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ABSTRACT In this paper, we present a novel approach that brings significant

Consider a multi-threaded application that occasionally fails due to @dvances in addressing these problems. Our approach uses four
non-determinism. Using thREJAVU capture/replay tool, it is pos- ~ automated building blocks, illustrated in Figure

sible to record the thread schedule and replay the application in a

deterministic way. By systematically narrowing down the differ- o

ence between a thread schedule that makes the program pass arldéterministic replay. The DEJAVU tool [2] captures the execu-
another schedule that makes the program fail, the Delta Debugging tion of non-deterministic Java applications and allows the
approach can pinpoint the error location automatically—namely, programmer taeplay these executions deterministically—

the location(s) where a thread switch causes the program to fail. In thatis, input and thread schedules are reconstructed from the
a case study, Delta Debugging isolated the failure-inducing sched- recorded execution. This effectively solves the problem of
ule difference from 3.8 billion differences in only 50 tests. reproducing failures deterministically.

Test case generationOne of DEJAVU's features is that it allows
the application to be executed under a given thread schedule.
We use this to generawternate schedulesFor instance,
we can alter an original passing (or failing) schedule until an
alternate failing (passing) schedule is found.

Categories and Subject Descriptors

D.2.5 [Software Engineering: Testing and Debugging-debug-
ging aids, diagnostics, testing tools, tracjig.1.3 [Programming
Techniqueg: Concurrent Programming

1. INTRODUCTION

The increasing popularity of the Java programming language has
made parallel programming more popular than ever. Unfortunately,
concurrent programs are notoriously difficult to debug. Both the re-

production of failures and the subsequent isolation of errors impose
additional challenges when applied to concurrent programs:

Isolating failure causes. We useDelta Debugging[21] to auto-
matically isolate the failure cause in a failure-inducing thread
schedule. The basic idea is to systematicadyrow the dif-
ferencebetween the passing and the failing thread schedule,
until only a minimal difference remains—a difference such
as “The failure occurs if and only if thread switch #3291 oc-
curs at clock time 47,539.” This effectively solves the isola-

) _ o tion problem.
How do | reproduce a failure? Consider a concurrent application

being run on some fixed input several times. Despite the in- Relating causes to errors.Each of the resulting thread differences
put being constant, the application may fail occasionally. The occurs at a specific location of the program—for instance,
reason isnon-determinism:the thread scheduldor thread thread switch #3291 may occur at line 20@d.java—giving
execution order) can vary from run to run. While having non- a good starting point for locating thread interferences. In case
determinism is convenient for parallel programming, non- understanding of the remaining behavior is requiBsilAVU
determinism makes it hard to reproduce a failure. can be used to replay the resulting thread schedules.

How do | isolate the error? Even if we can reproduce a failing

program run deterministically, we still do not know tteuse Altogether. th ilding blocks widel tomate the testing an
of the failure How come one thread schedule makes the ogether, these building blocks widely automate the testing and

. debugging process; at the same time, our approgoirédy experi-
program fail, and another one makes the program pass? Amental,meaning that no knowledge of the program text is required.

SWe estimate that our combined approach will considerably ease the

or more, yet only few of these switches may induce the spe- debugging of multi-threaded applications

cific interaction between threads that make the program fail.

This paper is organized as follows: We start with a motivating
example in Sectior2. Section3 presents howbEJAVU captures

and replays thread schedules. In Sectiprve show how to iso-

late failure-inducing thread schedules with Delta Debugging. In
Section5, we discuss the generation of alternate thread schedules.
Section6 presents the results of a case study, using a real-life Java
program. Sectior? discusses related work; SectiBrcloses with

the conclusion and future work.



! 1. Deterministic replay 1 class IntQueue {

2 /I The queue holds integers in the range
;‘zfgglﬁg — 3 /I of [1..numberOfElements - 1]
| Applcation_| 4 static final int numberOfElements = 100;
DejaVu (record) 5
6 /I link[N] is N’'s successor in the queue
7 int link [] = new intflnumberOfElements];
8
""""""""""""""""""""""""""""""" 9 int head; //  First element of queue
\Loriginal thread schedule (passing or failing) 10 int tail ; 1/ Last element of queue
1
{3 Testcase generation T = e/ Constructor
i : 13 IntQueue () {
. 14 head = 0;
Schedule schedule | Application | 15 tail = 0;
generator DejaVu (schedule replay) <— 16 for (int i = 0; i < numberOfElements;
: 17 i++
/I\ test outcome (pass/fail/unresolved) 18 |ink[i% ={0;
19 }
----------------------------------------------------------- 20 }
passing schedulel \Lfailing schedule 23
24 /I Enqueue ELEM.
D et (O Y 25 public void enqueue (int elem) {
3. Isolating failure causes automatically 26 Iink[elem] =0
H repeat 27
Delta schedule | Application | tsvsi:ﬁ 28 if (head == 0)
Debugging DejaVu (schedule replay) fixed 29 head = elem;
i program 30 else {
/l\ test outcome (pass/fail/unresolved) 31 synchronized (this) {
: : 32 link[tail] = elem;
G ) 34 }
lFanure-mducmg thread switch(es) a5
/A 36 tail = elem;
4. Relating causes to errors - 37 }
i The failure-inducing \_»@‘ 38
; thread switeh occurs Application | 39 /I Return first element of queue.
! i the application I—I : 40 /I No error checking.
! (= "the error) DejaVu (full replay) : 41 public int dequeue () {
42 int elem = head,;
43 if (elem == tail)
Figure 1: The testing and debugging process, as proposed in ;“5‘ tail = 0;
this paper. Using DEJAVU, we rec_ord a thread s_chedule (_)f a 6 synchronized  (this) (
program run (1). Starting from this schedule (either passing 47 head = link[head];
or failing), we randomly generate alternate thread schedules 48 }
and execute them deterministically usin@EJAVU (2). When we 49
have found both a passing and a failing schedule, Delta Debug- 50 return elem;
ging isolates the failure-inducing difference (3). This difference 2; }
occurs at a speqflc location in the program, which is typically . /i Print elements of queue
the place to be fixed by the programmer (usind>EJAVU to fully 54 public void  print () {
replay runs if needed) (4). After the fix, the tests are re-run. 55 for (int e = head; e = 0; e = link[e])
56 System.out.print(e + " ");
2. A SIMPLE EXAMPLE 57 : System.out.printin();
58

