Universitat des Saarlandes, DFG-Graduiertenkolleg, November 13th, 2003

Data Mining Version Histories

Andreas Zeller
(with Thomas Zimmermann, Peter WeiRgerber, and Stephan Diehl)

Lehrstuhl Softwaretechnik
Universitat des Saarlandes, Saarbriicken

The Ildea

[Amazon.com: Dude, Yhere's My Country?: Explore similar items - Mozilla

HIIIEIGI'I,CDI‘TI close

Cuztomers who bought this item...

Cude, Where's My Covntry 7
by Michael Moore (Authar)
Price: $14.97

Also bought these items...

Show items from:

* Al Products
Books (207
Lo/ 207

Magazine Subscriptions

=Y,
Fusic (207

Liea and the Lying Ligra Wha Fefl Them
by & Franken
Price: $14.97

Stupid White Men .. and Other Sorry Excuaes for the State of the Mation!
by Michagl Moore
Price: $15.57

Bowfing for Cofumbine
DVD - Michael Moare (1)
Price: $18.89

Can we make similar suggestions for software changes?

Evolutionary Coupling

gcc/gec/dbxout.c

xcoff_debug_hooks

Evolutionary Coupling

gcc/gec/dbxout.c [134] &l gcc/gec/sdbout.c [74]
dbx_debug_hooks sdb_debug_hooks

() ()

xcoff_debug_hooks

Evolutionary Coupling

gcc/gec/dbxout.c [134] &l gcc/gec/sdbout.c [74]
dbx_debug_hooks sdb_debug_hooks
) ———{2)
10
10

xcoff_debug_hooks

Support: How much evidence (= simultaneous changes)?
Confidence: How relevant is coupling for participants?

Evolutionary Coupling

\ gcc/gec/dbxout.c [134] |$| gcc/gec/sdbout.c [74]
dbx_debug_hooks sdb_debug_hooks —

' dbx_symbol_name()

Support: How much evidence (= simultaneous changes)?
Confidence: How relevant is coupling for participants?

What We Do

CVS

ROSE

Reengineering Of Software Evolution

— Couplings
— Graphs

— Rules

ROSE determines entities at different granularities:

coarse-granular entities: directories, modules, files

fine-granular entities: methods, variables, sections

Light-Weight Analysis

File: Animals.java

l]|class Cat {

3 public String[] COLORS = {
23|

25| public Cat() {

0|

56 | }

58| cl ass Dog {
60 public String[] COLORS = {

80| !}
99|}

Light-Weight Analysis

File: Animals.java

1
3

23
25

30
56

58
60

80
99

class Cat {

public String[] COLORS
y

public Cat() {

,

}

cl ass Dog {
public String[] COLORS
y

Step A: Map to Entities

Cat.COLORS
lines 3-23

Cat.Cat()
lines 25-30

Dog.COLORS
lines 60-80

Class Cat
lines 1-56

Class Dog
lines 58-99

Light-Weight Analysis

File: Animals.java Step A: Map to Entities

l|class Cat {
3 public String[] COLORS = { Cat.COLORS
%;, }_ lines 3-23

Class Cat
25 public Cat() { Cat.Cat() lines 1-56
30 y lines 25-30
56|}

58| cl ass Dog {

60 public String[] COLORS = {| |y coLors | class Dog

lines 60-80 lines 58-99

80| !}
99|}

Step B: Filter Entities

ROSE analyzes C/C++, JAVA, PYTHON, TgX and TEXINFO files.
We get the modified methods, variables and subsections.

Visualizing Coupling

A B C D

High Confidence

O O W >

Low Confidence
No Coupling (No Support)

Visualizing Coupling

A B C D

High Confidence

Low Confidence
No Coupling (No Support)

O O W >

A C

@ @ @ A = C: Confidence 3/10 = 30%
C = A: Confidence 3/4 = 75%

Comparing Architecture with Evolution

il
i

: ___Directary I\ﬂ
o i
iin

Il
i
i
i

DDD Source |

Lit;rariés

Comparing Architecture with Evolution

DiréCtory |
ddd/

il

Il
m
i

~DDD Source i

Litfrariés

Bad architecture

Better architecture

Guiding the Programmer

Understanding coupling based on evolution is neat—
but how do we put this to use?

