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Why actors?

I Multicore computing is here to stay

I Shared memory multithreaded programs have problems

I Data races, deadlocks, atomicity violations...

I Promising alternative: message passing approaches like actors

I However, still need to test actor systems

I Mutation operators: towards applying mutation testing
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What is an actor?

Object with:

I own thread of control

I local/non-shared state

I mailbox

I unique name

That can:

I send/receive messages
to/from other actors

I create other actors, destroy
actors

... mailbox ...

state

thread

name...

[send]
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Own thread of control

Each actor runs in a separate thread

All actors run concurrently

thread

...
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No shared state

Actors can only access their own local state

Communication with other actors is performed through messages

state

...
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Communication

Actors can asynchronously send/receive messages

Messages are buffered in mailboxes until processed

... mailbox ...

...

[send]

m
sg
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m
sg
1

[send]

6



Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Creation and identification

Actors can create other actors (also destroy)

Creation returns a unique name that identifies the new actor

...
name
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Constraining communication

Actors can have a set of messaging constraints

Constraints enable/disable receipt of messages based on local state

...

constraints

8



Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Actor languages/frameworks

Languages:

I Act, Erlang, Io, Salsa, Scala, Thal...

Frameworks:

I C++: Act++, Theron

I Java: ActorFoundry, Kilim

I .Net: Axum, Asynchronous Agents, Singularity

I Python: Parley, Stage

I Ruby: Revactor, Dramatis

I Smalltalk: Acttalk
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Banking actor system

accounts

balance

balance

balance

account3

account2

account1

bank
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Actor creation - Opening an account

createAccount(initBal...)

accounts

bank
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Actor creation - Opening an account

createAccount(initBal...)

create(id, initBal...)

account1

accounts balance

bank
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Actor creation - Opening an account

c l a s s BankActor extends Actor {
Map<I n t e g e r , ActorName> account s ;
. . .
@message
i n t openAccount ( S t r i n g fstName , S t r i n g lstName ) {

re tu rn openAccount (0 , fstName , lstName ) ;
}
@message
i n t openAccount ( double i n i t B a l , S t r i n g fstName ,

S t r i n g lstName ) {
ActorName acc = create ( AccountActor . c l a s s , n ex t Id ,

i n i t B a l , fstName , lstName ) ;
account s . put ( nex t Id , acc ) ;
re tu rn n e x t I d++;

}
. . .

}
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Actor creation - Opening an account

c l a s s AccountActor extends Actor {
double ba l ance = 0 ;
. . .
AccountActor ( i n t id , i n t ba lance , S t r i n g fstName ,

S t r i n g lstName ) {
t h i s . i d = i d ; t h i s . b a l ance = ba l ance ;
t h i s . fstName = fstName ; t h i s . l stName = lstName ;

}
. . .

}
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Asynchronous Messaging - Deposit

account1

deposit(id, amt)

accounts balance

bank
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Asynchronous Messaging - Deposit

account1

deposit(id, amt)

deposit(amt)

balanceaccounts

bank
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Asynchronous Messaging - Deposit

c l a s s BankActor extends Actor {
Map<I n t e g e r , ActorName> account s ;
. . .
@message
vo id d e p o s i t ( i n t acc Id , double amount ) {

ActorName acc = account s . ge t ( a c c I d ) ;
send ( acc , ” d e p o s i t ” , amount ) ;

}
. . .

}

17



Background
Actor Mutation Operators

Related Work
Conclusions

Why actors?
What are actors?
Actor frameworks
ActorFoundry example

Asynchronous Messaging - Deposit

c l a s s AccountActor extends Actor {
. . .
@message
vo id d e p o s i t ( double amount ) {

ba l ance += amount ;
}
. . .

}
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account1

withdraw(id, amt)

accounts balance

bank
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account1

withdraw(amt)

withdraw(id, amt)

balanceaccounts

bank
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Messaging Constraints - Withdraw

c l a s s BankActor extends Actor {
Map<I n t e g e r , ActorName> account s ;
. . .
@message
vo id withdraw ( i n t acc Id , double amount ) {

ActorName acc = account s . ge t ( a c c I d ) ;
send ( acc , ”withdraw” , amount ) ;

}
. . .

