
0/14

�

�

�

�

�

�

	

SIGSOFT 2002/FSE-10, Charleston, November 20, 2002

Isolating Cause-Effect Chains
from Computer Programs

Andreas Zeller
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

1/14

�

�

�

�

�

�

	

A True Story

Consider the following C program:

double bug(double z[], int n) {
int i, j;
i = 0;
for (j = 0; j < n; j++) {
i = i + j + 1;
z[i] = z[i] ∗ (z[0] + 1.0);

}
return z[n];

}

bug.c causes the GNU compiler (GCC) to crash:

linux$ gcc-2.95.2 -O bug.c
gcc: Internal error: program cc1 got fatal signal 11
linux$ _

2/14

�

�

�

�

�

�

	

Why does GCC crash?

We want to determine the cause of the GCC crash:

The cause of any event (“effect”) is a preceding event
without which the effect would not have occurred.

— Microsoft Encarta

To prove causality, we must show experimentally that

1. the effect occurs when the cause occurs

2. the effect does not occur when the cause does not occur.

In our case, the effect is GCC crashing.
The cause must be something variable – e.g. the GCC input.

3/14

�

�

�

�

�

�

	

Isolating Failure Causes

Delta Debugging automatically isolates the
failure-inducing difference in the GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔

3/14

�

�

�

�

�

�

	

Isolating Failure Causes

Delta Debugging automatically isolates the
failure-inducing difference in the GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . }

3/14

�

�

�

�

�

�

	

Isolating Failure Causes

Delta Debugging automatically isolates the
failure-inducing difference in the GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔

3/14

�

�

�

�

�

�

	

Isolating Failure Causes

Delta Debugging automatically isolates the
failure-inducing difference in the GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
4 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . }

3/14

�

�

�

�

�

�

	

Isolating Failure Causes

Delta Debugging automatically isolates the
failure-inducing difference in the GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
4 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔

3/14

�

�

�

�

�

�

	

Isolating Failure Causes

Delta Debugging automatically isolates the
failure-inducing difference in the GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
4 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔

5 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . }. . . }

3/14

�

�

�

�

�

�

	

Isolating Failure Causes

Delta Debugging automatically isolates the
failure-inducing difference in the GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
4 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔

5 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . }. . . } ✘

3/14

�

�

�

�

�

�

	

Isolating Failure Causes

Delta Debugging automatically isolates the
failure-inducing difference in the GCC input:

GCC input test
1 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✘

2 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
3 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔
4 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . } . . . } ✔

5 double bug(. . .) { int i, j; i = 0; for (. . .) { . . . }. . . } ✘
...

19 . . . z[i] = z[i]∗ (z[0]+ 1.0); . . . ✘
18 . . . z[i] = z[i]∗ (z[0]+ 1.0); . . . ✔

...

+ 1.0 is the failure cause – after only 19 tests (≈ 2 seconds)

4/14

�

�

�

�

�

�

	

What’s going on in GCC?

The difference + 1.0 is just the beginning
of a cause-effect chain within the GCC run.

Input

.

.

.

.

.

.

.

.

.

Program State (= Variables)

.

.

.

Final State

4/14

�

�

�

�

�

�

	

What’s going on in GCC?

The difference + 1.0 is just the beginning
of a cause-effect chain within the GCC run.

Input

.

.

.

.

.

.

.

.

.

Program State (= Variables)

.

.

.

Final State

+1.0

4/14

�

�

�

�

�

�

	

What’s going on in GCC?

The difference + 1.0 is just the beginning
of a cause-effect chain within the GCC run.

Input

.

.

.

.

.

.

.

.

.

Program State (= Variables)

.

.

.

Final State

+1.0

4/14

�

�

�

�

�

�

	

What’s going on in GCC?

The difference + 1.0 is just the beginning
of a cause-effect chain within the GCC run.

Input

.

.

.

.

.

.

.

.

.

Program State (= Variables)

.

.

.

Final State

+1.0

4/14

�

�

�

�

�

�

	

What’s going on in GCC?