Basic idea—guide programmer along related changes:

1. Programmer starts changing some location

2. ROSE suggests locations that other programmers have
changed together with this location:
“Programmers who changed this function also changed. .. "l

Guiding the Programmer in Eclipse

pse Platform

File Edit Source Refactor Mavigate Search Project Run Window Help
B-EES| | #H-%- & S8 F R w| B # %
ﬁ ﬁ. Package Explorar LA K “ComparePref x®

@ o & | Fh

new OwverlayPreferenceStore

BOOLEAH

public fimal OverlayFPreferenceStore OverlavKev[] !fKEyS: !nev OverlavFreferenceStore . Overlavk & |
OverlayKey(Overlay ce5Stors

OPEN_STRUCTURE COM

Br||® m CnmpareEdltannntr\hutnr.ja‘v s new OverlayPreferenceStore. Overlayley(OverlayPreferenceStore . BOOLEAH, SYHCHROWIZE SCROLL
w 4] CompareMessages.java new OverlayPreferenceStore. OverlayKey(OverlayPreferenceStore. BOOLEAHN, SHOW_FSEUDO_CONFLI
+ m CompareNavigator.java new UwverlayPreferenceStore OverlayKey(OvsrlayPreferenceStorse BOOLEAH, INITIALLY SHOU AHC
=[] ComparePreferencePage. jave nev¥ OverlayPreferenceStore. OverlayKey(OverlayPreferenceStors. BOOLEAN, SHOW_MORE_INFO) .
I: = fopert derleration nev OverlayFreierenceStore.OverlayKev(OverlayPreferenceStors BOOLEAN, IGHORE UVHITESFACE)
" new OverlayPreferenceStore. OverlayKey(OverlayPrefesrenceStors BOOLEAH, PREF_SAWE ALL EDIT
A) The user inserts a
new preference into nev OverlavPreferenceStore. OverlayKey(OverlavPreferenceStore . BOOLEAN, NEW_FPREFERENCE) .
the ﬂe'd fKeyS[] new OwerlayPreferenceStore. OverlayKey(OverlayPreferenceStore STRING, AbstractTextEditor.
nev OUverlavPreferenceStore. OverlayKey(OverlavPreferenceStore . BOOLEAN, AbstractTextEditor

#HEW_PREFERENCE
&F OPEN_STRUCTURE_C
%F PREF_SevE_aLL_EDIT
5F PREFI:

EF SHOW_MORE_INFO

8F show_psEuDO_coM

srnew UverlayPreferenceStore . OverlayKey{OwerlayPreferenceStore BOOLEAN . USE_SFLINES).
new OwerlayPreferenceStore. OverlayKey(OverlayPreferenceStors . BOOLEAH, USE SINGLE_LIKE) .
sonew OverlayPrefsrenceStore Overlavkey(OwerlayPreferenceStore BODLEAN, USE RESOLVE UI),

public static voidlinitDefault=(IPreferenceStore store)){
store.setDefanlt

BF cyNcHRopIZE sopo

B) ROSE suggests store. setDefaul t({SYHCERONIZE SCROLLING. true):
: 9d store.setDefanl t{SHOU_PSEUDG CONFLICTS. false!
locations for further store.setDefanlt(INITIALLY_SHOW ANCESTOR_FANE. false):
store.setDefault (SHOU_MORE INFO, false):

changes, e.g. the store.setDefanlti TGNORE WHITESPACE, false);

function initDefaults() store.setDefanlt (FREF_SAVE_ALL EDITORS, false):
— so/ztore setDefault (USE_SPLINES, fal=s):
fohed store setDefaul t (ISE_STHGLE LTHE, true): b

