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Abstract

In this thesis, we investigate the feasability of supporting software
development by static program analysis. We present an algorithm for
partly interprocedural context-sensitive typestate analysis on Java pro-
grams which builds on jFirm, a Java implementation of the SSA-based
intermediate language Firm [LBBG05], and uses finite state machines as
typestate specification.

We implemented the algorithm as a Java application, jFTA. Given the
bytecode of the programs to be tested and a set of typestate specifications,
it reports typestate violations to the programmer and provides automati-
cally derived fixing suggestions. It uses a jFirm-based library [Boe09] for
points-to resolution and approximates variable aliasing.

We use the automated usage model miner ADABU [DLWZ06] to gather
the required typestate specification, and by this assess the usability of
mined models as specification for typestate analysis. A case study us-
ing real world examples from Columba [col] unveils interface problems
but no major conceptional flaws. We furthermore evaluate the speed of
jFTA and the quality of the reported violations, showing that both are so
far only satisfactory for nearly intraprocedural analysis of simplistic test
cases. Also, the results suffer from limitations imposed by jFirm and the
points-to library which are in early development stages.
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1 Introduction

During software development, programmers spend a lot of time on testing and
debugging their code, trying to keep their product bug-free. Bugs are caused
by programming errors which are classified as compile-time or runtime errors.
While the former are hard to miss as the compiler will complain about them, the
latter may not be discovered because they only occur under rare circumstances.
Such a bug in a very rarely used subroutine might cause software to crash
unexpectedly after running for a long time.

The causes of runtime errors are manifold. Prominent examples include
failure to sanitise user input values, correct range checking for internal variables
or violation of (implicit) invariants. In this thesis, we want to address a subset
of these last items. The specification of a type often introduces invariants which
define different states for instances, depending on which only a subset of all the
available methods may actually be called (are enabled). Disabled methods
may not be called as they can produce errors. As a result of a method invocation,
the object’s state may change and therefore enable other methods. For example,
such invariants are used to ensure that only opened files are read or that an
iterator’s next element is only acquired after explicitly checking for its existence.

Ensuring compliance with all given invariants becomes harder as programs
grow. Unexpected exceptions will likely not be handled correctly and can there-
fore crash the whole program. The programmer does not get any warning of
this before the program is run, because the aforementioned invariants are only –
often implicitly – given in the type’s natural language specification. Compilers
cannot automatically extract these invariants and therefore do not detect if they
are violated.

1.1 Tasks

In this thesis, we want to develop an automatic invariant checking system named
jFTA which shall warn the programmer of bugs of this kind. To accomplish this,
we have several challenges to address:

1. Analyse how objects are used in a Java program which might still be in
development.

2. Extract the invariants to which the program must comply.

3. Check the observed usage patterns from step 1 against the specification
from step 2 and inform the user of any violations.

Using jFTA should result in a reduction of both the amount of undetected
runtime errors and also the time the programmer spends on debugging. In
addition, we want our system to integrate as seamlessly as possible into the
programmer’s work-flow, keeping the additional work required to use it at the
minimum. Therefore, we aim to gain the needed specification automatically
instead of having the programmer extract it by herself.

1.2 Thesis structure

The rest of this thesis is organised as follows. We explain how invariant vio-
lations can be detected using typestate analysis [SY86] and discuss related
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work in Section 2. We introduce the intermediate program representation lan-
guage Firm [LBBG05] and its Java implementation jFirm in Section 3. The
invariant extraction will be realised using the automatic usage model miner
ADABU [DLWZ06], which we present in Section 4. We discuss our analy-
sis algorithm in Section 5, describe its implementation as a Java program in
Section 6 and evaluate it in Section 7. We conclude in Section 8.

2



2 Problem overview

In this section, we use a short example to clarify the nature of our target prob-
lems before we analyse their features in more detail. After presenting the basic
techniques needed to detect these problems, we give a brief overview about
related work.

2.1 Example

In our example, we want to check a remote IMAP mailbox for new mail. This
is done by the Java method mailAvailable() given in Figure 2.1, which uses
an implementation of the IMAP Protocol [IMA, ris]. In order to receive the
wanted information, the specification of the protocol tells the programmer to
have the program perform the following steps in this order:

Step Client action Server response
1. Connect to server Authentication query
2. Provide credentials List of available mailboxes
3. Select wanted mailbox Information about selected box
4. Close the selected mailbox and

terminate the connection.
“Goodbye” message

The order of the commands being executed is important, because the client’s
session with the server can be in different states, e.g. connected or authenticated.
The valid sequence of protocol state transitions resulting from execution of the
example method can be illustrated as the finite state automaton in Figure 2.2.

Violating the specified order may result in different error situations. The
server will, for example, deny the client’s request for selecting a mailbox if
the session is not in AUTHENTICATED state. Thus, the login request has
to be executed prior to any mailbox requests. If omitted, the invocation of
select("inbox") in line 5 would throw an IMAPException. Depending on
whether the method calling mailAvailable() handles exceptions correctly or
not, the program would either report communication problems with the server
(best case), or crash unexpectedly because of the unhandled exception (worst
case). In any case, this flaw would prevent this method from ever working
correctly, probably resulting in a severe program failure after the program was
running for some time.

1 public boolean mailAvailable() throws IOException,
IMAPException, AuthenticationException {

2 IMAPProtocol imap = new IMAPProtocol(host, port);
3 imap.openPort();
4 imap.login(username, password);
5 boolean newMailAvailable =

imap.select("inbox").getFirstUnseen() != -1;
6 imap.close();
7 imap.logout();
8 return newMailAvailable;
9 }

Figure 2.1: A Java method which checks an IMAP inbox for new mails.
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SELECTNOT_CONN NOT_AUTH AUTH

openPort() login() select()

close()logout()

Figure 2.2: A valid sequence of method invocations on an instance of
org.columba.ristretto.imap.IMAPProtocol, assuming that the
provided user credentials are correct and that the network connec-
tion is stable.