As a simple motivating example, consider the shared queue pro- sg }

gramIntQueue.javan Figure2 (adapted from19]). The IntQueue

class realizes a queue of integeeniqueue(elemdnqueues an in- Figure 2: IntQueue.java—an erroneous shared queue. This
teger numbeeleminto the queuegdequeue(Jeturns and dequeues  class may exhibit failures if multiple threads access thenqueue
the first element from the queue. and dequeuemethods concurrently.

Internally, the queue is realized as an integer alirdywhere the places dock onobject preventing other threads to enter the critical
entrylink[elen] is the successor @flem the attributefieadandtail section using the same object as the lock; the lock is released when
hold the first and last element, respectively. A value of 0 indicates the thread leaves the synchronized block.)
a non-existing element; Headis 0, the queue is empty.

In most situations, thintQueueclass works fine. Figurd shows
To allow concurrent access by multiple threads, the programmer of how the queue is accessed by three threads: First, thiean-
IntQueuehas encapsulated all accesselirtiointo critical sections gueues the number 11; later, thrdadlequeues it; and later again,
marked with thesynchronizekeyword; this Java feature prevents following A, threadC enqueues the number 95.
a thread from entering the critical section while the section is exe-
cuted by another thread. (To be more precis@chronized(object) There are situations, though, whdreQueuefails—for instance,



Clock Thread A Thread B Thread C

1 enqueue(1l)
2 26 link[elem] = O; /I link[11] = 0
3 28 if (head == 0) I 0==0
4 29 head = elem; /I head = 11
5 36 tail = elem; I tail = 11
6 —l> dequeue()
7 42 elem = head /I elem = 11
8 43 if (elem == tail) J11 == 11
9 44 tail = 0; I
10 47 head = link[head]; /I head = 0
11 50 return elem; /I return 11
12 2 enqueue(95)
13 26 link[elem] = O; Il link[95] = 0
14 28 if (head == 0) I 0==0
15 29 head = elem; /I head = 95
16 36 tail = elem; Il tail = 95
Figure 3: A passing thread schedul€6, 12) (or (6, 12, 17, 17, 17) in the “padded” form)
Clock Thread A Thread B Thread C
1 enqueue(1l)
2 26 link[elem] = O; /I link[11] = 0
3 28 if (head == 0) /I 0==0
4 29 head = elem; /I head = 11
5 N dequeue()
6 42 elem = head Il elem = 11
7 36 tail = elem; /I tail = 11 2
8 B, a3 if (elem == tail) PRpTR——Y
9 44 tail = 0; I
10 LN enqueue(95)
11 26 link[elem] = O; Il link[95] = 0
12 28 if (head == 0) /11 == 0
13 32 link[tail] = elem; /I link[o] = 95
14 36 tail = elem; /I tail = 95
15 47 head = linklhead];  # head =0 <=
16 50 return elem; /I return 11
Figure 4: A failure-inducing thread schedule (5, 7, 8, 10, 15)
Clock Thread A Thread B Thread C
1 enqueue(1l)
2 26 link[elem] = 0; /I link[11] = 0
3 28 if (head == 0) /I 0==0
4 29 head = elem; /I head = 11
5 N dequeue()
6 42 elem = head /I elem = 11
7 36 tail = elem; /I tail = 11 <2—
8 N 43 if (elem == tail) /11 =11
9 44 tail = 0; I
10 47 head = link[head]; /I head = 0
11 50 return elem; Il return 11
12
13 —4> enqueue(95)
14 26 link[elem] = O; /I link[95] = 0
15 28 if (head == 0) /11 ==0
16 29 head = elem; /I head = 95
17 36 tail = elem; Il tail = 95

Figure 5: A generated passing schedulés, 7, 8, 13, 17)

the one in Figurel. In this example, thacheduleof the threads For a programmer, isolating the causes for non-deterministic fail-

is different from Figure3. In particular,B’s invocation ofdequeue ures in a concurrent program is among the least gratifying tasks.

starts whileA’s execution oenqueudhas not finished yet; likewise,  Hence, several approaches have been suggested that address the

threadC starts itsenqueueoperation whileB’s dequeuehas not problem. Static analysisattempts to identify the statements that

yet returned. At the end of this different schedule, we obtain a may happen in parallel or noiL(, 11, 12, 13]; this is a prerequi-

different result: Asheadis 0, the queue is emptyE&’s enqueuing site for detecting data races statically3]. A wide range of meth-

had no effect. Except for the different schedule, everything else is ods has been proposed and evaluated for detecting deadlocks stat-

unchanged; as the schedule is non-deterministic, the program willically [4]. Dynamic analysican detect shared memory accesses

show non-deterministic failures. at run time B, 8, 14, 16]. All these approaches require complete
knowledge about the program to be analyzed.



