-
sisted of 53,976,462 deltas—that is, after 12 tests, the two sched-
ules were still 53 million yield points apart. The later 38 tests sub-
sequently halve this distance, such that eventually, after 50 tests (28
minutes), only one difference remains: The failure occurs if and
only if thread switch #33 occurs at yield point 59,772,127 (instead
of 59,772,126).

But which is the code that is executed at yield point 59,772,127?
For this purpose, we extendedDEJAVU by a “query mode”, report-

6A single DEJAVU-controlled run of205 raytracerequires 34 sec-
onds of real time on a powerpc-ibm-aix4.3.3.0 machine. Invalid
schedules have been ignored.

ing the current backtrace for a given set of yield points. It turns out
that yield point 59,772,127 occurs at the location
spec.benchmarks.205 raytrace.Scene.LoadScene (Scene.java:91),
that is, at line 91 ofScene.java.

Line 91 ofScene.javais the first method invocation (and thus yield
point) after the initialization ofOldScenesLoaded. Likewise, the
alternative yield point 59,772,126 (with a successful test outcome)
is the invocation ofLoadSceneat line 82 ofScene.java—just be-
fore the variableOldScenesLoadedis initialized. So, by narrowing
down the failure-inducing schedule difference to one single differ-
ence, we have successfully re-discovered the location where we
originally introduced the error.

What does this case study tell us? For one thing, that Delta Debug-
ging is able to handle evenvery large schedule differencesand still
isolate the failure-inducing difference.

The second thing is that Delta Debugging treated205 raytracelike
a black box—only the schedule was subject to observation and al-
teration. Nonetheless, we could easily associate the failure-inducing
thread switch with the appropriate piece of code.

The third observation is that Delta Debugging isvery efficient when
applied to thread schedules,essentially working like a binary search.
This is so because (except from invalid schedules, which can be ex-
cluded right away) there are few unresolved test outcomes, if any.
And this, again, is so because programs are “mostly correct” with
regard to the thread schedule—it is unlikely that there is a third out-
come besides passing the test and showing the failure in question.
(And even so, such third outcomes would frequently be classified
as successes or failures.)

The downside of our experimental approach, of course, is that a
significant number of (automated) tests are required—both for find-
ing alternate schedules, and for isolating the failure-inducing dif-
ference. On the other hand, our approach is fully automatic and,
furthermore, orthogonal to analytical approaches to detect trouble
spots in threaded programs. These will be discussed in the next
section.

7. RELATED WORK
As stated in the introduction, we are unaware of any other tech-
nique that would automatically isolate failure-inducing differences
between schedules. Nonetheless, there is several related work:

Manipulating schedules. The core idea of this paper, altering sched-
ules to isolate failure causes, has first been suggested by
Stone [19] asspeculative replay. Her idea was to “reduce the
investigation of all possible [schedule] orderings to that of a
few selected partial orderings” by guiding the replay process
according to (human-inferred) thread dependencies. In con-
trast, our method is fully automatic; instead of having pro-
grammers speculate about thread dependencies, we isolate
the failure-inducing schedule difference(s) automatically.

Testing alternate schedules.The generation of alternative thread
schedules to trigger failures in concurrent programs has first
been suggested by Edelstein et al. [7]. In contrast to replay
altered schedules using a replay tool likeDEJAVU, theyseed
the Java byte code with randomsleep, yield, orpriority prim-
itives. Their focus, though, is on obtainingcoveragerather

than isolating failure causes. In principle, the seeding tech-
nique could be a good alternative to alter schedules where a
DEJAVU-like tool is not available; nonetheless, deterministic
schedule replay is a must.

Static analysis. Obviously, it is preferable to detect as many er-
rors in the source code as possible rather than inferring errors
from non-deterministic failures. In general, only aconserva-
tive approximationis feasible. For instance, one can have
either context-sensitive program analysis or synchronization
statements, but not both [15]. (Context-insensitiveprogram
analysis under concurrency is feasible, though [10]).

Several approximations do exist that detect which statements
may happen in parallel (concurrency analysis) [12, 13] or
may not (non-concurrency analysis) [11]. Also, several ded-
icated analysis methods for detectingdeadlockshave been
suggested and evaluated [4]. Like any analysis, these meth-
ods require complete knowledge of the whole program. The
resulting static information can easily be exploited in both
Delta Debugging and schedule generation by focusing the
search on potential trouble spots.