It is desirable to be informed about such errors as soon as possible, especially
before the program is executed. The more quickly the programmer notices the
error, the easier it is for her to retrace the functionality of the part in question
and to find a solution. Ideally, the programmer would receive a warning directly
after writing erroneous code lines. This could be achieved by running an ap-
propriate analysis right after compilation and using an integrated development
environment like Eclipse [ecl], which constantly compiles in the background.

2.2 Static program analysis

The problem with runtime errors is that their occurrence depends on actual
values of variables and memory locations, which are unknown prior to program
execution. Checking for this type of errors in advance requires to somehow
estimate possible memory values and identify problematic configurations. The
research area dealing with this type of problem is called static program anal-
ysis, and is often integrated into compilers. The main idea is to not only let the
compiler transform code from a higher to a lower language level, but also inter-
pret it to check certain qualities or invariants by approximating its behaviour
when executed. Examples include checking for liveness of variables and pointers
or assuring that pointers are only dereferenced after initialization. This can be
achieved by enhancing the compiler with a set of rules which build and operate
on an abstract representation of the program during or after compiling the code.

Most static analyses generate an over-estimation of the program’s behaviour.
They never ignore a value or execution path in the program which could oc-
cur with a probability greater than 0, but most likely also consider situations
which can never happen in an actual program execution. This guarantees that
the analysis will never miss any potential program behaviour, which makes it
sound . Without soundness, the results of the analysis would obviously not be
safe to use for performing code optimization or program verification. On the
other hand, results of an analysis can be safe but useless if they contain a lot of
superfluous information resulting from over-approximation.

An optimal analysis would neither over- nor under-approximate at any point.
This would correspond to running the target program on every possible input,
also including data entered by the user or received via network sockets. Do-
ing so in a finite amount of time would be equivalent to solving the Halting
Problem [Tur36], which is why such an analysis does not exist. The challenge
lies in finding the right compromise between approximation quality and analysis
complexity, i.e. getting usable results in as little time as possible.
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2.3 Dataflow analysis

A method which supports these requirements with adjustable level of detail is
dataflow analysis. As the name suggests, it models the way data flows through
a program by a directed graph [NNH04]. Every node in this graph is assigned
an input and an output data set . The actual logic of the dataflow analysis is
encoded into the transfer function . It takes a node n plus its input set and
generates the new output set for this node, which is then merged into the input
sets of all successors of n by a merge operation t.

The analysis begins with the specified first node in the graph, which is the
only node required to have a pre-defined input set in the beginning. It advances
to the other nodes by following the graph’s edges, merging output into input sets
and applying the transfer function to the successors. By requesting the transfer
function and t to be monotonic with respect to a finite, partial ordering on
the input/output sets, the algorithm is guaranteed to terminate by reaching a
unique fixpoint for the data in all sets even if the graph is cyclic. The nodes’
output sets then contain the results of the analysis.

The merge operation in combination with this termination criterion actually
leads to the aforementioned over-approximative results of the analysis. As we
will see in Section 3.1.1, there are graph views on programs which support
dataflow well through their structure.

2.4 Typestate analysis

As initially mentioned, the error discussed in our example is caused by invoking
a method disabled by the current state of the affected object. This class of
problems can be characterized as typestate violations. Typestate [SY86] is
an extension of the concept of types. While the type of an object determines the
set of all operations which can be ever performed on an object, typestate only
enables a subset thereof, based on the current state of the object. Execution
of an enabled operation can change the typestate of an object, which might
disable or enable other operations. Whenever a disabled operation is executed,
the object switches to an error state to express a typestate violation.

In the example, select("inbox") is disabled unless the imap object is
in AUTHENTICATED state. If the invocation of login(username, password)

would be left out by error, imap would be in NOT AUTHENTICATED state and
calling select("inbox") would be a typestate violation (see Figure 2.3). As
compilers in typed languages like Java only perform type-checking and do not
know about typestate, the example method will compile fine whether login()
is invoked or not; the latter resulting in possible runtime errors.

Detection of these violations can be implemented as a dataflow analysis. It
begins at the starting point of the program and processes the instructions in the
order which they would be executed in when running the program. From seeing
every single program instruction, the analysis can identify those which would
create or manipulate objects. However, as the program is not really executed,
there are no instances (concrete objects) which the analysis could work with.
Instead, it has to create and use abstract objects of which each represents
one or more concrete objects. The needed abstraction is realized through the
typestate, as it categorises instances by the values of their fields, which actually
define an object’s state. Thus, one abstract object – only providing the type and
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NOT_CONN

close()
logout()

ERRORNOT_AUTH

openPort() select()

Figure 2.3: Typestate transitions leading to a violation. Once reached, the error
state cannot be left.

abstractList

!EMPTY
items =

[  ,  ,  ,  ]

List (id=37)

items =

[  ,  ,  ]

List (id=45)

items =

[  ,  ]

List (id= 1)

items =

[  ]

List (id=13)

Figure 2.4: Many different concrete List objects are represented by the same
abstract object by identifying object configurations with abstract
states.

current typestate – can represent a potentially infinitely large set of instances
(see Figure 2.4). If, in real execution, the state of an instance eventually changes
as a result of a method invocation, this may result in a transition to another
typestate during analysis. Defining those abstract states and transitions is not
canonical but must be done individually for every type. This will be covered in
detail in Section 4.

