
0/21

�

�

�

�

�

�

	

Universität des Saarlandes, DFG-Graduiertenkolleg, November 13th, 2003

Data Mining Version Histories

Andreas Zeller
(with Thomas Zimmermann, Peter Weißgerber, and Stephan Diehl)

Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

1/21

�

�

�

�

�

�

	

The Idea

Can we make similar suggestions for software changes?

2/21

�

�

�

�

�

�

	

Evolutionary Coupling

gcc/gcc/dbxout.c

xcoff_debug_hooks

3/21

�

�

�

�

�

�

	

Evolutionary Coupling

gcc/gcc/dbxout.c [134] gcc/gcc/sdbout.c [74]34

dbx_debug_hooks

xcoff_debug_hooks

sdb_debug_hooks

[12]

[10]

[12]

3/21

�

�

�

�

�

�

	

Evolutionary Coupling

gcc/gcc/dbxout.c [134] gcc/gcc/sdbout.c [74]34

dbx_debug_hooks

xcoff_debug_hooks

sdb_debug_hooks

[12]

[10]

[12]
12

10
10

dbx_debug_hooks

xcoff_debug_hooks

sdb_debug_hooks

[12]

[10]

[12]

Support: How much evidence (= simultaneous changes)?
Confidence: How relevant is coupling for participants?

3/21

�

�

�

�

�

�

	

Evolutionary Coupling

gcc/gcc/dbxout.c [134] gcc/gcc/sdbout.c [74]34

dbx_debug_hooks

xcoff_debug_hooks

sdb_debug_hooks

[12]

[10]

[12]

 4

 4

xcoff_debug_hooks sdb_global_decl()

[4]

 4

dbx_functions_end()

[7]

dbx_symbol_name()

[6] 2

12

10
10

dbx_debug_hooks

xcoff_debug_hooks

sdb_debug_hooks

[12]

[10]

[12]

Support: How much evidence (= simultaneous changes)?
Confidence: How relevant is coupling for participants?

4/21

�

�

�

�

�

�

	

What We Do

ROSE

Reengineering Of Software Evolution
CVS

Rules

Couplings

Graphs

ROSE determines entities at different granularities:

coarse-granular entities: directories, modules, files

fine-granular entities: methods, variables, sections

5/21

�

�

�

�

�

�

	

Light-Weight Analysis

File: Animals.java

1

3

23

25

30

56

58

60

80

99

public String[] COLORS = {

public String[] COLORS = {

class Cat {

public Cat() {

 ...
}

 ...
}

 ...
}

class Dog {

 ...
}

 ...
}

5/21

�

�

�

�

�

�

	

Light-Weight Analysis

File: Animals.java

1

3

23

25

30

56

58

60

80

99

Cat.COLORS
lines 3-23

Cat.Cat()
lines 25-30

Class Cat
lines 1-56

Dog.COLORS
lines 60-80

Class Dog
lines 58-99

Step A: Map to Entities

public String[] COLORS = {

public String[] COLORS = {

class Cat {

public Cat() {

 ...
}

 ...
}

 ...
}

class Dog {

 ...
}

 ...
}

5/21

�

�

�

�

�

�

	

Light-Weight Analysis

File: Animals.java

1

3

23

25

30

56

58

60

80

99

Cat.COLORS
lines 3-23

Cat.Cat()
lines 25-30

Class Cat
lines 1-56

Dog.COLORS
lines 60-80

Class Dog
lines 58-99

Step A: Map to Entities

Cat.COLORS
lines 3-23

Cat.Cat()
lines 25-30

Class Cat
lines 1-56

Dog.COLORS
lines 60-80

Class Dog
lines 58-99

Step B: Filter Entities

17
public String[] COLORS = {

public String[] COLORS = {

class Cat {

public Cat() {

 ...
}

 ...
}

 ...
}

class Dog {

 ...
}

 ...
}

ROSE analyzes C/C++, JAVA, PYTHON, TEX and TEXINFO files.
We get the modified methods, variables and subsections.