Dynamic analysis. If one is willing to pay the overhead,data races
like the examples in this paper can also be detected dynam-
ically, for instance by monitoring all shared-memory refer-
ences [8, 16]. The overhead of dynamic detection can be
considerably reduced by combining it with static analysis [3,
14]. However, data races are just one class of problems in-
duced by concurrency, and each problem class must be ad-
dressed by an individually designed dynamic analysis. Our
approach, in contrast, is not restricted to a specific problem
class—but it requires that the concurrency problem manifests
itself as a failure.

8. CONCLUSION AND FUTURE WORK
We have presented a method that automatically isolates the failure-
inducing difference(s) between a passing and a failing schedule,
thus pinpointing the cause of a failure. Our method is purely ex-
perimental, meaning that analysis of the program in question is not
required. It requires the ability to execute a program under altered
thread schedules, such as provided byDEJAVU, and it requires a
small number of automated tests. We expect that the basic observa-
tions from both the shared-queue example and the ray-tracer case
study can easily be transferred to larger programs, too, as we expect
programs to be “mostly correct” with regard to the thread schedule.

We recommend that capturing, replaying and isolating thread sched-
ules be an integrated part of testing and debugging concurrent ap-
plications. Each time a test fails, delta debugging could be used
to isolate the failure-inducing schedule difference. Given a cap-
ture/replay tool likeDEJAVU, the approach presented in this paper
is straightforward and easy to implement.

There is more to do, though. Our future work will concentrate on
the following topics:

Cause-effect chains.Formally, the isolated schedule differences
areroot causesof the failure—they are a cause because the
failure occurs if and only if the differences are applied, and
they are a root cause because they are not an effect of some
other event. Nonetheless, the isolated differences cause the
failure only in conjunction with other root causes, such as the
program code or its input.

We expect that in most cases, the code affected by the sched-
ule differences is directly connected to the error. However,
it may well be that the affected code is only the beginning
of some cause-effect chain within the program run, trigger-
ing a failure that must be fixed at a very different location.
Such cause-effect chains can be isolated by applying Delta
Debugging on the program state [20].

Other circumstances. There may be other circumstances thatin-
terfere with the thread schedule. For instance, a specific
thread schedule may cause the program to read some dif-
ferent input, resulting in an error. In such a situation, it is
unclear whether the difference in the schedule or the differ-
ence in the input should be called “the” cause of the error.
In principle, differences between thread schedules and dif-
ferences between input can be handled the same way using
Delta Debugging. Nonetheless, such interferences must be
further examined.

Experiments vs. analysis.In general, research in program under-
standing has focused onanalytical approachesso far. How-
ever, reasoning about a system is only one way to gather
knowledge. The other way is experimentation. Automated
experimental approacheslike Delta Debugging offer addi-
tional means to isolate and understand the concrete behavior
of systems. In future, we expect a fruitful intertwining of
static analysis, dynamic analysis and automated experiments
to widely automate program comprehension.

More case studies.The intertwining of different failure-inducing
circumstances must be thoroughly examined in practice; the
same applies for future combinations of analytical and ex-
perimental approaches. All these approaches must be thor-
oughly evaluated using real-life concurrent programs with
(hopefully) real-life errors.DEJAVU is currently being ex-
tended from a prototype to a full product that will be able to
capture and replay large-scale Java programs, including the
GUI. As soon as this is done, we will have access to a wealth
of case studies—and then ease the loathed debugging of con-
current systems.

Acknowledgments. This work was carried out during two visits
of A. Zeller at IBM T. J. Watson Research Center in October 2000
and October 2001; support of IBM Research is gratefully acknowl-
edged. Jens Krinke and Holger Cleve provided valuable comments
on earlier revisions of this paper.

This research was supported by Deutsche Forschungsgemeinschaft,
grant Sn 11/8-1.

Further information on Delta Debugging andDEJAVU is available
online [5, 6].

9. REFERENCES
[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D.

Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel,
D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar,
M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapeño virtual machine.IBM
System Journal, 39(1):211–238, Feb. 2000. Available online at
http://www.research.ibm.com/journal/sj39-1.html.