2.5 Accuracy vs. complexity

Finding instructions which create objects (allocation sites) is quite straight-
forward in Java, as objects are always created by a new statement. Tracing the
objects through the rest of the program is what can quickly become very hard. If,
for example, the program contains conditionals or loops, their branch conditions
normally can only be evaluated approximatively, if at all. The analysis must
therefore always assume that a condition might evaluate to both true and
false, and investigate both resulting paths, unless it can exclude one option
soundly. This can lead to an immense amount of paths whose analysis can take
a significant amount of time and memory. By making the analysis insensitive
to some aspects paths are merged together, thus trading off precision against
runtime by reducing the complexity.

Usually, dataflow analyses are classified by four such aspects.

Flow-sensitivity Flow-sensitive analyses respect the order in which instruc-
tions are executed in parts of the program (usually on a per-method basis).
Flow-insensitive analyses ignore the order and can thus only accept parts
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where none of the operations might be conflicting (i.e. they are all enabled
for every reachable typestate).

Interprocedurality If an interprocedural analysis reaches a call to another
method, it will continue in the body of the called method. If performed
intraprocedurally, it will not follow the invocation but proceed with the
next line in the current method. Because the effects of the called method
are then unknown, it must be assumed that the method might have cause
every possible effect on the current data, resulting in a drastic loss of
precision.

Context-sensitivity A method can be called from multiple locations such that
typestate and/or parameter configurations differ for each invocation. An
analysis is context-sensitive if it considers each of these calling-contexts
separately and propagates the results only to the actual caller. Context-
insensitive implementations merge all potential configurations and return
the same result to all calling sites.

Path-sensitivity There are many situations in which execution paths can split,
for example at conditionals, in loops or if exceptions are thrown. A path-
sensitive analysis will follow each of them separately, while insensitive
analyses will merge them again when they reach the next shared instruc-
tion (e.g. at the first instruction following the loop/conditional).

Also, there is the problem of references aliasing each other, which occurs if
multiple references ref1, . . . , refn point to the same object. The analysis must
ensure that a change to the state of an abstract object obj, accessed via reference
refi, is also visible if obj is later accessed via one of the other references refj
with j 6=i. Additionally, the approximating simulation can cause one variable
to possibly contain references to more than one abstract object, for example if
objects are retrieved from arrays or, for path-insensitive analyses, when paths
are merged. A technique for finding all possible targets for a variable is points-
to analysis [Wei80]. At runtime, this of course is not necessary, because a
reference contains exactly one memory address.

These are typical issues with dataflow analysis, which will we address in
detail in Section 5.

2.6 Requirements

To perform static typestate analysis, a suitable representation of the target
program as well as typestate specification for the used objects input are required.
The way in which this information will be provided can have a fundamental
impact on the usability and utility of the analysis, so it should be considered
carefully. Ideally, obtaining the required input data should be as little extra
work as possible for the user. For that reason, it is common practice to take the
source code of a program as its representation, and let the analysis extract the
object behaviour by running dataflow analysis on it.

While the program representation can potentially come for free (source code
is always available for programs which are in development), specifying the cor-
rect usage of objects is more complicated. For most types, information about its
possible states and legal operations are only given in the documentation. Not
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only that natural language can be hard and expensive to parse; information is
often given only implicitly, which renders the potentially existing specification
useless as input for an analysis. Thus, the specification often must first be gen-
erated by the programmer. This involves thinking about the possible states an
object could be in, the state transitions which operations might perform, and
when operations are enabled or not. The more complex the type in question is,
the harder it can be to capture every possible case and to have the specification
actually match the type’s behaviour. Because the programmer’s time is valu-
able, it is desirable to provide her with helpful assistance to keep this task as
simple as possible, or better, to automate it completely.

2.7 Related work

There has been a lot of research on typestate analysis in the last two decades.
The concept of typestate was initially introduced for pointers in Pascal pro-
grams in 1986 [SY86], where it was used to detect potential null pointer errors
and avoid memory leaks. It could only differentiate between two basic states:
⊥, meaning that a pointer is not initialized, or ⊥, if a pointer was initialized
and assigned to a valid memory location. This simplifies the generation of spec-
ification drastically, as there is only one basic specification for pointers to basic
types. Typestate for combined types (records, variants) can then be recursively
generated by individually considering the typestates of the contained fields. The
basic specification can easily be integrated into the analysis as it is fixed, and
the derivation for combined types can be performed automatically. Because
the analysis is integrated into the compiler, it can directly work on its internal
representation, like the abstract syntax tree of the program. This is quite
elegant, because a programmer automatically profits from the analysis by only
using a different compiler.

Since then, implementations for different platforms, e.g. .NET [DF04], com-
piled machine code [XRM00] or Java [FYD+08, War, GYF06], have been writ-
ten. The objectives of the implementations vary between the two extremes of
either giving most precise results or being fast. Some approaches impose strong
restrictions on their input programs to simplify the analysis, like limiting the
depth of inter-object references [FGRY03]. This of course limits their general
utility.

A promising implementation of scalable and sound typestate verification for
Java, which also considers aliasing, was presented by Fink et al. in 2006 and
revised in 2008 [FYD+08]. Their analysis actually consists of four stages with
increasing precision. The first stage is intraprocedural and flow- as well as
context-insensitive, and it only checks if some of all operations performed on an
object could possibly be conflicting. If not (for example, all called methods are
enabled in every state), this particular object does not need to be considered in
the later, more precise and expensive stages. The last stage is an interprocedu-
ral, flow- and context-sensitive verifier, which combines typestate and aliasing
information for very high precision. This stage is required for objects which are
referenced by multiple methods, stored in collections or cross loop boundaries.
The analysis does not impose considerable restrictions on the programs un-
der test, except for the commonly excluded Java reflections and concurrency
features. The achieved execution speed of between one up to ten minutes for
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projects consisting of 200 and more classes is impressive, especially for the pre-
cision of the analysis, but still not bearable for continuous background typestate
checking. In addition, Fink et al. only checked for very few typestate properties,
and it is not explicitly mentioned how further properties could be added. We
assume that increasing the amount of checked properties could noticeably affect
the runtime, as it would need maintaining more data for more types. Therefore,
we try a different approach which trades off analysis precision for speed and
flexibility.