In this paper, we promote a different approach, focusing on the Schedule Replay.This mode is actually a mixture between record

thread scheduleather than on the program code. We look at the and full replay. In this mode, the program is executed and the
differencebetween a failure-inducing schedule (as the one in Fig- input is recorded (as in record mode). The thread schedule,
ure 4) and another schedule where the failure does not occur (as though, isreplayedfrom a previously recorded rum.

the one in Figure). Our goal now is to relate the failure to a small
set ofrelevant differences-differences that determine whether the

failure occurs or not. To understand howEJAVU captures and replays thread schedules,
let us give a brief overview of Jalape’s thread package. On a
Why do we focus on differences? The schedule in Figuigevery uniprocessor system,taread schedulef a program is essentially

much like the failing schedule in Figuse This schedule is suc- & Séquence dfme slice_s Each interval in this sequence contains
cessful, though—the element 95 is properly enqueued. This tells usex.ecutlon events of a glngle thread. Con.sequently, interval bound-
that the first three thread switches at clock time 5, 7, and 8 are not &ries correspond to points whetteead switchesccur and where
relevant for producing the failure. The only remaining difference COntrol passes from on thread to another.

between the schedules in Figueeand5 is whether thread exe- . L

cutes lines 47 before threaitakes over control or not. Thus, we  Three factors can cause thread switches in Jakape

can relate the failure to lines 47 in tdequeuenethod and their in-
terference witrenqueue-a certainly helpful hint withinntQueue
and an even more helpful hint ihtQueuewere part of a larger

program. 2. timed events (such adeepand timedwait), and

1. timer interrupts (such as imtQueue.javj

To find such a relevant difference (and, among others, a schedule 3. synchronization events.
like the one in Figuré), we use gurely experimentahpproach.
That is, rather than reasoning about the program code, we run a
series ofexperimentsinderaltered scheduleand test whether the
failure still occurs or not. The advantages are that

In Jalap@o, thread switches due to timer interrupts or timed events
arenon-deterministicwhile thread switches due to synchronization
events are deterministic. We will now discuss hDBIAVU records
and replays these events.

e the program can be treated like a black box—it suffices that

the program can be executed; 3.1 Preemptive Thread Switching
o the failure can be an arbitrary behaviour of the program; it Due To Timer Interrupts
suffices that one can distinguish failure from success. Jalap&o employs type-accurate garbage collectors to avoid mem-

ory leaks associated with conservative garbage collection and to

. . . . allow copying garbage collection. This means that every reference
The disadvantage is that our approachesst-basedand hence in- to a live object must be identified during garbage collection. Iden-

herits the dlsadvant'ages of tes_ts when compared to static analyS'S_tifying such references in the frames of a thread’s activation stack
we can not determine properties for all runs of a program like the

. . is particularly problematic. Jalape reference ma ify th
general absence of deadlocks. Like all tests, we require an observ-S particularly problematic Pereference mapspecify these

able failure. Should a failure occur, though, we can narrow down locations for predefinesafe pointsn a method.
the cause automatically. _r . o L.

Definition 1 (Safe point) A safe point in Jalap@o is a program
For this experimental approach, we need an infrastructucape location where the compiler that created the method body is able

ture, replay, and altethread schedules of existing programs. Such {0 describe where the live references exist.
an infrastructure exists, it is calleddEJAVU and discussed in the

following section. At garbage-collection time, Jalape guarantees that every method

executing on every mutator thread is stopped at one of these safe
3. CAPTURING AND REPLAYING points so that the garbage collector can have precise information on
THREAD SCHEDULES the references to live objects.

DEJAVU! [2] is a tool for deterministic capture and replay of Java
programs. It is part of Jalafie [1], a research virtual machine
for Java developed at the IBM T. J. Watson Research Center. The
aim of DEJAVU is to make failuregeproducable: Once a (non-
deterministic) run is captured, it can be replayed deterministically

again and agairDEJAVU can operate in three modes: Definition 2 (Yield point) A yield pointin Jalap&o is a safe point
located at a method prologue (i.e. a function invocation) or at a

loop back-edge.

To make good on this guarantee, Jafags own thread package
performs quasi-preemptive thread switching only when the current
running thread is at a predetermingdld point.

Record. When recordingDEJAVU executes a Java prograracord-

ing its input and its thread schedule to be replayed later.

. L To achieve some measure of fairness among Java threads, they are

Full Replay. When replayingDEJAVU reads the original inputand  preempted at the first yield point after a periodic timer interrupt.

the thread schedule back again and executes the program in

question such that the original (non-deterministic) behavior 2The fourth possible mode, recording the thread schedule but

is restored deterministically. replaying the input is infeasible as the non-deterministic thread
schedule might alter the way the input is accessed, thus not match-
DEJAVU stands for Deterministic Java Replay Utility. ing the replayed input.

1



3.2 Replaying Preemptive Thread Switches 2. Synchronization eventse deterministic in Jalafie.
Since preemptive thread switches occur only at yield points, count-
ing the number of yield points executed since the start of the exe-
cution can uniquely identify each thread switching evé@iJAVU

uses this cumulative number of yield points executed at each pre-
emptive thread switch as the global clock value of the thread switch.

There may be other sources for non-determinism; a program may
read random values from external devices, for instance. Such sources
will be recordedin schedule replay mode and be replayed deter-
ministically in full replay mode. If the input in schedule replay
mode is fixed, though (that is, the program can be automatically
tested), the program behavior depends uniquely on the given thread

e During record modePEJAVU captures and stores the global schedule.

clock values of preemptive thread switches.

 During full replay modeandschedule replay mogd®EJAVU This is howDEJAVU becomes a foundation for our approach: We
reads a global clock from the recorded schedule, sets an in- Can USEDEJAVU astestbedto determine how different schedules
ternal counter to the read value, decrements the counter at ev-affect the outcome of the program.
ery yield point, then forces a thread switch when the counter
reaches zero.DEJAVU repeats this for all recorded global 4. NARROWING

clock values until the program terminates. SCHEDULE DIFFERENCES

. . In this section, we show how to isolate failure-inducing schedule
3.3 ReIO'aW_‘g _Other Thread _SWIthhes differences. We start with some formal notation for thread sched-
To ensure deterministic threading behavior during refiaaAavu ules and differences, abstracting somewhat fEEaAVU.