6/21

�

�

�

�

�

�

	

Visualizing Coupling

A DCB

A

D

C

B

High Confidence

Low Confidence
No Coupling (No Support)

6/21

�

�

�

�

�

�

	

Visualizing Coupling

A DCB

A

D

C

B

High Confidence

Low Confidence
No Coupling (No Support)

[10] [4]
[3]

A C
A⇒ C: Confidence 3/10 = 30%
C ⇒ A: Confidence 3/4 = 75%

7/21

�

�

�

�

�

�

	

Comparing Architecture with Evolution

DDD Source

Libraries
Pics
Icons

Patches

Tests

Directory
ddd/

7/21

�

�

�

�

�

�

	

Comparing Architecture with Evolution

Bad architecture

Better architecture

DDD Source

Libraries
Pics
Icons

Patches

Tests

Directory
ddd/

8/21

�

�

�

�

�

�

	

Guiding the Programmer

Understanding coupling based on evolution is neat—
but how do we put this to use?

Basic idea—guide programmer along related changes:

1. Programmer starts changing some location

2. ROSE suggests locations that other programmers have
changed together with this location:
“Programmers who changed this function also changed. . . ”

9/21

�

�

�

�

�

�

	

Guiding the Programmer in Eclipse

10/21

�

�

�

�

�

�

	

ROSE Server and Client

The ROSE server determines coupling and rules;
The ROSE client guides the programmer along related changes.

Version
Archive

Transactions Rule Set

Change(s)

Suggestions

Rule
Application

Rose Server Rose Eclipse Client

User

Querying
MiningGrouping

Matching

11/21

�

�

�

�

�

�

	

Mining Rules

Coupling graphs turned out to be not predictive enough.
So, we had ROSE use the Apriori Algorithm to mine rules:

1. Determine frequent entity sets L that are above the
minimum support.

2. Create rules from the sets in L that are above the
minimum confidence.

The generated rules have the form

antecedent(s) ⇒ consequent(s)

Whenever the user changes the antecedent(s) of a rule,
ROSE suggests the consequent(s).

12/21

�

�

�

�

�

�

	

Rule Examples

Coupling in GCC

{ (i386.c,var, i386 cost), (i386.c,var, i486 cost),
(i386.c,var,k6 cost), (i386.c,var,pentium cost),
(i386.c,var,pentiumpro cost) }

⇒ { (i386.h, type,processor cost) }

[Support 9; Confidence 0.82]

POSTGRESQL documentation

{ (createuser.sgml,file, createuser.sgml),
(dropuser.sgml,file,dropuser.sgml) }

⇒ { (createdb.sgml,file, createdb.sgml),
(dropdb.sgml,file,dropdb.sgml) }

[Support 11; Confidence 1.0]

13/21

�

�

�

�

�

�

	

Evaluation

How good are rules at predicting future changes?

We look at the histories of large software projects:

Training period. ROSE infers rules from the past.

Evaluation period. ROSE applies the mined rules.

In the evaluation period, we check each transaction ∆:

Navigation. Given one change from ∆, does ROSE point to
further changes in ∆?

Error Prevention. Given all but one change from ∆, does ROSE
point to the missing change?

Closure. Given all changes of ∆, does ROSE stay silent?

14/21

�

�

�

�

�

�

	

Precision vs. Recall

Recall: How many relevant entities are returned?

Precision: How many of the returned entities are relevant?

What ROSE finds What it should find

Α ΕΑ∩ΕPrecision Recall
|Α ∩ Ε| / |Α| |Α ∩ Ε| / |Ε|

What ROSE finds

High precision

What ROSE finds

High recall

15/21

�

�

�

�

�

�

	

Precision vs. Recall (2)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

P
re

ci
si

on

Recall

Eclipse (Navigation, Micro-evaluation)

0.1

0.1

0.1

0.6

0.8

0.9

1.0

1.0

1.0

Minimum Support 5
Minimum Support 3
Minimum Support 1

16/21

�

�

�

�

�

�

	

Projects used for Evaluation

Training Evaluation
Project # Txns # Txns/Day # Etys/Txn # Txns
ECLIPSE 46,843 56.0 3.17 2,965
GCC 47,424 22.4 3.90 1,083
GIMP 9,796 4.1 4.54 1,305
JBOSS 10,843 9.0 3.49 1,320
JEDIT 2,024 2.9 4.54 577
KOFFICE 20,903 11.2 4.25 1,385
POSTGRES 13,477 5.4 3.27 925
PYTHON 29,588 6.2 2.62 1,201

17/21

�

�

�

�

�

�

	

Results: Navigation through Source Code

The programmer has changed one single entity.
Can ROSE suggest other entities that should be changed?