To our knowledge, currently existing typestate verifiers all either have the
user create the needed typestate verification by hand (for example, as finite
state automata encoded into source code annotations), or they come equipped
with a fixed set of verifiable properties. In this thesis, we will present a verifier
which is designed to take finite state automata as a separate input, making them
completely independent from the sources or binaries of their target types. This
interface enables us to use automatically mined object usage models [DLWZ06]
as specification, passing a considerable part of this task over to the machine.
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3 Program representation

In this section, we present the terms in which the behaviour of a program is
usually described. We then present the intermediate compiler research language
Firm [LBBG05] which displays the required features as explicit dependency
graphs [Tra01]. After outlining their structure, we briefly discuss their usability
for our analysis purposes. performance of an analysis

3.1 Basic concepts

To analyse a program’s structure, it is necessary to have access to some of its
features. The basic ones required for typestate analysis are the types of the
objects created and the signatures of all methods ever invoked. Those allow
for a flow-, path- and context-insensitive typestate analysis. The precision is
increased if the analysis also takes the following aspects into account [Tra01]:

Control flow gives an ordering for the instructions in a program. As programs
can jump between operations, this order usually is not strict or even total.
It also relates the results of branching conditions to their possible jump tar-
gets, e.g. for conditional branch instructions, select/switch statements
and exceptional returns. It is required for flow- and path-sensitivity.

Data flow provides information about where data is created in the program,
and by which operations it is used. If an operation osrc creates some data
element which another operation ouser requires for execution, ouser has a
real data dependency [Tra01] on osrc. Information about data flow is
necessary for flow-sensitivity.

Type hierarchy describes the inheritance relations between the types for lan-
guages supporting type inheritance. It is essential to correctly locate the
affected member fields and methods for respective accesses. The type hier-
archy is also needed to derive dynamic type information, which is required
to handle language features like subtyping and interfaces.

Call hierarchy gives all locations from which a method is called, as well as
all methods called from a location. There are different levels of detail,
and they depend on the definition of location. Simple call hierarchies
just represent whole methods, while more detailed ones may display their
instructions. The call hierarchy is needed to disambiguate calls to over-
written or supertype methods and thus for context-sensitivity. It can be
reconstructed from the control flow and the type hierarchy if not given.

It is important to provide this information as compactly and efficiently as pos-
sible for high analysis performance. If it is not explicitly available it must first
be extracted from some other source prior to the actual analysis. This can
introduce considerable overhead, especially if the source also contains a lot of
additional information irrelevant to the analysis.

Static analyses which are integrated into compilers can simply use the inter-
nal representations built during the compilation. Stand-alone implementations
usually either read the program’s source code or its compiled binaries to build
the required data structures. Source code must first be parsed to build the
abstract syntax tree (AST), from which other required structures can then be
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constructed. Parsing is not necessary for compiled binaries, as they already con-
tain instructions in the required execution order. In addition, they will include
performed compiler optimizations in the analysis – which would be invisible in
the source code – and possibly contain fewer language artefacts. On the other
hand, variable names or branch target labels may have been replaced by ad-
dresses, which can complicate giving informative feedback to the programmer.

We want to introduce the aforementioned features to illustrate the analysis’
perspective of its target program.

3.1.1 The control flow graph

The control flow of the program is usually visualized as a graph (B,F, s, e) with

• a node b ∈ B for every basic block in the program,

• edges (b, bsucc) ∈ F = B × B,modeling the flow from b to its successor
bsucc, and

• two special start/end blocks s,e ∈ B. [SPS99]

Basic blocks contain a set of program instructions which are strictly ordered
according to their execution sequence. Usually, this order is also total and
only allows this exact sequence, but there are representations where this is not
required and which can express that two operations do not depend on each other
(see Section 3.2). The first instruction in a basic block is always a branch target
to enable jumping into the block, and the last one must be a branch instruction
which jumps into one of its successors. Branching instructions are forbidden
in any other position in basic blocks. Additionally, as e marks the end of the
graph, it does not contain an outgoing branch instruction.

On execution, the program would begin with the first node of the start block
s and traverse the instructions in the order given in the basic block. The control
flow graph (CFG) is cyclic if the program contains loops, in which case there
will be infinite paths. In any other case, paths are finite and must end at the e
block. If a block a ∈ B lies on all valid paths from s to a Block b ∈ B, we say
that a dominates [Tra01] b.

A basic block can have multiple successors, in which case the last instruction
must be a conditional branch choosing one of the outgoing edges. This connec-
tion must be encoded into the CFG for path-sensitivity. A possible solution
would be to extend the domain of the edges to F = B × B × V with V being
the (probably infinite) set of all possible values. For boolean expressions, those
are only true and false whereas switch statements can return a finite but
unlimited amount of different values. An example CFG is shown in Figure 3.1.