}
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Messaging Constraints - Withdraw

c l a s s AccountActor extends Actor {
. . .
@message
vo id withdraw ( double amount ) {

ba l ance −= amount ;
}
@disab le ( messageName = ”withdraw” )
boolean wi thd rawDi sab l ed ( double amount ) {

re tu rn ( amount > ba l ance ) ;
}
. . .

}
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Synchronous Messaging - Transfer

transfer(srcId, dstId, amt)

account1

account2

accounts balance

balance

bank
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Synchronous Messaging - Transfer

transfer(srcId, dstId, amt)

account1

account2deposit(amt)

accounts balance

balance

transfer(account2, amt)

bank
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Synchronous Messaging - Transfer

c l a s s BankActor extends Actor {
Map<I n t e g e r , ActorName> account s ;
. . .
@message
vo id t r a n s f e r ( i n t acc IdS rc , i n t acc IdDst , double

amount ) {
ActorName accSrc = account s . ge t ( a c c I dS r c ) ;
ActorName accDst = account s . ge t ( acc IdDs t ) ;
send ( accSrc , ” t r a n s f e r ” , accDst , amount ) ;

}
. . .

}
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Synchronous Messaging - Transfer

c l a s s AccountActor extends Actor {
. . .
@message
vo id t r a n s f e r ( ActorName accDst , double amount ) {

ba l ance −= amount ;
c a l l ( accDst , ” d e p o s i t ” , amount ) ;

}
@disab le ( messageName = ” t r a n s f e r ” )
boolean t r a n s f e r D i s a b l e d ( ActorName accDst , double

amount ) {
re tu rn ( amount > ba l ance ) ;

}
. . .

}
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Communication constructs

I Categories:

I Messaging: @message, send, call
I Messaging constraints: @disable
I Creation: create, destroy

I Common errors related to communication interface

I Operator categories match communication interface
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Operators

Category Actor Mutation Operators

Messaging

RSR - Remove Send/Receive
MMP - Modify Message Parameter
RMP - Reorder Message Parameters
MMN - Modify Message Name
MMR - Modify Message Recipient
CRT - Change (message) Reference Type
CST - Change (message) Synchronization Type

Constraint
RC - Remove Constraint
MC - Modify Constraint

Creation/Deletion
RCD - Remove Creation/Deletion
MCP - Modify Creation Parameter
RCP - Reorder Creation Parameters
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Message operators

Category Actor Mutation Operators

Messaging

RSR - Remove Send/Receive
MMP - Modify Message Parameter
RMP - Reorder Message Parameters
MMN - Modify Message Name
MMR - Modify Message Recipient
CRT - Change (message) Reference Type
CST - Change (message) Synchronization Type

Constraint
RC - Remove Constraint
MC - Modify Constraint

Creation/Deletion
RCD - Remove Creation/Deletion
MCP - Modify Creation Parameter
RCP - Reorder Creation Parameters
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MMN - Modify Message Name

Original Code:

@message
vo id d e p o s i t ( i n t acc Id , double amount ) {

ActorName acc = account s . ge t ( a c c I d ) ;
send ( account , ” d e p o s i t ” , amount ) ;

}

MMN Mutant:

@message
vo id d e p o s i t ( i n t acc Id , double amount ) {

ActorName acc = account s . ge t ( a c c I d ) ;
// d e p o s i t changed to withdraw
send ( account , ”withdraw” , amount ) ;

}
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CST - Change (message) Synchronization Type

Original Code:

@message
vo id d e p o s i t ( i n t acc Id , double amount ) {

ActorName acc = account s . ge t ( a c c I d ) ;
send ( account , ” d e p o s i t ” , amount ) ;

}

CST Mutant:

@message
vo id d e p o s i t ( i n t acc Id , double amount ) {

ActorName acc = account s . ge t ( a c c I d ) ;
// send changed to c a l l
c a l l ( account , ” d e p o s i t ” , amount ) ;

}
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Constraint operators

Category Actor Mutation Operators

Messaging

RSR - Remove Send/Receive
MMP - Modify Message Parameter
RMP - Reorder Message Parameters
MMN - Modify Message Name
MMR - Modify Message Recipient
CRT - Change (message) Reference Type
CST - Change (message) Synchronization Type

