
Background
Actor Mutation Operators

Related Work
Conclusions

Mutation Operators for Actor Systems

Vilas Jagannath, Milos Gligoric, Steven Lauterburg,
Darko Marinov, and Gul Agha

University of Illinois at Urbana-Champaign

April 6th, 2010
Mutation 2010, Paris, France

1

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Why actors?

I Multicore computing is here to stay

I Shared memory multithreaded programs have problems

I Data races, deadlocks, atomicity violations...

I Promising alternative: message passing approaches like actors

I However, still need to test actor systems

I Mutation operators: towards applying mutation testing

2

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

What is an actor?

Object with:

I own thread of control

I local/non-shared state

I mailbox

I unique name

That can:

I send/receive messages
to/from other actors

I create other actors, destroy
actors

... mailbox ...

state

thread

name...

[send]

m
sg
2

m
sg
1

[send]

constraints

3

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Own thread of control

Each actor runs in a separate thread

All actors run concurrently

thread

...

4

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

No shared state

Actors can only access their own local state

Communication with other actors is performed through messages

state

...

5

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Communication

Actors can asynchronously send/receive messages

Messages are buffered in mailboxes until processed

... mailbox ...

...

[send]

m
sg
2

m
sg
1

[send]

6

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Creation and identification

Actors can create other actors (also destroy)

Creation returns a unique name that identifies the new actor

...
name

7

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Constraining communication

Actors can have a set of messaging constraints

Constraints enable/disable receipt of messages based on local state

...

constraints

8

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Actor languages/frameworks

Languages:

I Act, Erlang, Io, Salsa, Scala, Thal...

Frameworks:

I C++: Act++, Theron

I Java: ActorFoundry, Kilim

I .Net: Axum, Asynchronous Agents, Singularity

I Python: Parley, Stage

I Ruby: Revactor, Dramatis

I Smalltalk: Acttalk

9

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Banking actor system

accounts

balance

balance

balance

account3

account2

account1

bank

10

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Actor creation - Opening an account

createAccount(initBal...)

accounts

bank

11

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Actor creation - Opening an account

createAccount(initBal...)

create(id, initBal...)

account1

accounts balance

bank

12

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Actor creation - Opening an account

c l a s s BankActor extends Actor {
Map<I n t e g e r , ActorName> account s ;
. . .
@message
i n t openAccount (S t r i n g fstName , S t r i n g lstName) {

re tu rn openAccount (0 , fstName , lstName) ;
}
@message
i n t openAccount (double i n i t B a l , S t r i n g fstName ,

S t r i n g lstName) {
ActorName acc = create (AccountActor . c l a s s , n ex t Id ,

i n i t B a l , fstName , lstName) ;
account s . put (nex t Id , acc) ;
re tu rn n e x t I d++;

}
. . .

}

13

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Actor creation - Opening an account

c l a s s AccountActor extends Actor {
double ba l ance = 0 ;
. . .
AccountActor (i n t id , i n t ba lance , S t r i n g fstName ,

S t r i n g lstName) {
t h i s . i d = i d ; t h i s . b a l ance = ba l ance ;
t h i s . fstName = fstName ; t h i s . l stName = lstName ;

}
. . .

}

14

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Asynchronous Messaging - Deposit

account1

deposit(id, amt)

accounts balance

bank

15

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Asynchronous Messaging - Deposit

account1

deposit(id, amt)

deposit(amt)

balanceaccounts

bank

16

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Asynchronous Messaging - Deposit

c l a s s BankActor extends Actor {
Map<I n t e g e r , ActorName> account s ;
. . .
@message
vo id d e p o s i t (i n t acc Id , double amount) {

ActorName acc = account s . ge t (a c c I d) ;
send (acc , ” d e p o s i t ” , amount) ;

}
. . .

}

17

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Asynchronous Messaging - Deposit

c l a s s AccountActor extends Actor {
. . .
@message
vo id d e p o s i t (double amount) {

ba l ance += amount ;
}
. . .

}

18

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Messaging Constraints - Withdraw

account1

withdraw(id, amt)

accounts balance

bank

19

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Messaging Constraints - Withdraw

account1

withdraw(amt)

withdraw(id, amt)

balanceaccounts

bank

20

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Messaging Constraints - Withdraw

c l a s s BankActor extends Actor {
Map<I n t e g e r , ActorName> account s ;
. . .
@message
vo id withdraw (i n t acc Id , double amount) {

ActorName acc = account s . ge t (a c c I d) ;
send (acc , ”withdraw” , amount) ;

}
. . .

}

21

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Messaging Constraints - Withdraw

c l a s s AccountActor extends Actor {
. . .
@message
vo id withdraw (double amount) {

ba l ance −= amount ;
}
@disab le (messageName = ”withdraw”)
boolean wi thd rawDi sab l ed (double amount) {

re tu rn (amount > ba l ance) ;
}
. . .