3.1.2 Dataflow with variables

Values in programs are either directly passed from one operation to another, or
stored in and retrieved from variables. As a variable v can be defined multiple
times, it may contain different values at different points in the program. For any
location l, the variable v always contains the value of its most recent definition,
which kills all previous ones. To trace the flow of data in a program, one must
find every such definition for all variable uses in a program (Reaching Defi-
nitions Problem [NNH04]), a prime example for the application of dataflow
analysis. The flow-sensitive but path-insensitive version works as follows:
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public int faculty(int i) {
int fac = 1;
while (i > 0) {
fac = fac * i;
i--;

}
return fac;

}

B4

return fac

B2

while (i > 0)

B3

fac = fac * i

i--

false true

B1

int fac = 1

Figure 3.1: A Java code snippet and the corresponding control flow graph
(CFG) with s = B1 and e = B4.

• The required graph (N,E) is obtained by taking the CFG and transform-
ing every instruction inside a basic block into a single node. The edges
between the basic blocks are mapped to their respective last and first in-
struction nodes. New edges are introduced to connect the new nodes in
flow direction.

• We define the finite set of all variable names in the program as V . A
definition of a variable v ∈ V by the instruction of node n ∈ N is identified
as (v, n). Thus, we define the domain for the input/output sets as 2(V×N).

• The transfer function is simple: The resulting output set is equal to the
input set, except for the case that the current node defines a variable v.
In this case, the new definition replaces all previous ones and all entries
(v, ) are removed. The only remaining definition for v in the output set
is (v, n). An undefined variable u can be either expressed by not giving
any entry for u or the special entry (u, ?). The former is usually done for
real implementations because it saves memory, but the latter is formally
more consistent.

• The merge operation t is the set union operation ∪: When two different
definitions (v, n1) and (v, n2) reach an instruction n, the path-insensitive
analysis cannot distinguish them and thus must assume both definitions
to be live from that point on.

• The analysis starts at the first instruction of the program, which has the
input set ((v, ?)|v ∈ V ) because all variables are undefined at first. When
the fixpoint has been reached, every node is annotated with all potential
variable definitions live at that point.

The algorithm is easily extended to be path- and context-sensitive by adding
the path and calling context to the value domain. Special care must be taken
however to guarantee fixpoint convergence for programs containing infinite paths
(e.g. loops, recursion).
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Code

1 Object o,u,v,w;
2 o = new Object();
3 u = o;
4 v = u;
5 w = v;
6 v = new Object();
7 w.someOp(v);

Output sets ⊆ 2(V×N)

{ }
{(o,2) }
{(o,2),(u,3) }
{(o,2),(u,3),(v,4) }
{(o,2),(u,3),(v,4),(w,5)}
{(o,2),(u,3),(w,5),(v,6)}
{(o,2),(u,3),(w,5),(v,6)}

Figure 3.2: Java code snippet with output set of each line for the Reaching
Definitions Problem. After execution of line 6, the first definition of
v is overwritten. To find the allocation site referenced by the use of
w in line 7, four lookups are needed; v only needs one lookup.

As mentioned earlier, abstract objects are identified with the allocation site
at which they were created. To find the object which is affected by an operation
op on a variable v, the analysis must know the allocation site which is referenced
by v. It can be found by looking up the instruction which defines v, using the
information from the dataflow analysis.

This is often used directly as representation for the dataflow. But it has a
conceptional flaw if used for typestate analysis: It gives definitions and uses for
variables, but not objects. Although variables can be used to locate objects as
described above, the implicitness of this information is impractical. If a variable
is defined using other variables, finding the affected allocation site means walking
up the whole definition chain. This is unnecessarily expensive, as illustrated
in Figure 3.2. We would favour a different representation, where operations
are directly connected to the affected objects, making the data dependencies
explicit.

3.2 Explicit dependencies with jFirm

Explicit data dependency graphs [Tra01] (EDG) combine control and data
flow and model the dependencies as graph edges. We use jFirm , a Java im-
plementation of Firm, to acquire EDGs for Java programs. In this subsection,
which is mostly based on the dissertation of Martin Trapp [Tra01], we describe
their structure together with the Firm language.

3.2.1 Language structure

As an intermediate language, Firm defines its own instruction set. The trans-
formation from Java bytecode (or other languages supported by different im-
plementations of Firm) to this language hides syntactical features which are
irrelevant to the program’s behaviour. In addition, Firm does not contain in-
structions for explicit memory management because it is independent of any
architecture. As it is intended to be usable for analysis and optimization, every
instruction performs a single, atomic operation. The absence of combined in-
structions allows the detection of instruction level parallelism and reduces the
required amount of rules in analyses.
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A distinct feature from the previously discussed representations is the non-
existence of variables. In Firm, operations are directly connected to the outputs
of their required operands and thus render the concept of variables obsolete.
The number of inputs varies depending on the operation and its actual use,
but all operations have one reserved input for connecting it to its containing
block . Similar to basic blocks in control flow, Firm blocks group instructions
which must be always executed together. Additionally, a block may not be left
before its instructions have been executed. Apart from that, they do not impose
any further restrictions. As a result, Firm blocks only end when the control
flow either splits, or when it reaches locations with more than one control flow
predecessor. The only constraints on the execution order inside a block are set
by the explicit data dependencies between the instructions.

Firm distinguishes between data and jump instructions. While the former
generate data as result of their execution, the latter represent (un-)conditional
branches. Conditional jumps are dependent on their input, but they cannot be
used as operands for instructions; only blocks can specify control flow depen-
dencies to them. Because all operations in a block must be carried out together,
jumps must obey the following rules:

1. As jump instructions are only succeeded by blocks, all data instructions
in a block must be executed before taking the jump.

2. For the same reason, there is only one jump instruction per block. If
a block contained more than one jump, only one could be taken before
leaving the block.

Note: This only holds if no operation inside the block can throw an exception.
We address situations in which this is not the case in Section 3.2.5.