< ’

fCompare
o frays | & Related Changes la'z @ & @§3 [) :%:D v X
o FOverlayStore z n
FPrEFerznceChangeL\s Syibol ‘ File | Suppork | Confidence ‘
FPreviewviswer initDefaulks(IPreferencesStare stare ComparePrefersncePage.javs & 1.0
& CompareFreferenceR: org.eclipse.compare/plugin. properties plugin. properties 7 0.675
m sddCheckBox{Compas [31 org. edlipse. compare/buildnotes_compare.html buildnotes_compare. hkml] 0,75
2 createContents{Comp @ TexkMergeviewer|Composite parent, int style, ComparsCaonfiguration configuratian) TextMergeWiswer, java [} .72
| createGeneralPage(Ce [property Change(Praperty ChangeEvent event) TextMergeviewer . java [0.75
| createPreviews: (Com| [createGeneralPage(Composite parent] ComparePreferencePage.java 5 0.625
| createTexkCompareP: [createTextComparePage(Composite parent) ComparePreferencePage.java 5 0.625
@ dispose() 37 handleDispose(DisposeEvent event) TextMergewiewer . java 4 0.5
& initfTibderkhenc L.

< | Tasks | Console Related Changes

Writable Insert 8315

ROSE Server and Client

The ROSE server determines coupling and rules;
The ROSE client guides the programmer along related changes.

Rose Server Rose Eclipse Client
Querying [
Grouping Mining Z/\\ Rule
—_— —_— ——> | Application| —>
Matching
P —— =
Version Transactions Rule Set Suggestions
Archive '

Change(s) User

Mining Rules

Coupling graphs turned out to be not predictive enough.
So, we had ROSE use the Apriori Algorithm to mine rules:

1. Determine frequent entity sets L that are above the
minimum support.

2. Create rules from the sets in L that are above the
minimum confidence.

The generated rules have the form
antecedent(s) = consequent(s)

Whenever the user changes the antecedent(s) of a rule,
ROSE suggests the consequent(s).

Rule Examples
Coupling in GCC

{ (i386.c, var,i386_cost), (i386.c, var, i486_cost),
(i386.c, var, k6_cost), (i386.c, var, pentium-_cost),
(i386.c, var, pentiumpro_cost) }

= { (i386.h, type, processor_cost) }

[Support 9; Confidence 0.82]
POSTGRESQL documentation

{ (createuser.sgml, file, createuser.sgml),
(dropuser.sgml, file,dropuser.sgml) }
= { (createdb.sgml, file, createdb.sgml),
(dropdb.sgml, file, dropdb.sgml) }

[Support 11; Confidence 1.0]

Evaluation

How good are rules at predicting future changes?

We look at the histories of large software projects:

Training period. ROSE infers rules from the past.

Evaluation period. ROSE applies the mined rules.
In the evaluation period, we check each transaction A:
Navigation. Given one change from A, does ROSE point to

further changes in A?

Error Prevention. Given all but one change from A, does ROSE
point to the missing change?

Closure. Given all changes of A, does ROSE stay silent?

Precision vs. Recall

Recall: How many relevant entities are returned?

Precision: How many of the returned entities are relevant?

What ROSE finds What it should find
Precision @ Recall
|A n E|/|A] |A n E|/|E]|

High precision High recall

What ROSE finds What ROSE finds

Precision vs. Recall (2)

Eclipse (Navigation, Micro-evaluation)
0.9 T T T T

Minirlnum Supl)ports S e
Minimum Support 3 --—e---
Minimum Support 1 -

Precision

0.2 | | | | | | |

Recall

Projects used for Evaluation

Training Evaluation
Project # Txns | # Txns/Day | # Etys/Txn # Txns
ECLIPSE 46,843 56.0 3.17 2,965
GCC 47,424 22.4 3.90 1,083
GIMP 9,796 4.1 4.54 1,305
JBOSS 10,843 9.0 3.49 1,320
JEDIT 2,024 2.9 4.54 577
KOFFICE |20,903 11.2 4.25 1,385
POSTGRES | 13,477 5.4 3.27 925
PYTHON | 29,588 6.2 2.62 1,201

Results: Navigation through Source Code

The programmer has changed one single entity.
Can ROSE suggest other entities that should be changed?