}

22

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Synchronous Messaging - Transfer

transfer(srcId, dstId, amt)

account1

account2

accounts balance

balance

bank

23

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Synchronous Messaging - Transfer

transfer(srcId, dstId, amt)

account1

account2deposit(amt)

accounts balance

balance

transfer(account2, amt)

bank

24

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Synchronous Messaging - Transfer

c l a s s BankActor extends Actor {
Map<I n t e g e r , ActorName> account s ;
. . .
@message
vo id t r a n s f e r (i n t acc IdS rc , i n t acc IdDst , double

amount) {
ActorName accSrc = account s . ge t (a c c I dS r c) ;
ActorName accDst = account s . ge t (acc IdDs t) ;
send (accSrc , ” t r a n s f e r ” , accDst , amount) ;

}
. . .

}

25

Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Synchronous Messaging - Transfer

c l a s s AccountActor extends Actor {
. . .
@message
vo id t r a n s f e r (ActorName accDst , double amount) {

ba l ance −= amount ;
c a l l (accDst , ” d e p o s i t ” , amount) ;

}
@disab le (messageName = ” t r a n s f e r ”)
boolean t r a n s f e r D i s a b l e d (ActorName accDst , double

amount) {
re tu rn (amount > ba l ance) ;

}
. . .

}

26

Background
Actor Mutation Operators

Related Work
Conclusions

Message operators
Constraint operators
Creation/Deletion operators

Communication constructs

I Categories:

I Messaging: @message, send, call
I Messaging constraints: @disable
I Creation: create, destroy

I Common errors related to communication interface

I Operator categories match communication interface

27

Background
Actor Mutation Operators

Related Work
Conclusions

Message operators
Constraint operators
Creation/Deletion operators

Operators

Category Actor Mutation Operators

Messaging

RSR - Remove Send/Receive
MMP - Modify Message Parameter
RMP - Reorder Message Parameters
MMN - Modify Message Name
MMR - Modify Message Recipient
CRT - Change (message) Reference Type
CST - Change (message) Synchronization Type

Constraint
RC - Remove Constraint
MC - Modify Constraint

Creation/Deletion
RCD - Remove Creation/Deletion
MCP - Modify Creation Parameter
RCP - Reorder Creation Parameters

28

Background
Actor Mutation Operators

Related Work
Conclusions

Message operators
Constraint operators
Creation/Deletion operators

Message operators

Category Actor Mutation Operators

Messaging

RSR - Remove Send/Receive
MMP - Modify Message Parameter
RMP - Reorder Message Parameters
MMN - Modify Message Name
MMR - Modify Message Recipient
CRT - Change (message) Reference Type
CST - Change (message) Synchronization Type

Constraint
RC - Remove Constraint
MC - Modify Constraint

Creation/Deletion
RCD - Remove Creation/Deletion
MCP - Modify Creation Parameter
RCP - Reorder Creation Parameters

29

Background
Actor Mutation Operators

Related Work
Conclusions

Message operators
Constraint operators
Creation/Deletion operators

MMN - Modify Message Name

Original Code:

@message
vo id d e p o s i t (i n t acc Id , double amount) {

ActorName acc = account s . ge t (a c c I d) ;
send (account , ” d e p o s i t ” , amount) ;

}

MMN Mutant:

@message
vo id d e p o s i t (i n t acc Id , double amount) {

ActorName acc = account s . ge t (a c c I d) ;
// d e p o s i t changed to withdraw
send (account , ”withdraw” , amount) ;

}

30

Background
Actor Mutation Operators

Related Work
Conclusions

Message operators
Constraint operators
Creation/Deletion operators

CST - Change (message) Synchronization Type

Original Code:

@message
vo id d e p o s i t (i n t acc Id , double amount) {

ActorName acc = account s . ge t (a c c I d) ;
send (account , ” d e p o s i t ” , amount) ;

}

CST Mutant:

@message
vo id d e p o s i t (i n t acc Id , double amount) {

ActorName acc = account s . ge t (a c c I d) ;
// send changed to c a l l
c a l l (account , ” d e p o s i t ” , amount) ;

}

31

Background
Actor Mutation Operators

Related Work
Conclusions

Message operators
Constraint operators
Creation/Deletion operators

Constraint operators

Category Actor Mutation Operators

Messaging

RSR - Remove Send/Receive
MMP - Modify Message Parameter
RMP - Reorder Message Parameters
MMN - Modify Message Name
MMR - Modify Message Recipient
CRT - Change (message) Reference Type
CST - Change (message) Synchronization Type