A block left by an unconditional branch therefore only has one successor.
As conditional branch instructions have one output for each possible outcome
of the condition, the respective block can have up to as many successors. It is
legal to have different result values lead to the same successor (e.g. fall-through
cases in switch statements).

In EDGs, the inputs of instructions and blocks are numbered. For instruc-
tions, input i is the i-th operand to the instruction, and for blocks it is the i-th
control flow alternative, by which the block can be reached. If an instruction has
more than one output, it generates projection nodes for each of them. Seman-
tically, they represent one data value at the output on their parent instruction
node.

3.2.2 Static single assignment form

The Firm representation of a program is in static single assignment (SSA)
form. This means that a variable in a program is only defined once, and all
following accesses see the same value. Redefinitions of the same variable get
a different name and cannot overwrite the previous definitions. In Firm, this
concept is applied to the result values of operations. Once an output value is
defined, it will not change as long as the definition is live.

Figure 3.3 shows the EDG for the code snippet in Figure 3.2. Appar-
ently, it does not contain any variable definitions. Instead, the call to the
someOp(Object) method is directly connected to its two arguments: Input 1
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BLOCK  7

PROJ MEM

CALL <init>

PROJ MEM

PROJ MEM

NEW Object

PROJ DATA

CALL <init>

PROJ MEM

NEW Object

PROJ DATA

CALL someOp

PROJ MEM

RETURN

BLOCK  0

PARAM <mem> GOTO 

BLOCK 1

END

0

0

0

0

1
0

0

0 0

1
0

0

0

0

2

1

0

0

0

Figure 3.3: The explicit dependency graph jFirm
generates for the code snippet in
Figure 3.2. Operations with multi-
ple outputs generate projection nodes
which each represent one value. The
invocation of someOp is directly con-
nected to the data projection nodes of
the new instructions, and all local vari-
ables have vanished.
The thick edges indicate control flow;
the others are data dependencies. Their
orientation is inverted with respect to
the execution order of the commands,
as they point from uses to definitions.
The numbers give the index of the re-
spective input of the using instructions.

(this reference, was w in the code) uses the first object created; input 3 (the
first formal parameter, originally v) uses the second one. Both objects are cre-
ated by new instructions.

3.2.3 Explicit modeling of side effects

The 0-th parameter called MEM represents the current state of the programs heap
memory. Some operations – like function calls, field or array accesses – read or
manipulate data in the heap and therefore have a data dependency on it. As
they might change its state, they must return a new node MEM’ representing the
new memory version as required by the SSA constraints. The next operation,
which uses MEM’, therefore depends on this new node and cannot be executed
prior to the operation generating it. So by explicitly expressing the presence of
side effects, the order of these operations is retained.
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IF-BODY BLOCK

PROJ MEM CALL <init> PROJ MEM

NEW File

PROJ DATA

GOTO 

PHI 

PHI 

CALL delete

PRE-IF BLOCK

PROJ MEM

NEW File

PROJ DATA

CALL <init> PROJ MEM

PROJ TRUE

IF EQ

PROJ FALSE 0 1

0

1

0

1

0

0

0

0
1

0 0

0

0

1

0
0

1

0 0

0

POST-IF BLOCK

Figure 3.4: jFirm graph for the code snippet in Section 3.2.4. When control
flow is joined after the conditional, a φ (PHI) operation selects the
appropriate variable (thick dotted edges) and memory (thick dashed
edges) definition which corresponds to the entry path into the block
(bold numbers).

In the current state, jFirm is only capable of having one memory node rep-
resent the complete heap state. If a set of operations worked only on separate
data in the heap, their relative execution order would not be relevant. The Firm
language supports this by offering the possibility to create multiple memory ob-
jects for separate heap locations. If there finally is an operation which crosses
the boundaries of the existing memories, a SYNC operation merges all needed
memories.

3.2.4 Value selection

Although the SSA representation prevents redefinition of variables, there are
many cases where multiple definitions of a variable can reach an operation.
Consider the following example:

1 File f = new File("hello");
2 if (<condition>) {
3 f = new File("world");
4 }
5 f.delete();

Depending on whether the condition is true or not, the delete() operation will
be linked to the file world or hello. On a real program execution, only one
definition of the variable f can be live in line 5, which depends on the path taken
before reaching this line. In Firm, this is modeled by φ (PHI) selections as shown
in Figure 3.4. They have as many inputs as there are control flow predecessors
for the block containing the φ. Each input is indexed with the number of
the path to which it corresponds. Path-sensitive applications therefore still see
exactly one definition of the variable at that time, while path-insensitive ones
get all existing definitions by treating all of the φ’s inputs as potentially live. The
φ then represents the value selected from the different inputs. Thus, operations
using such a variable take the φ itself as the appropriate input and still only
“see” one single value. As the heap is treated as a variable in Firm, there are φ
nodes for MEM as well. It is worth emphasising that φ only select from existing
values and do not create any new ones. Moreover, they are a feature of the
representation and thus do not represent program instructions.
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The selection always takes place before the instructions in the corresponding
blocks are executed. If conditionals or loops are nested, it is likely that φ have
other φ as input. They can even be connected to themselves to express that
a variable has not been redefined on a specific path. All φ update simultane-
ously, meaning that every φ represents the old value while the new selection
is performed, and only update to the new one after all selections have been
performed.

For consistency with the graphical representation we will refer to φ as PHI
for the remainder of this thesis.

3.2.5 Exceptions

In Java exceptions can be handled explicitly and therefore do not cause the
immediate termination of the program. For program analysis purposes, we
need to be able to identify where exceptions can occur, if and how they are
handled, and where the program execution is continued. It is not trivial to
represent this information without unnecessarily blowing up the control flow
graph, which makes analyses imprecise [Tra01].