records the wall-clock values read during execution in record mode

and replays them during replay. In fact, reproducing wall-clock val- 4.1 Identifying Thread Schedules

ues is a special case of replaying non-deterministic events such aﬁ_étus s
reading values from a random-number generaiggAvVU captures
these non-deterministic input values during record mode and reuse
them during replay. Thereforémed thread eventhat depend on
wall-clock values, such adeepand timedwaits, will execute de-
terministically, and will reproduce the recorded behavior.

tart with a denotation of thread schedules. Within this paper,
we are only interested in non-deterministic thread switches caused
soy timer interrupts. (As discussed in Secti®d, both timed events
and synchronization events are deterministi©®JAvU.) Hence,

we need not care about identifying specific threads; we denote
thread schedules simply by the clock times where thread switches

occur.
In full replay mode, one must also take care to repdsmchro-

nization events WhenDEJAVU fully replays an application up to

a synchronization operation (sayionitorentey, it replays the en-

tire program state of the JaldpeJVM as well, including its thread
package, which maintains tHeck stateof each thread and lock
variable plus the dispatch queue of threads. Therefore, the syn-
chronization operation will succeed or fail during replay mode de-

pending on whether it succeeded or failed during record mode. If it As an examp|e, consider F|gu& Here, we assume a Simp|e |og-
fails, moreover, the next thread to be dispatched during replay modeical clock counting executed statements. As thread switches occur

(as determined by the thread package) will be the same thread dis-at clock times 6 and 12, the thread schedule in Figuran thus be
patched during record mode. This is because the data structure usedenoted ag = (6, 12).

by the thread package in selecting the next active thread will also

be exactly reproduced WEJAVU—that iS, the non-deterministic For Con\/enience’ we want schedules to be ordereddlm):
synchronization event will be faithfully reproduced.

Definition 3 (Thread Schedule) Let7 be the set of all thread sched-
ules. Athread schedul@ € 7 with T = (t1,ty, ..., tn) is a list

of n clock timestt, ..., th. Each t is the clock time where a non-
deterministic thread switch caused by a timer interrupt occurs.

Definition 4 (Valid Schedule) A thread schedule & (ty, ..., tn)
3.4 Replaying Generated Thread Schedules is calledvalidif tj <tj,3 holdsforalll <i <n.
The simple replay mechanismbEJAVU based on the global clock
values also offers a simple mechanismdtternate thread switch- 4.2  Testing Thread Schedules
ing. One can simply generate a sequence of global clock valuesWe assume a program run is uniquely determined by the specific

for an alternate thread schedule. In schedule replay nEivU thread schedule—that is, all other circumstances stay unchanged
then uses these values in deciding when to force a thread switch, agand are being faithfully replayed HyEJAVU or a similar tool).
it does during full replay mode. Consequently, we can distinguish the outcome of a program run

depending only on the schedule. According to H@SIX 1003.3
Obviously, a deterministic behavior of a program in schedule replay standard for testing frameworkg][ we distinguish three outcomes:
mode is desirable—that is, for a given schedule, a program should
show the same behavior in every execution. It turns out that both
factors for thread switches are deterministic during schedule replay
mode: o The test haproduced the failurét was intended to capture
(FAIL, written here a$J)

1. Preemptive thread switchase determined by the given thread e The test produceitideterminate result&JNRESOLVED, writ-
schedule. ten here ag).*

e The testsucceed$PASS written here agl)

SFor optimization purposes, only thiifferencebetween two con- 4PO_SIX 1003.3also lists UNTESTED and UNSUPPORTED outcomes,
secutive clock values is actually stored. which are of no relevance here.



We assume the existence of an (automatestjing function

Definition 5 (stes} The function stest 7 — {0, O, 2} deter-
mines for a thread schedule & 7 whether some specific failure
occurs (J) or not (O) or whether the test is unresolve®)(

In case of théntQueueclass, we would for instance defistestto
return if the queue holds the value 95; to retudnf the queue is
empty, and to retur® in all other cases.

To get precise results, we want the differences to be as small as
possible. Hence, we decompose edcinto a number ofitomic
changes$; 1, §j 2, ..., each narrowing the difference between the
i-th thread switch offly and Ty by one clock time unit (or, in other
words,moving t;; one clock unit towards; ).

In our example, a$-;> = 12 andtgy = 7, 82 is composed of
[to2 — tgp| = 5 atomic change$, = 81 0 --- 0 825. Applying
any 8z j to Ty decreasesyp by one: for exampledy 1(To) =
(6,11, 17,17, 17) holds.

Let us now assume that for some program, we have a passing runDefinition 10 (Atomic Decomposition) The differences; in Def-

determined by a schedulk;, and a failing run, determined by a
scheduleTy. (In the IntQueueexample,Tp = (6,12 and Ty =
(5,7, 8,10, 15) hold.) The notions of “passing” and “failing” run
are determined by the test outcome:

Axiom 6 (Passing and Failing Runs)stestTy) = 0 and
stestTy) = O hold.

In the IntQueueexample, Axiom6 holds as demonstrated in Fig-
ures3 and4.

Axiom 7 (Invalid Schedule) If T is an invalid schedule,
stestT) = ? holds.

4.3 Identifying Differences

Let us now turn to thelifferencebetween two schedules—the dif-
ference we eventually want to narrow. Formally, a difference is a
mappings that can be applied to one schedule (in our ca@sgto
obtain the other schedul@y):

Definition 8 (Schedule Difference)A schedule differenceetween
two schedules and Ty is a mapping : 7 — 7 with §(Tp) =
To. The set of all differences is denoted(as- 77,

What isé made of? In this paper, we assume a simple decomposi-
tion. First, we decomposkinto a number ofhread switch changes

3i, each representing the difference between ttrethread switch

of T and Tp. For convenience, we assume that both schedules
have the same length; this can be achievegdgdingschedules
with “dummy” thread switches that would occur after the execu-
tion of the program in question ended.