Constraint
RC - Remove Constraint
MC - Modify Constraint

Creation/Deletion
RCD - Remove Creation/Deletion
MCP - Modify Creation Parameter
RCP - Reorder Creation Parameters

32

Background
Actor Mutation Operators

Related Work
Conclusions

Message operators
Constraint operators
Creation/Deletion operators

RC - Remove Constraint

Original Code:

@disab le (messageName = ”withdraw”)
boolean wi thd rawDi sab l ed (double amount) {

re tu rn (amount > ba l ance) ;
}

RC Mutant:

// removed anno t a t i on mapping t h i s c o n s t r a i n t
// method to the withdraw message
boolean wi thd rawDi sab l ed (double amount) {

re tu rn (amount > ba l ance) ;
}

33

Background
Actor Mutation Operators

Related Work
Conclusions

Message operators
Constraint operators
Creation/Deletion operators

MC - Modify Constraint

Original Code:

@disab le (messageName = ” t r a n s f e r ”)
boolean t r a n s f e r D i s a b l e d (ActorName accDst , double

amount) {
re tu rn (amount > ba l ance) ;

}

MC Mutant:

@disab le (messageName = ” t r a n s f e r ”)
boolean t r a n s f e r D i s a b l e d (ActorName accDst , double

amount) {
// changed > to <
re tu rn (amount < ba l ance) ;

}

34

Background
Actor Mutation Operators

Related Work
Conclusions

Message operators
Constraint operators
Creation/Deletion operators

Creation/Deletion Related Mutation Operators

Category Actor Mutation Operators

Messaging

RSR - Remove Send/Receive
MMP - Modify Message Parameter
RMP - Reorder Message Parameters
MMN - Modify Message Name
MMR - Modify Message Recipient
CRT - Change (message) Reference Type
CST - Change (message) Synchronization Type

Constraint
RC - Remove Constraint
MC - Modify Constraint

Creation/Deletion
RCD - Remove Creation/Deletion
MCP - Modify Creation Parameter
RCP - Reorder Creation Parameters

35

Background
Actor Mutation Operators

Related Work
Conclusions

Message operators
Constraint operators
Creation/Deletion operators

MCP - Modify Creation Parameter

Original Code:
@message
i n t openAccount (double i n i t B a l , S t r i n g fstName , S t r i n g

lstName) {
ActorName acc = create (AccountActor . c l a s s , n ex t Id ,

i n i t B a l , fstName , lstName) ;
account s . put (nex t Id , acc) ; re tu rn n e x t I d++; }

MCP Mutant:
@message
i n t openAccount (double i n i t B a l , S t r i n g fstName , S t r i n g

lstName) {
// i n i t B a l paramete r changed to 0
ActorName acc = create (AccountActor . c l a s s , n ex t Id , 0 ,

fstName , lstName) ;
account s . put (nex t Id , acc) ; re tu rn n e x t I d++; }

36

Background
Actor Mutation Operators

Related Work
Conclusions

Message operators
Constraint operators
Creation/Deletion operators

RCP - Reorder Creation Parameters

Original Code:
@message
i n t openAccount (double i n i t B a l , S t r i n g fstName , S t r i n g

lstName) {
ActorName acc = create (AccountActor . c l a s s , n ex t Id ,

i n i t B a l , fstName , lstName) ;
account s . put (nex t Id , acc) ; re tu rn n e x t I d++; }

RCP Mutant:
@message
i n t openAccount (double i n i t B a l , S t r i n g fstName , S t r i n g

lstName) {
// r e o r d e r e d fstName and lstName
ActorName acc = create (AccountActor . c l a s s , n ex t Id ,

i n i t B a l , lstName , fstName) ;
account s . put (nex t Id , acc) ; re tu rn n e x t I d++; }

37

Background
Actor Mutation Operators

Related Work
Conclusions

Related Work

I Mutation testing researched for couple of decades

I Operators for many languages/paradigms [Jia, Harman 2010]

I Closest work:

I Interface mutation [Gosh, Mathur 2001]

I Operators for specifications & models [Srivatanakul et al 2003 & Aichernig,

Delgado 2006]

I Fault injection based reliability testing [Arlat et al 1990 & Chandra et al

2004]

38

Background
Actor Mutation Operators

Related Work
Conclusions

Conclusions

I Actor systems gaining popularity

I Identified mutation operators for actor systems

I Future work:
I Classify/document common errors
I Measure effectiveness of operators
I Implement mutation testing system
I Support multiple actor frameworks
I Efficient exploration (related talk tomorrow - MuTMuT)

39

	Background
	Why actors?
	What are actors?
	Actor frameworks
	ActorFoundry example

	Actor Mutation Operators
	Message operators
	Constraint operators
	Creation/Deletion operators

	Related Work
	Conclusions