Firm supports such explicit exception handling in the target language using
two primitives:

Secured blocks Parts of the program with defined exception handling are en-
closed in special secured blocks (Java: try).

Exception handlers If an exception is thrown inside a secured block, control
switches to a specific block of the EDG (Java: catch).

The beginning and the end of a secure block is indicated by BBegin and BEnd
nodes, respectively. They read MEM and define a new one, which is then read
by the first instruction in the secured block. They also define an abstract
Exception variable which we can ignore for our purposes, as it only ensures
that instructions cannot be reordered to lie outside the secured block. Instruc-
tions which can possibly throw an exception form a third type of nodes which we
call data-ex . It is basically a combination of both data and jump instructions:
If the operation executes normally, it is just treated as a normal data node and
the next operation is processed. In the exceptional case, it directly jumps to
the exception handler block. Note that, in contradiction to the jump node rules
mentioned in Section 3.2.1, there can be multiple data-ex nodes in one block.
In the exceptional case, some operations in the current block will therefore be
skipped if exception handling is invoked before their execution.

The exception handler must know the memory state when it is invoked. At
the beginning of its block, the outgoing MEM’ of all data-ex nodes leading to this
handler are combined into a single PHI which chooses the one corresponding to
the entry path taken. After the execution of the handler, control flow always
jumps to the successor of the BEnd node of the secured block. Figure 3.5 gives
an example of a secured block containing two data-ex instructions and a one-
instruction exception handler. Due to the memory selection at the beginning
of the exception handler, analyses can also handle exceptions path-sensitively
without losing precision, as previous representations often required merging of
all handler entry paths [Tra01].
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TRY

BBegin

PROJ MEM 

Ex-Op 1

PROJ MEM

Ex-Op 2

PROJ MEM

BEnd

0

0

0

0

0

0

0

0

CATCH (EXN HANDLER)

PHI

01

Handle Op

0

PROJ MEM

0

1

PROJ MEM

0

GOTO

GOTO

0

FINALLY

PHI

01

Op

0

1

Figure 3.5: Example for exception handling in Firm. The secured block (try)
contains two operations possibly throwing an exception. The ex-
ception handler (catch) selects the appropriate MEM and performs
a single operation before jumping to the successor of the secured
block (finally). If no exception occurs, the secured block is pro-
cessed normally and also jumps into the finally block.

As Java supports different types of exceptions, the handler must also be pro-
vided with information about the exception which caused its invocation. The
description of how this is realised in Firm is left quite vague as it is not explic-
itly described for any specific language [Tra01], and in the current version of
jFirm, exception handling unfortunately is not implemented yet. One imagin-
able solution would be adding an output to every data-ex node representing the
corresponding exception when the handler is invoked, and which is undefined in
the non-exceptional case.

3.3 Expected benefits and problems

In this subsection, we explain the benefits of using jFirm as program represen-
tation for jFTA. The high suitability of EDGs for dataflow analysis drastically
simplifies the design of the typestate analysis algorithm, as will become apparent
in Section 5. In addition, we expect jFirm to become a platform for other static
analyses as well, which then can easily be combined with our analysis because of
the shared basis. A first example for this is the points-to analysis library we used
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for our implementation of the algorithm which we describe in Section 6. Finally,
it saved us the time needed for developing our own intermediate representation,
which would have been a very complex task itself.

Except for issues like missing functionality related to the early development
stage of jFirm, we do not see any negative aspects in using it. When thinking
about the effect on the analysis performance, it is possible that building the
graphs takes a considerable amount of time. We believe jFirm to be imple-
mented with strong emphasis on its efficiency and speed. As it also performs
semantically equivalent graph simplifications which we do not investigate in this
thesis, this extra work will probably pay off during the analysis phase. We ex-
pect that the ability of sharing graphs with the points-to library results in a
noticeable relative speed-up of both analyses’ set-up phases.
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4 Specification as finite state automata

We have already mentioned that, in contrast to previous approaches, we want
to use automatically mined specification as reference, against which our anal-
ysis checks the actual usage patterns found in programs. In this section, we
explain the format of our specification, quickly outline the mining process using
ADABU [DLWZ06] and discuss expected problems.

4.1 Definition

The finite state automaton (FSA) specT = (ST , TT ,startT,{exT}) which spec-
ifies the correct usage of instances t of type T is defined as follows:

• ST is the finite set of all abstract states for this type.

• MT denotes the set of all methods for T .

• TT : ST ×MT ⇀ ST defines the labeled edges giving all specified type-
state transitions. As TT is not necessarily total, some transitions may be
undefined and must be treated separately in our algorithm.

• startT ∈ ST denotes a special state representing the typestate of t di-
rectly after its creation, before any methods (including constructors) were
called.

• exT ∈ ST is the only terminal state which expresses that the typestate of
t is undefined as result of calling a disabled method.

For our analysis, the abstract start and error states of all types convey
the same meaning. An instance in state startT is not initialised yet, but
only its memory has been allocated. A constructor must be called to perform
initialisation, which will take the instance to a different (now initialised) state.
As the exT state represents an illegal and/or undefined typestate, it can never
be left again. Therefore, we only consider one single error state ex which
replaces all exT. Transitions which take the instance to ex represent typestate
violations. It is those transitions which we want to detect and report to the
programmer.

4.1.1 Transitions and non-determinism

If an instance t is in state sT and the method mT is invoked, the outgoing edges
of sT labeled with mT define the new typestate of t after the method invocation.
A state can have multiple outgoing edges with the same label if the instance
can end up in several different states after the invocation of a method. An
example for this is the simplified specification for a Stack class in Figure 4.1.
As transitions to multiple target states are non-deterministic in FSA, we must
assume that the instance may be in any of the states after the transition is fired.
The over-approximation performed by our analysis becomes very clear at this
point: We consider the instance to be in multiple abstract states at the same
time, but in real execution, it obviously only has one concrete state which is
represented by a single abstract one.