Granularity Fine Coarse

Project Ry | Pu | Ry | Py

ECLIPSE 0.15]0.26 | 0.17 | 0.26
GCC 0.280.39|0.44 | 0.42
GIMP 0.1210.25]0.27 | 0.26
JBOSS 0.16 | 0.38 | 0.25 | 0.37
JEDIT 0.07 [0.16 | 0.25 | 0.22
KOFFICE 0.080.17]0.24 | 0.26
POSTGRES [0.13]0.23 | 0.23|0.24
PYTHON 0.1410.24 |1 0.24 | 0.36
Average 0.15]0.26 | 0.26 | 0.30

When given one initial changed entity, ROSE can predict
15% of all entities changed later in the same transaction.
26% of ROSE’s suggestions actually took place.

Results: Error Prevention

The programmer has changed several entities but one.
Does ROSE find the missing one?

Granularity Fine Coarse

Project Ry P, | Ry | Py

ECLIPSE 0.020.48 | 0.03]0.48
GCC 0.20|0.81 |1 0.29|0.82
GIMP 0.030.71 /1 0.080.74
JBOSS 0.01]0.24|0.05|0.44
JEDIT 0.004 | 0.59|0.01 | 0.44
KOFFICE 0.003 1 0.24 | 0.04 | 0.61
POSTGRES 0.03 | 0.66 | 0.05|0.59
PYTHON 0.01]0.500.03|0.67
Average 0.04 | 0.50 | 0.07 | 0.66

Given a transaction where one change is missing, ROSE can
predict 4% of the entities that need to be changed.
On average, every second recommended entity is correct.

Results: Closure

The programmer made all necessary changes.
How often does ROSE still suggest a missing change?

Granularity Fine Coarse

Project Ry Py Ry Py

ECLIPSE 1.0/ 0.979 1.0 0.980
GCC 1.0 0.953 1.0 0.946
GIMP 1.0/ 0.978 | 1.0 | 0.963
JBOSS 1.0 0.981 1.0 0.980
JEDIT 1.0/ 0.986 | 1.0 0.984
KOFFICE 1.0/ 0.990 1.0 0.971
POSTGRES |[1.0/0.989|1.0(0.978
PYTHON 1.0 0.986 | 1.0 | 0.991
Average 1.0/ 0.980|1.0]0.973

ROSE’s warnings about missing changes should be taken
seriously: Only 2% of all transactions cause a false alarm.
In other words: ROSE does not stand in the way.

Challenges

Granularity. Coarser predictions are more precise.
Which is the most useful granularity?

Sequence rules. Infer over several transactions.
Programmers who changed X later changed Y .

Further data sources. Distinguish fixes from features
Access log messages, bug reports, . ..

Program analysis. Reduce noise by program analysis
What is coupling, anyway?

Best practices. Learn from earlier successes
How do we measure success?

Rationales. Present rules to programmers
How do we visualize complex rules?

Conclusion

1 ROSE effectively guides users along related changes:
e After an initial change, ROSE predicts 26% of further files

and 15% of further entities
e 30% of the suggested files and 26% of the suggested

entities are correct predictions.
e Warnings about missing changes are seldom,
but reliable

| ROSE detects coupling between non-program entities
(e.g. programs and documentation)

'] Predictive power may increase further with log messages
and bug reports being taken into account

1 Research has just begun to exploit non-program artifacts

http://www.st.cs.uni-sb.de/

http://www.st.cs.uni-sb.de/

	The Idea
	Evolutionary Coupling
	Evolutionary Coupling
	Evolutionary Coupling
	Evolutionary Coupling
	What We Do
	Light-Weight Analysis
	Light-Weight Analysis
	Light-Weight Analysis
	Visualizing Coupling
	Visualizing Coupling
	Comparing Architecture with Evolution
	Comparing Architecture with Evolution
	Guiding the Programmer
	Guiding the Programmer in Eclipse
	ROSE Server and Client
	Mining Rules
	Rule Examples
	Evaluation
	Precision vs. Recall
	Precision vs. Recall (2)
	Projects used for Evaluation
	Results: Navigation through Source Code
	Results: Error Prevention
	Results: Closure
	Challenges
	Conclusion