[2] J.-D. Choi, B. Alpern, T. Ngo, M. Sridharan, and J. Vlissides. A
perturbation-free replay platform for cross-optimized multithreaded
applications. InProceedings of the 15th IEEE International Parallel
& Distributed Processing Symposium, April 2001.

[3] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and
M. Sridharan. Efficient and precise datarace detection for
multithreaded object-oriented programs. InProceedings of ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), June 2002. To appear.

[4] J. C. Corbett. Evaluating deadlock detection methods for concurrent
software.IEEE Transactions on Software Engineering,
22(3):161–180, 1996.

[5] Delta debugging web site.http://www.st.cs.uni-sb.de/dd/.

[6] Dejavu web site.http://www.research.ibm.com/jalapeno/dejavu/.

[7] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur. Multithreaded
Java program test generation.IBM Systems Journal, 41(1):111–125,
Feb. 2002. Available online at
http://www.research.ibm.com/journal/sj41-1.html.

[8] K. Havelund. Using runtime analysis to guide model checking of Java
programs. InProc. of the 7th SPIN Workshop on Model Checking of
Software, volume 1885 ofLecture Notes in Computer Science, pages
245–264, Stanford University, California, Aug. 2000. Springer.

[9] IEEE, New York.Test Methods for Measuring Conformance to
POSIX, 1991. ANSI/IEEE Standard 1003.3-1991. ISO/IEC Standard
13210-1994.

[10] J. Krinke. Static slicing of threaded programs. InProc. ACM
SIGPLAN/SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (PASTE), pages 35–42, Montreal, Canada,
June 1998.

[11] S. P. Masticola and B. G. Ryder. Non-concurrency analysis. In
Proceedings of the Fourth ACM SIGPLAN Symposium on on
Principles and Practices of Parallel Programming, pages 129–138,
May 1993.

[12] G. Naumovich and G. S. Avrunin. A conservative data flow algorithm
for detecting all pairs of statements that may happen in parallel. In
Proceedings of the ACM SIGSOFT Sixth International Symposium on
the Foundations of Software Engineering (FSE), pages 24–34,
November 1998.

[13] G. Naumovich, G. S. Avrunin, and L. A. Clarke. An efficient
algorithm for computingMHP information for concurrent java
programs. InProceedings of the Seventh European Software
Engineering Conference and Seventh ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE), pages 338–354,
September 1999.

[14] C. v. Praun and T. Gross. Object race detection. InACM Conference
on Object-Oriented Programming Systems, Languages, and
Applications, 2001.

[15] G. Ramalingam. Context-sensitive synchronization-sensitive analysis
is undecidable.ACM Transactions on Programming Languages and
Systems, 22(2):416–430, March 2000.

[16] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E.
Anderson. Eraser: A dynamic data race detector for multi-threaded
programs.ACM Transactions on Computer Systems, 15(4):391–411,
1997.

[17] Standard Performance Evaluation Corporation (SPEC), Warrenton,
Virginia. JVM98 Benchmarks, 1.03 edition, 1999.

[18] N. Sterling. Warlock: A static data race analysis tool. InUSENIX
Winter Technical Conference, pages 97–106, 1993.

[19] J. M. Stone. Debugging concurrent processes: A case study. In
Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 145–154, June
1988.

[20] A. Zeller. Isolating cause-effect chains from computer programs.
Technical report, Universität des Saarlandes, FR Informatik, Mar.
2002. Submitted for publication; available online [5].

[21] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input.IEEE Transactions on Software Engineering,
28(2):183–200, Feb. 2002.

http://www.research.ibm.com/journal/sj39-1.html
http://www.st.cs.uni-sb.de/dd/
http://www.research.ibm.com/jalapeno/dejavu/
http://www.research.ibm.com/journal/sj41-1.html

	Introduction
	A Simple Example
	Capturing and Replaying Thread Schedules
	Preemptive Thread Switching
	Replaying Preemptive Thread Switches
	Replaying Other Thread Switches
	Replaying Generated Thread Schedules

	Narrowing Schedule Differences
	Identifying Thread Schedules
	Testing Thread Schedules
	Identifying Differences
	Testing Differences
	Isolating Relevant Differences

	Generating Altered Schedules
	A Case Study
	Related Work
	Conclusion and Future Work
	REFERENCES