The difference + 1.0 is just the beginning
of a cause-effect chain within the GCC run.

Input

.

.

.

.

.

.

.

.

.

Program State (= Variables)

.

.

.

Final State

✘+1.0

To fix the bug, we must break this cause-effect chain.

5/14

�

�

�

�

�

�

	

Comparing States

Comparing states does not work,
because the differences accumulate during execution:

Input

.

.

.

.

.

.

.

.

.

Program State (= Variables)

.

.

.

Final State

✘+1.0

How do we isolate the relevant state differences?

6/14

�

�

�

�

�

�

	

Relevant State Differences

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

6/14

�

�

�

�

�

�

	

Relevant State Differences

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔

6/14

�

�

�

�

�

�

	

Relevant State Differences

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔
3 32 74 14 0x81fc4a0

6/14

�

�

�

�

�

�

	

Relevant State Differences

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔
3 32 74 14 0x81fc4a0 ✔

6/14

�

�

�

�

�

�

	

Relevant State Differences

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔
3 32 74 14 0x81fc4a0 ✔
4 32 74 14 0x81fc4e4

6/14

�

�

�

�

�

�

	

Relevant State Differences

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔
3 32 74 14 0x81fc4a0 ✔
4 32 74 14 0x81fc4e4

6/14

�

�

�

�

�

�

	

Relevant State Differences

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔
3 32 74 14 0x81fc4a0 ✔
4 32 74 14 0x81fc4e4
5 32 74 15 0x81fc4a0 ✔

6/14

�

�

�

�

�

�

	

Relevant State Differences

Using a debugger (GDB), we can examine and alter the
program state at various events during a program run.

Example: GCC state in the function combine instructions

reg rtx no cur insn uid last linenum first loop store insn test
1 32 74 15 0x81fc4e4 ✘

2 31 70 14 0x81fc4a0 ✔
3 32 74 14 0x81fc4a0 ✔
4 32 74 14 0x81fc4e4
5 32 74 15 0x81fc4a0 ✔

Consequence: determine and apply structural differences!

7/14

�

�

�

�

�

�

	

The GCC Memory Graph

Our HOWCOME prototype extracts the program state as graph:
Vertices are variables, edges are references

42991 vertices
44290 edges

8/14

�

�

�

�

�

�

	

Structural Differences

HOWCOME can compute structural graph differences:∆15 creates a variable, ∆20 deletes another

r✔

r✘
()->next ()->nextlist

14 18 22
()->next

15

()->next ()->nextlist

14 18 22
()->next

20

∆15−−→
()->next ()->nextlist

14 18 22
()->next

15

()->next ()->nextlist

14 18 22

15

()->next

()->next

20

∆20

y ∆20

y

()->next ()->nextlist

14 18 22
()->next

15

()->nextlist

14 18 22

()->next

20

∆15−−→
()->next ()->nextlist

14 18 22
()->next

15

()->next

list

14 18 22

15

()->next

()->next

20

9/14

�

�

�

�

�

�

	

The Process in a Nutshell

9/14

�

�

�

�

�

�

	

The Process in a Nutshell

9/14

�

�

�

�

�

�

	

The Process in a Nutshell

10/14

�

�

�

�

�

�

	

Relevant State Differences

HOWCOME examines the state of cc1 in combine instructions:
871 nodes (= variables) are different

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45

De
lta

s

�

Tests executed

Delta Debugging Log

cpass
cfail

10/14

�

�

�

�

�

�

	

Relevant State Differences

HOWCOME examines the state of cc1 in combine instructions:
871 nodes (= variables) are different

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35 40 45

De
lta

s

�

Tests executed

Delta Debugging Log

cpass
cfail

Only one variable causes the failure:

$m = (struct rtx def *)malloc(12)
$m->code = PLUS
first loop store insn->fld[1]...rtx = $m

11/14

�

�

�

�

�

�

	

The GCC Cause-Effect Chain

After 59 tests, HOWCOME has determined these failure causes:wwwwwwwwwwwwwwwwwwwwwwwwwwww�

1. Execution reaches main.
Since the program was invoked as “cc1 -O fail.i”,
variable argv[2] is now “fail.i”.

11/14

�

�

�

�

�

�

	

The GCC Cause-Effect Chain

After 59 tests, HOWCOME has determined these failure causes:wwwwwwwwwwwwwwwwwwwwwwwwwwww�

1. Execution reaches main.
Since the program was invoked as “cc1 -O fail.i”,
variable argv[2] is now “fail.i”.

2. Execution reaches combine instructions.
Since argv[2] was “fail.i”,
variable *first loop store insn→fld[1].rtx→fld[1].rtx→

fld[3].rtx→fld[1].rtx is now 〈new rtx def〉.

11/14

�

�

�

�

�

�

	

The GCC Cause-Effect Chain

After 59 tests, HOWCOME has determined these failure causes:wwwwwwwwwwwwwwwwwwwwwwwwwwww�

1. Execution reaches main.
Since the program was invoked as “cc1 -O fail.i”,
variable argv[2] is now “fail.i”.

2. Execution reaches combine instructions.
Since argv[2] was “fail.i”,
variable *first loop store insn→fld[1].rtx→fld[1].rtx→

fld[3].rtx→fld[1].rtx is now 〈new rtx def〉.

3. Execution reaches if then else cond (95th hit).
Since *first loop store insn→fld[1].rtx→fld[1].rtx→

fld[3].rtx→fld[1].rtx was 〈new rtx def〉,
variable link→fld[0].rtx→fld[0].rtx is now link.

11/14

�

�

�

�

�

�

	

The GCC Cause-Effect Chain

After 59 tests, HOWCOME has determined these failure causes:wwwwwwwwwwwwwwwwwwwwwwwwwwww�

1. Execution reaches main.
Since the program was invoked as “cc1 -O fail.i”,
variable argv[2] is now “fail.i”.

2. Execution reaches combine instructions.
Since argv[2] was “fail.i”,
variable *first loop store insn→fld[1].rtx→fld[1].rtx→

fld[3].rtx→fld[1].rtx is now 〈new rtx def〉.

3. Execution reaches if then else cond (95th hit).
Since *first loop store insn→fld[1].rtx→fld[1].rtx→

fld[3].rtx→fld[1].rtx was 〈new rtx def〉,
variable link→fld[0].rtx→fld[0].rtx is now link.

4. Execution ends.
Since variable link→fld[0].rtx→fld[0].rtx was link,
the program now terminates with a SIGSEGV signal.
The program fails.

Total running time: 6 seconds

11/14

�

�

�

�

�

�

	

The GCC Cause-Effect Chain

After 59 tests, HOWCOME has determined these failure causes:wwwwwwwwwwwwwwwwwwwwwwwwwwww�

1. Execution reaches main.
Since the program was invoked as “cc1 -O fail.i”,
variable argv[2] is now “fail.i”.

2. Execution reaches combine instructions.
Since argv[2] was “fail.i”,
variable *first loop store insn→fld[1].rtx→fld[1].rtx→

fld[3].rtx→fld[1].rtx is now 〈new rtx def〉.

3. Execution reaches if then else cond (95th hit).
Since *first loop store insn→fld[1].rtx→fld[1].rtx→

fld[3].rtx→fld[1].rtx was 〈new rtx def〉,
variable link→fld[0].rtx→fld[0].rtx is now link.

4. Execution ends.
Since variable link→fld[0].rtx→fld[0].rtx was link,
the program now terminates with a SIGSEGV signal.
The program fails.

Total running time: 6 seconds (+ 90 minutes of GDB overhead)

12/14

�

�

�

�

�

�

	

Challenges

How do we capture C program state accurately?
Does p point to something, and if so, to how many of them?

Today: Query memory allocation routines + heuristics
Future: Use program analysis, greater program state

12/14

�

�

�

�

�

�

	

Challenges

How do we capture C program state accurately?
Does p point to something, and if so, to how many of them?