Constraint
RC - Remove Constraint
MC - Modify Constraint

Creation/Deletion
RCD - Remove Creation/Deletion
MCP - Modify Creation Parameter
RCP - Reorder Creation Parameters
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RC - Remove Constraint

Original Code:

@disab le ( messageName = ”withdraw” )
boolean wi thd rawDi sab l ed ( double amount ) {

re tu rn ( amount > ba l ance ) ;
}

RC Mutant:

// removed anno t a t i on mapping t h i s c o n s t r a i n t
// method to the withdraw message
boolean wi thd rawDi sab l ed ( double amount ) {

re tu rn ( amount > ba l ance ) ;
}
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MC - Modify Constraint

Original Code:

@disab le ( messageName = ” t r a n s f e r ” )
boolean t r a n s f e r D i s a b l e d ( ActorName accDst , double

amount ) {
re tu rn ( amount > ba l ance ) ;

}

MC Mutant:

@disab le ( messageName = ” t r a n s f e r ” )
boolean t r a n s f e r D i s a b l e d ( ActorName accDst , double

amount ) {
// changed > to <
re tu rn ( amount < ba l ance ) ;

}

34



Background
Actor Mutation Operators

Related Work
Conclusions

Message operators
Constraint operators
Creation/Deletion operators

Creation/Deletion Related Mutation Operators

Category Actor Mutation Operators

Messaging

RSR - Remove Send/Receive
MMP - Modify Message Parameter
RMP - Reorder Message Parameters
MMN - Modify Message Name
MMR - Modify Message Recipient
CRT - Change (message) Reference Type
CST - Change (message) Synchronization Type

Constraint
RC - Remove Constraint
MC - Modify Constraint

Creation/Deletion
RCD - Remove Creation/Deletion
MCP - Modify Creation Parameter
RCP - Reorder Creation Parameters
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MCP - Modify Creation Parameter

Original Code:
@message
i n t openAccount ( double i n i t B a l , S t r i n g fstName , S t r i n g

lstName ) {
ActorName acc = create ( AccountActor . c l a s s , n ex t Id ,

i n i t B a l , fstName , lstName ) ;
account s . put ( nex t Id , acc ) ; re tu rn n e x t I d++; }

MCP Mutant:
@message
i n t openAccount ( double i n i t B a l , S t r i n g fstName , S t r i n g

lstName ) {
// i n i t B a l paramete r changed to 0
ActorName acc = create ( AccountActor . c l a s s , n ex t Id , 0 ,

fstName , lstName ) ;
account s . put ( nex t Id , acc ) ; re tu rn n e x t I d++; }
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RCP - Reorder Creation Parameters

Original Code:
@message
i n t openAccount ( double i n i t B a l , S t r i n g fstName , S t r i n g

lstName ) {
ActorName acc = create ( AccountActor . c l a s s , n ex t Id ,

i n i t B a l , fstName , lstName ) ;
account s . put ( nex t Id , acc ) ; re tu rn n e x t I d++; }

RCP Mutant:
@message
i n t openAccount ( double i n i t B a l , S t r i n g fstName , S t r i n g

lstName ) {
// r e o r d e r e d fstName and lstName
ActorName acc = create ( AccountActor . c l a s s , n ex t Id ,

i n i t B a l , lstName , fstName ) ;
account s . put ( nex t Id , acc ) ; re tu rn n e x t I d++; }
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Related Work

I Mutation testing researched for couple of decades

I Operators for many languages/paradigms [Jia, Harman 2010]

I Closest work:

I Interface mutation [Gosh, Mathur 2001]

I Operators for specifications & models [Srivatanakul et al 2003 & Aichernig,

Delgado 2006]

I Fault injection based reliability testing [Arlat et al 1990 & Chandra et al

2004]
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Conclusions

I Actor systems gaining popularity

I Identified mutation operators for actor systems

I Future work:
I Classify/document common errors
I Measure effectiveness of operators
I Implement mutation testing system
I Support multiple actor frameworks
I Efficient exploration (related talk tomorrow - MuTMuT)
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