Granularity Fine Coarse
Project Rµ Pµ Rµ Pµ
ECLIPSE 0.15 0.26 0.17 0.26
GCC 0.28 0.39 0.44 0.42
GIMP 0.12 0.25 0.27 0.26
JBOSS 0.16 0.38 0.25 0.37
JEDIT 0.07 0.16 0.25 0.22
KOFFICE 0.08 0.17 0.24 0.26
POSTGRES 0.13 0.23 0.23 0.24
PYTHON 0.14 0.24 0.24 0.36
Average 0.15 0.26 0.26 0.30

When given one initial changed entity, ROSE can predict
15% of all entities changed later in the same transaction.

26% of ROSE’s suggestions actually took place.

18/21

�

�

�

�

�

�

	

Results: Error Prevention

The programmer has changed several entities but one.
Does ROSE find the missing one?

Granularity Fine Coarse
Project Rµ Pµ Rµ Pµ
ECLIPSE 0.02 0.48 0.03 0.48
GCC 0.20 0.81 0.29 0.82
GIMP 0.03 0.71 0.08 0.74
JBOSS 0.01 0.24 0.05 0.44
JEDIT 0.004 0.59 0.01 0.44
KOFFICE 0.003 0.24 0.04 0.61
POSTGRES 0.03 0.66 0.05 0.59
PYTHON 0.01 0.50 0.03 0.67
Average 0.04 0.50 0.07 0.66

Given a transaction where one change is missing, ROSE can
predict 4% of the entities that need to be changed.

On average, every second recommended entity is correct.

19/21

�

�

�

�

�

�

	

Results: Closure

The programmer made all necessary changes.
How often does ROSE still suggest a missing change?

Granularity Fine Coarse
Project RM PM RM PM
ECLIPSE 1.0 0.979 1.0 0.980
GCC 1.0 0.953 1.0 0.946
GIMP 1.0 0.978 1.0 0.963
JBOSS 1.0 0.981 1.0 0.980
JEDIT 1.0 0.986 1.0 0.984
KOFFICE 1.0 0.990 1.0 0.971
POSTGRES 1.0 0.989 1.0 0.978
PYTHON 1.0 0.986 1.0 0.991
Average 1.0 0.980 1.0 0.973

ROSE’s warnings about missing changes should be taken
seriously: Only 2% of all transactions cause a false alarm.

In other words: ROSE does not stand in the way.

20/21

�

�

�

�

�

�

	

Challenges

Granularity. Coarser predictions are more precise.
Which is the most useful granularity?

Sequence rules. Infer over several transactions.
Programmers who changed X later changed Y .

Further data sources. Distinguish fixes from features
Access log messages, bug reports, . . .

Program analysis. Reduce noise by program analysis
What is coupling, anyway?

Best practices. Learn from earlier successes
How do we measure success?

Rationales. Present rules to programmers
How do we visualize complex rules?

21/21

�

�

�

�

�

�

	

Conclusion

✏ ROSE effectively guides users along related changes:

• After an initial change, ROSE predicts 26% of further files
and 15% of further entities

• 30% of the suggested files and 26% of the suggested
entities are correct predictions.

• Warnings about missing changes are seldom,
but reliable

✏ ROSE detects coupling between non-program entities
(e.g. programs and documentation)

✏ Predictive power may increase further with log messages
and bug reports being taken into account

✏ Research has just begun to exploit non-program artifacts

http://www.st.cs.uni-sb.de/

http://www.st.cs.uni-sb.de/

	The Idea
	Evolutionary Coupling
	Evolutionary Coupling
	Evolutionary Coupling
	Evolutionary Coupling
	What We Do
	Light-Weight Analysis
	Light-Weight Analysis
	Light-Weight Analysis
	Visualizing Coupling
	Visualizing Coupling
	Comparing Architecture with Evolution
	Comparing Architecture with Evolution
	Guiding the Programmer
	Guiding the Programmer in Eclipse
	ROSE Server and Client
	Mining Rules
	Rule Examples
	Evaluation
	Precision vs. Recall
	Precision vs. Recall (2)
	Projects used for Evaluation
	Results: Navigation through Source Code
	Results: Error Prevention
	Results: Closure
	Challenges
	Conclusion