Today: Query memory allocation routines + heuristics
Future: Use program analysis, greater program state

How do we determine relevant events?
Why focus on, say, combine instructions?

Today: Start with backtrace of failing run
Future: Focus on anomalies + transitions; user interaction

12/14

�

�

�

�

�

�

	

Challenges

How do we capture C program state accurately?
Does p point to something, and if so, to how many of them?

Today: Query memory allocation routines + heuristics
Future: Use program analysis, greater program state

How do we determine relevant events?
Why focus on, say, combine instructions?

Today: Start with backtrace of failing run
Future: Focus on anomalies + transitions; user interaction

How do we know a failure is the failure?
Can’t our changes just induce new failures?

Today: Outcome is “original” only if backtraces match
Future: Also match output, time, code coverage

12/14

�

�

�

�

�

�

	

Challenges

How do we capture C program state accurately?
Does p point to something, and if so, to how many of them?

Today: Query memory allocation routines + heuristics
Future: Use program analysis, greater program state

How do we determine relevant events?
Why focus on, say, combine instructions?

Today: Start with backtrace of failing run
Future: Focus on anomalies + transitions; user interaction

How do we know a failure is the failure?
Can’t our changes just induce new failures?

Today: Outcome is “original” only if backtraces match
Future: Also match output, time, code coverage

And finally: When does this actually work?

13/14

�

�

�

�

�

�

	

www.askigor.org

Submit buggy program
⇓

Specify invocations
⇓

Click on “Debug it”
⇓

Diagnosis comes
via e-mail

Up and running
since 2002-10-25

14/14

�

�

�

�

�

�

	

Conclusion

✔ Cause-effect chains explain the causes of program failures
automatically and effectively.

✔ Systematic experimentation leads to much higher precision
than “classical” analysis.

✔ Via automation, debugging becomes a well-understood,
systematic discipline.

✘ We need a passing execution as a reference.

✘ Large testing costs can be prohibitive.

✘ Preventing bugs is still an issue!

http://www.askigor.org/

http://www.askigor.org/

15/14

�

�

�

�

�

�

	

Read More
Automated Debugging. Morgan Kaufmann Publishers, Summer 2003.

Isolating Cause-Effect Chains from Computer Programs. Proc. ACM SIGSOFT
International Symposium on the Foundations of Software Engineering
(FSE 2002), Charleston, Nov. 2002.

Isolating Failure-Inducing Thread Schedules. (w/ J.-D. Choi) Proc. ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA 2002), Rom,
July 2002.

Simplifying and Isolating Failure-Inducing Input. (w/ R. Hildebrandt) IEEE
Transactions on Software Engineering 28(2), February 2002, pp. 183–200.

Automated Debugging: Are We Close? IEEE Computer, Nov. 2001, pp. 26–31.

Visualizing Memory Graphs. (w/ T. Zimmermann) Proc. of the Dagstuhl Seminar
01211 ”‘Software Visualization”’, May 2001. LNCS 2269, pp. 191–204.

Simplifying Failure-Inducing Input. (w/ R. Hildebrandt) Proc. ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA 2000),
Portland, Oregon, August 2000, pp. 135-145.

Yesterday, my program worked. Today, it does not. Why? Proc. ACM SIGSOFT
Conference (ESEC/FSE 1999), Toulouse, Sep. 1999, LNCS 1687, pp. 253–267.

http://www.askigor.org/

http://www.askigor.org/

	A True Story
	Why does GCC crash?
	Isolating Failure Causes
	What's going on in GCC?
	What's going on in GCC?
	What's going on in GCC?
	What's going on in GCC?
	What's going on in GCC?
	Comparing States
	Relevant State Differences
	The GCC Memory Graph
	Structural Differences
	The Process in a Nutshell
	The Process in a Nutshell
	The Process in a Nutshell
	Relevant State Differences
	The GCC Cause-Effect Chain
	Challenges
	www.askigor.org
	Conclusion
	Read More