In our example, we end up with the “padded” schedlile =
(6,12,17,17, 17) (assuming execution ends at clock time 16) and
the original scheduld; = (5,7, 8,10, 15). The differences is

§ = 81 0---085 Applying §; changedy; to tgj; for example,
82(Tp) = (6,7, 17,17, 17) holds.

Definition 9 (Difference Decomposition) A schedule difference
between two schedules E (tn1,...,ton) and Th = (toq, -
is defined a$ = 81 0 8p 0 - - - 0 8n Where

.., ton)

e eachéj : 7 — 7 maps tj to ty; that is,

8 (To) = (tog, ..., toi—1. toi, toi41, - - tan

e the composition : C x C — C is defined as
(8 0 8j)(T) =4 (Bj (T)).

inition 9 can be decomposed further into atomic differences
6| = Sl,l o 5I,2 O--+0 8i,|tDi —t

where eacls; ; is defined as

8i,j (To) =6, ({to1. too, ..
= (tgl,tgz,..

- tan))
Stoicnto] toisd, - ton)
where t,{ is the value altered bg; j; that s,

thi +1
tDi -1

’ if tDi < tDi
toj = .
if toj > toj

To round things up, let us prove the decomposition actually works:

Corollary 11 (8 maps) Given two schedulessTand T of length n
and a thread differencé = §1 o ...dn with § and§; j defined
according to Definitions®, 9, and 10, thens(Tg) = Ty holds.

PROOF. Eachj j, as defined in Definitiori0, decreases the
difference betweent and t;; by one. Eacld; consists oftyj —tn; |
elements; j (Definition9). Consequently, eadh makes; equal
to tgj, and thuss maps F to To. [

The number of atomic deltas can quickly become very large; in fact,
the number is quadratic in proportion to the length of the schedules
to be compared.

Corollary 12 (Number of Atomic Deltas) For two thread sched-
ules T, and Ty of length n, the number of atomic differende§ is

S It — ol

Between the schedul&; in Figure3 and the schedul&y in Fig-
ured, there aré6—5|+|12—7|+|17—8|+|17—10/+|17— 15 =

1+ 5+ 947+ 2 = 24 atomic differences, each moving one thread
switch by one clock time closer to the other.

4.4 Testing Differences

Having established a notation for schedule differences, let us now
define a functiortestthat appliesa number of differences to the
passing schedule and tests the program in question under the altered
schedule. For convenience, we define sets of atomic differences:

Definition 13 (co, ¢g) Let T; and T be given, valid thread sched-
ules; lets be their difference as described. The setdefined as
the set of atomic differencesdnthe set ¢ is defined asg = .



Tests| 811 | 62102202302,4025 | 831083283303,403,503,603,703,853,9 | 84,184,284,304,4545846047 | 851852 Schedule Outcome
To . .. ... .. . . .. .. ... .. (6,12,17,17,17) O

Tp | O ODoooag 0Do0oo0oo0ooooogao 0Do0oo0ooogoogag 00 (5,7,8, 10,15 g
@] o Ooooaoag Ooooooogoag S (5,7,8,17,17) a
2| o Ooooao Ooooooooao OoDooooag (5,7,8,10,17) g
3| o OoDoOooao DOoDoooDoooao oooog - - (5,7,8,13 17) a
4| o OO0oOooao DooOooooogoao OoDoOoooao (5,7,8,11, 17) g

Result a

Figure 6: How Delta Debugging isolates a failure-inducing thread switch. Delta Debugging gradually narrows the difference between
To (Figure 3) and Ty (Figure 4) until only one difference remains: Thread switch #4 at clock time 10 (instead of 11) causes the failure.

We can now define gest function testhat determines the outcome
for a given set of differences. This means thegt must run the
program under the givegeneratedschedule.

Definition 14 (tesh The function test 2°0 — {00, O, ?}

is defined as follows: Let € ¢ be a test case with

¢ = {811,821, ...,8nmy}. Then, test) = stesf(31,1 0821 o
-+ 08n,my)(Ta)) holds.

Using Axiom6, we can deduce the outcomeseadic; ) andtesico):

Corollary 15 (Passing and failing test case)The following holds:

tesi(cy)= tesiy) = stestTy) = O
tesi(co) = tes({81,1, 62,1, - - -, on,my}) = stes{s(Ty)) = O

4.5 Isolating Relevant Differences

Our next step now is to isolaterainimal set of differences that is
relevant to produce the error. Unfortunately, this comes at a price:
Relying ontestalone, isolating a minimal set of differences is an
NP-complete problem. The reason is simple: In the worst case,
each subset af; must be tested, angh has 2°0! subsets.

In practice, though, we are already happy withagproximation:
What we want is a set of atomic differences where each single re-
maining difference iselevantfor the failure—that is, it cannot be
removed without making the failure disappear. We call this prop-
erty 1-minimality,defined as

Definition 16 (1-minimal difference) Let ¢, and ¢, be two sets
of differences. Their differenck = ¢/, — ¢/, is 1-minimalif

V8 € A-tes(c, U {5i}) # 0 Atesi(c) — {8i}) # O

holds®

To determine the sets, andc/; as well as their 1-minimal differ-
ence, we use thelta Debuggingpproach. Delta Debugging]]

is a technique that automatically isolates failure-inducing circum-
stances; its main application is to simplify failure-inducipg-
gram input.The basic idea of Delta Debugging is to systematically
narrow the difference between a passing and a failing program run,
using test outcomes to direct the narrowing process.

Let us illustrate the use of Delta Debugging by applying it to our
well-known example, as shown in Figuse At the top, we see the
24 atomic differences betweely and Tp. The first and second
line shows the initial test3y (no difference applied,-*) and Ty

5A — B denotes the set difference betweandB.

(all differences applied,™”), the resulting schedules and the test
outcome. Now, Delta Debugging starts.

(1) The Delta Debugging algorithm splits the initial difference
A = ¢y = {1,1,...,052]} into two subsetsA U Ay =
A with A; = {811,...,830} andAp = {84.1,...,852}.
First, A1 is tested. The resulting schedulg%s7, 8, 17, 17).
With this schedule, thread® andC do not interfere. The
test passegdsiA1) = ), so we have narrowed down the
failure-inducing difference to thread switch #4 and #5.

(2) The remaining set of differences is again split into two halves.
In this example, we assume an “intelligent” splitting that
splits differences according to the thread switches they are
applied upon. It turns out that applying the differences for
thread switch #4 alone causes the failure; whether thread
switch #5 occurs immediately after thre@chas finished en-
gueuing or later makes no difference.

(3) The remaining failure-inducing difference is now whether
thread switch #4 occurs at clock time 10 or 17. Again, Delta
Debugging splits the set of differences in two; making thread
switch #4 occur at clock time 13 makes the program pass the
test. This schedule is the one shown in Figbire

(4) Finally, the remaining difference is again split in two—and

the final passing test has reduced the difference to a mini-

mum. The failure is determined by whether thread switch #4

occurs at clock time 10 (failure) or clock time 11 (success).

Looking up the involved code pinpoints the err@:begins

enqueuing befor® has finished updatingead

In this textbook example, Delta Debugging has required only 4 tests
to isolate a minimal failure-inducing difference between a passing

schedule and a failing schedule; in fact, Delta Debugging acted like
a simple binary search. This may not necessarily be the case in all
situations, as the following problems may occur:

Invalid schedules. In Figure6, applying onlyss 1 andss » would
result in theinvalid schedul€6, 12, 17, 17, 15) and thus in a
test outcome o?. Delta Debugging would then simply test
the next alternative. Since an actual execution of the program
is not required, such unresolved outcomes are cheap.

Other failures. A valid schedule may uncover another program
behavior—neither the passing one frof nor the failing
one fromTy. Such outcomes can either be treated as failures
(in case it does not matter which failure is induced by the
difference to be found) or as unresolved outcomes (in which
case Delta Debugging tries the next alternative).



LetC be the set of all possible circumstances (i.e. schedules)ekEtZC — {0, O, ?} be a testing function that determines for a test ¢case
¢ € C whether some given failure occurS)(or not (d) or whether the test is unresolve) (

Now, letcy andcy be test cases witty, C ¢y C C such thatesicy) = O A tesi(cp) = 0. ¢ is the “passing” test case (typicallyy = @
holds) andcy is the “failing” test case.

The Delta Debugging algorithm d@g, co) isolates the failure-inducing difference betweenandc. It returns a pair(c/;, c) =
dd(cq, ¢n) such thaty C cf, € ¢f, € cp, tesi(c);,) = O, andtest(c)) = O hold andc], — ¢/, is 1-minimai—that is, no single circumstang¢e
of ¢, can be removed frortf; to make the failure disappear or addedtoto make the failure occur.

Thedd algorithm is defined add(cg, c;) = dda(c, co, 2) with

ddp(c), ¢, U A, 2) if 3i € {1,...,n} -testc, UA)) =0
ddp(c; — Aj. ¢, 2) if 3 € {L,...,n}-testc, — A)) =0
dda(ch U Aj, ¢, maxn—1,2) elseifdi € {1,...,n} tes(c, UA)) =0
dda(ch, ¢ — Aj,maxn — 1,2)) elseifdi € {1,...,n} tes(c; — A)) =0
ddy(c, ¢, min2n, |A]) elseifn < |A|

(ch,ch otherwise

ddy(c), ¢, n) =

whereA = ¢/, — ¢/, = A; U Ap U---U Ap with all Aj pairwise disjoint, an&A; - |Aj| ~ (|A]/n) holds.
The recursion invariant faddy is testc),) = O Ates(c]) = DA N < |A].

Figure 7: The Delta Debugging algorithm in a nutshell. The functiondd isolates the failure-inducing difference between two test
casexy and cg. For a full description of the algorithm and its properties, see P1].

Multiple relevant thread switches. It may well be a failure is in- Distibution of thread switches
duced by applyingnultiple schedule differences in conjunc- 120 ' ' I I
tion only and that applying a subset leads to unresolved test
outcomes. Delta Debugging isolates this 1-minimal set of 00 1
thread differences, but requires a larger number of tests.

T T T
Original schedule
Generated schedules

80 - B

60 - B

In general, as a program is supposed to run under any given thread
schedule, we expect very few unresolved test outcomes (and very
few failure-inducing schedule differences), so the number of tests
performed by Delta Debugging will typically be close to a binary
search—that is, approximately lggn) tests forn atomic differ-
ences. Sincen grows only quadratically with the length of the
schedules, the number of tests will not grow without bounds. The L= — === = :
formal definition of the Delta Debugging algorithm is shown in Fig- O 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
ure 7; for a full discussion of the algorithm and its complexity, Time

see P1].

40 4

Number of thread switches

Figure 8: A sampling of 50,000 generated random sched-
ules. Schedules are generated by moving thread switches, with

Let us now put this approach into practice. We have the B} ( smaller offsets being more likely than larger offsets.

JAVU), we have the method (Delta Debugging)—but we also need
two schedules, a passing and a failing one. The next section dis-

cusses how to obtain these schedules. from anexisting schedulsstead. Starting from a given schedule

5. GENERATING ALTERED SCHEDULES T=lt o),

Let us now assume we have a program test that fails. How do we we generatéizz schedulesf the form

get analternate thread schedutbat passes the test? Or vice versa: T = (f(tp, ftp),..., f(tn) ,

assume we have a program that passes. Can we try to obtain a

schedule where the program fails? where f (t) is aperturbation functiorthat randomly returns some
time intervalt’ = f(t) with t’ e [0; co] with t being the most

One approach to obtain such alternate schedules coulddanér- likely outcome—a simpl&aussian distributiowentered around

ate random thread schedulesplaying the program usinpgJAVU as depicted in Figur8.

with these schedules until an alternate outcome is found. However,

we prefer an alternate schedule that isckse as possibleo the We start with a very narrow distribution around the thread switches

original schedule, as this reduces the number of tests required toof the original schedule, and continually widen the distribution (and

narrow down the failure-inducing difference. thus increase the differences to the original schedule) until an alter-

nate outcome is found. Eventually, with a sufficient wide Gaussian
Hence, we do not generate completely random schedules, but startlistribution, we obtain completely random schedules.



25 public class Scene { ..
44 private static int Scen
45 (more methods...)
81 private
82 int LoadScene(String filename)
84 int OldScenesLoaded = ScenesLoaded;
85 (more initializations. . .)
91 infile = new DatalnputStream(...);
92 (more code...)
130 ScenesLoaded = OldScenesLoaded + 1;
131 System.out.printin("" +

ScenesLoaded + " scenes loaded.");

ésLoaded = 0;

132
134
135
733}

Figure 9: Introducing a race condition in 205raytrace The
code in bold face, added to the original code, introduces a race
condition on ScenesLoaded

Unfortunately, the chances of obtaining an alternate schedule can-
not be determined in advance. Confidence in a program increases

though, with the number of alternate schedules tested. As soon as

an alternate schedule is found, we can pass it over to Delta Debug-
ging to isolate the failure-inducing schedule difference.

6. A CASE STUDY

Let us now put all building blocks together and apply them on a
real program. Test #205 of tH&PEC JvM98Java test suitel]/],
named205 raytraceis a multi-threaded ray-tracing program, pro-

cessing a 3D-scene depicting a dinosaur. Being part of a test suite,

205.raytracehas no known errors; a failure would typically indi-
cate an error in the Java tool chain being tested.

In 205.raytrace the file Scene.javaontains an interesting com-
ment. Each ray-tracing thread calls the metho@ddScend¢o be
rendered once. This can lead to problems if shared data is ac-
cessed, which is whizoadScenés marked asynchronized The
comment says that the programmer attempted to change the cod
“so the MT [multi-threaded] version could have the data only read
once, but this did not work.” We simulated this failure by making
LoadSceneon-synchronized (removing the keyword) and intro-
ducing a simple observable race conditio.oadScengas shown

in Figure9. Whenever a thread switch would occur during exe-
cution of LoadScengecausing the method to be called again, the
SceneslLoadedariable would not be properly updated.

This code change leads to a failure the first time it is executed—the
shared variabl&cenesLoadedever increased to more than 1. Us-
ing DEJAVU, we recorded the failing thread schedille(contain-

ing 3770 thread switchesREJAVU was able to replay the failing
schedule (and the failure) accurately.

Using the fuzz approach described in Sectipwe generated ran-
dom schedules, starting from the failing one, until, after 66 tests,
we had generated an alternate schedulevhere the failure would
not occur. Bothl; andTy are shown in Figur&éO—it turns out that

Tp has a far higher granularity thaf, meaning that the amount
of time between thread switches is larger.

ComparingTy and Ty reveals that the average distance between a
thread switch inTg and the matching thread switch Ty is more
than a million yield points. Overall, 3,842,577,240 atomic deltas,
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Figure 10: A passing and a failing schedule of th&PEC JvM98
ray-tracer program. This difference has to be minimized in
order to isolate the failure cause.
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Figure 11: Narrowing down the failure-inducing thread switch.

Atter only 50 tests, Delta Debugging isolates the single failure-

inducing difference from 3,842,577,240 atomic differences.

each moving a thread switch by one yield point, have to be applied
to turn Ty into T. Some of these 3.8 billion schedule differences
are relevant for the failure. So, as described in Sectjome used
Delta Debugging to narrow down the difference.

The Delta Debugging run is summarized in Figatfe As in Fig-

ure6, we grouped deltas according to their respective thread switch.
After just 12 tests (or 408 secondspnly one group of deltas re-
mained, all applying to thread switch #33. Yet, this group still con-
sisted of 53,976,462 deltas—that is, after 12 tests, the two sched-
ules were still 53 million yield points apart. The later 38 tests sub-
sequently halve this distance, such that eventually, after 50 tests (28
minutes), only one difference remains: The failure occurs if and
only if thread switch #33 occurs at yield point 59,772,127 (instead
of 59,772,126).

But which is the code that is executed at yield point 59,772,1277?
For this purpose, we extende&JAvVU by a “query mode”, report-

6a single beJavu-controlled run of205.raytracerequires 34 sec-
onds of real time on a powerpc-ibm-aix4.3.3.0 machine. Invalid
schedules have been ignored.



ing the current backtrace for a given set of yield points. It turns out
that yield point 59,772,127 occurs at the location
spec.benchmark®05 raytrace.Scene.LoadScene (Scene.java:91)
that is, at line 91 oBcene.java

Line 91 of Scene.javis the first method invocation (and thus yield
point) after the initialization ofOldScenesLoadedLikewise, the
alternative yield point 59,772,126 (with a successful test outcome)
is the invocation ol.oadScenat line 82 ofScene.java-just be-

fore the variableDldScenesLoaded initialized. So, by narrowing
down the failure-inducing schedule difference to one single differ-
ence, we have successfully re-discovered the location where we
originally introduced the error.

What does this case study tell us? For one thing, that Delta Debug-
ging is able to handle everery large schedule differencasad still
isolate the failure-inducing difference.

The second thing is that Delta Debugging tre&288 raytracelike
a black box—only the schedule was subject to observation and al-

teration. Nonetheless, we could easily associate the failure-inducing

thread switch with the appropriate piece of code.

The third observation is that Delta Debuggingésy efficient when
applied to thread schedulesssentially working like a binary search.
This is so because (except from invalid schedules, which can be ex-
cluded right away) there are few unresolved test outcomes, if any.
And this, again, is so because programs are “mostly correct” with
regard to the thread schedule—it is unlikely that there is a third out-

come besides passing the test and showing the failure in question.

(And even so, such third outcomes would frequently be classified
as successes or failures.)

The downside of our experimental approach, of course, is that a
significant number of (automated) tests are required—both for find-

than isolating failure causes. In principle, the seeding tech-
nique could be a good alternative to alter schedules where a
DEJAVU-like tool is not available; nonetheless, deterministic
schedule replay is a must.

Static analysis. Obviously, it is preferable to detect as many er-
rors in the source code as possible rather than inferring errors
from non-deterministic failures. In general, onlg@nserva-
tive approximationis feasible. For instance, one can have
either context-sensitive program analysis or synchronization
statements, but not bothf]. (Context-insensitiverogram
analysis under concurrency is feasible, thouty#j)f

Several approximations do exist that detect which statements
may happen in parallelcéncurrency analys)s[12, 13] or

may not flon-concurrency analysi$11]. Also, several ded-
icated analysis methods for detectidgadlockshave been
suggested and evaluated].[ Like any analysis, these meth-
ods require complete knowledge of the whole program. The
resulting static information can easily be exploited in both
Delta Debugging and schedule generation by focusing the
search on potential trouble spots.

Dynamic analysis. If one is willing to pay the overheadata races
like the examples in this paper can also be detected dynam-
ically, for instance by monitoring all shared-memory refer-
ences §, 16]. The overhead of dynamic detection can be
considerably reduced by combining it with static analy3js [
14]. However, data races are just one class of problems in-
duced by concurrency, and each problem class must be ad-
dressed by an individually designed dynamic analysis. Our
approach, in contrast, is not restricted to a specific problem
class—but it requires that the concurrency problem manifests
itself as a failure.

8. CONCLUSION AND FUTURE WORK

ing alternate schedules, and for isolating the failure-inducing dif- We have presented a method that automatically isolates the failure-
ference. On the other hand, our approach is fully automatic and, inducing difference(s) between a passing and a failing schedule,
furthermore, orthogonal to analytical approaches to detect trouble thus pinpointing the cause of a failure. Our method is purely ex-

spots in threaded programs. These will be discussed in the nextperimental, meaning that analysis of the program in question is not

section. required. It requires the ability to execute a program under altered
thread schedules, such as providedOBgAvVU, and it requires a
7 RELATED WORK small number of automated tests. We expect that the basic observa-

tions from both the shared-queue example and the ray-tracer case
As stated in the introduction, we are unaware of any other tech- study can easily be transferred to larger programs, too, as we expect
nique that would automatically isolate failure-inducing differences programs to be “mostly correct” with regard to the thread schedule.
between schedules. Nonetheless, there is several related work:
We recommend that capturing, replaying and isolating thread sched-
ules be an integrated part of testing and debugging concurrent ap-
Manipulating schedules. The core idea of this paper, altering sched-plications. Each time a test fails, delta debugging could be used
ules to isolate failure causes, has first been suggested bytg isolate the failure-inducing schedule difference. Given a cap-
Stone [L9] asspeculative replayHer idea was to “reduce the  ture/replay tool likeDEJAVU, the approach presented in this paper
investigation of all possible [schedule] orderings to that of a s straightforward and easy to implement.
few selected partial orderings” by guiding the replay process
according to (human-inferred) thread dependencies. In con- There is more to do, though. Our future work will concentrate on
trast, our method is fully automatic; instead of having pro- the following topics:
grammers speculate about thread dependencies, we isolate

the failure-inducing schedule difference(s) automatically. ) ) )
Cause-effect chains.Formally, the isolated schedule differences

areroot causef the failure—they are a cause because the
failure occurs if and only if the differences are applied, and
they are a root cause because they are not an effect of some
other event. Nonetheless, the isolated differences cause the
failure only in conjunction with other root causes, such as the
program code or its input.

Testing alternate schedules.The generation of alternative thread
schedules to trigger failures in concurrent programs has first
been suggested by Edelstein et &]. [In contrast to replay
altered schedules using a replay tool lieJAvU, theyseed
the Java byte code with randasteep yield, or priority prim-
itives. Their focus, though, is on obtainirgveragerather



We expect that in most cases, the code affected by the sched- [3] J.-D. Choi, K. Lee, A. Loginov, R. O’'Callahan, V. Sarkar, and

ule differences is directly connected to the error. However,
it may well be that the affected code is only the beginning
of some cause-effect chain within the program run, trigger-
ing a failure that must be fixed at a very different location.
Such cause-effect chains can be isolated by applying Delta
Debugging on the program stat&()].

Other circumstances. There may be other circumstances timat

terfere with the thread schedule. For instance, a specific
thread schedule may cause the program to read some dif-
ferent input, resulting in an error. In such a situation, it is
unclear whether the difference in the schedule or the differ-
ence in the input should be called “the” cause of the error.
In principle, differences between thread schedules and dif-
ferences between input can be handled the same way using
Delta Debugging. Nonetheless, such interferences must be
further examined.

Experiments vs. analysis.In general, research in program under-

standing has focused @malytical approacheso far. How-
ever, reasoning about a system is only one way to gather

knowledge. The other way is experimentation. Automated [t

experimental approachdie Delta Debugging offer addi-
tional means to isolate and understand the concrete behavior
of systems. In future, we expect a fruitful intertwining of [
static analysis, dynamic analysis and automated experiments
to widely automate program comprehension.

More case studies.The intertwining of different failure-inducing

circumstances must be thoroughly examined in practice; the (1

same applies for future combinations of analytical and ex-
perimental approaches. All these approaches must be thor-
oughly evaluated using real-life concurrent programs with
(hopefully) real-life errors.DEJAVU is currently being ex- [
tended from a prototype to a full product that will be able to
capture and replay large-scale Java programs, including the
GUI. As soon as this is done, we will have access to a wealth
of case studies—and then ease the loathed debugging of con-
current systems.
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