20



push(Obj)

pop()
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isEmpty()
push(Obj)

isEmpty !isEmptystart
<init>()

isEmpty()
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pop()
<init>()

pop()
isEmpty()
push(Obj)

<init>()

Figure 4.1: Example specification for a Stack Java class. If fired in the
!isEmpty state, the pop() operation non-deterministically either
stays in it or switches to isEmpty.

4.2 Automatic specification mining with ADABU

For most typestate analyses, the specification FSA are created by hand. As this
can consume a lot of valuable time, we want to use automatically extracted usage
models as specification automata. These models are acquired from existing
programs which are believed to be using the types in question both correctly
and intensively, such that the observed usage covers all valid cases. Otherwise,
the generated specification can be too sparse and thus fail to capture the effects
of rarely occuring but still valid use cases. As the analysis can only be as precise
as the specification automata, its results will suffer badly if they are insufficient.

The models we will use are generated by ADABU [DLWZ06], a usage model
miner for Java programs. First, it statically analyses the code base to find
methods which only report the state of an object without altering it, called
“inspectors”. All other public methods are considered to be “mutators” which
can change the state. The current state of an object is then defined as the set
of all its inspectors’ return values. Where applicable, ADABU abstracts from
the real values through classification to keep the number of states and thus the
returned models small. For example, integers are only classified as >0, ==0
or <0 and booleans as either true or false. In the last step, the code base is
instrumented to call all inspectors before and after each invocation of a mutator.
If a combination of a certain pre-state, mutator call and post-state is observed
several times, it will be added to the resulting usage model.

4.3 Expected benefits and problems

A positive aspect about using FSA to encode typestate specification is their
small footprint. The information we need to represent – a set of states and
connections between its elements - almost canonically defines the corresponding
state machine with hardly any overhead. In most cases, only the outgoing tran-
sitions of the current state are of interest which perfectly matches the structure
of the FSA. In addition, this is a very simple interface for providing specification
and therefore models from many kinds of sources can be used.

Mining such FSA using ADABU obviously takes a time-consuming task
away from the programmer, which is one of our main goals. However, she
is presented with a different problem, namely providing a suitable code base for
model extraction. This is rather easy for common types like java.util.Vector,
java.util.List or java.io.File. With decreasing popularity of the type,
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finding appropriate and valid example programs becomes harder; and the auto-
matic mining is finally impossible for custom types which are only used in the
program which is just developed. If analysis of their use is desired as well, the
programmer must create the specification by hand. On the positive side, specifi-
cation could easily be included into a “specification package” once created, and
distributed along with the analysis due to the disconnection from the program
code under test.

Apart from the problem of acquiring the specification, we also see some issues
with the quality or expressiveness of mined models. As they are built only based
on observed behaviour, they do not have any connection to the actual natural
language specification from the documentation, and we have already pointed out
that they can be sparse and miss specified but rarely observed behaviour. Even
worse, forbidden behaviour could be captured which, by chance, did not cause
any failure in the mining runs. The generated specification should therefore be
at least manually checked before use.

4.3.1 Information loss through over-abstraction

Another problem arises from the abstraction in the concept of typestate and
specification, because it introduces non-determinism in the models. This be-
comes visible when considering the Stack specification in Figure 4.1 again. As
it only classifies the stack as being empty or not, it is impossible to distinguish
between stacks containing only one or hundreds of elements. For this reason, the
pop() operation in !isEmpty is non-deterministic: It stays at this state to ac-
count for stacks with more than one element, but it also switches to isEmpty
for those with only one. Two subsequent pop()s will therefore always be re-
ported as a problem, as the first one reports the stack as possibly empty which
makes the second one illegal. Problems like this will occur for every type whose
states include counter-like values, and we expect this to cause a considerable
amount of imprecision. To a limited degree, the impact of this restriction could
be lowered by “unrolling” counting states k ∈ N times, which could be achieved
by replacing the >0 class by 1, 2, . . . , k and >k in the ADABU abstraction
rules (similar for <0). However, the models will grow exponentially with k in
the worst case due to the increased amount of states and combinations. We will
not address this issue in this thesis, but it will be important future work.

Currently, ADABU does not extract deep models [DLWZ06], meaning that
it does not analyse the state of objects returned by the inspector methods. This
is problematic if a type’s state is only defined through the states of objects stored
in its member fields, because ADABU would then be unable to detect any state
transitions. However, many complex types provide a getState() method or
similar which returns an enum representing the current state. As ADABU does
not abstract from enums but identifies their concrete values, it could distinguish
the states via the enum values. Unfortunately, this fails for types returning
integer state-constants instead of enums for the reasons discussed above.
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5 A dataflow analysis algorithm

In this section, we present an algorithm for intraprocedural, flow-sensitive, path-
insensitive and – through some interprocedural extensions – partly context-
sensitive typestate analysis. As input, it requires a set of specification FSA and
the jFirm graphs of all classes relevant for the analysis. This includes classes
which might be referenced by interprocedurally analysed method calls, field
accesses and the like. We require the existence of two functions aliases(node)
and pointsto(node). The former returns all nodes which possibly refer to the
same abstract object as the argument, and the latter returns the set of allocation
sites the argument node might refer to. The actual implementation of these will
be discussed in Section 6.

Our algorithm performs an iterative dataflow analysis. We can directly run
it on jFirm graphs and annotate its blocks with pre/post versions of the gathered
information. Remember that we want to find out which state objects can have
at a certain point in the program. We need to define a few names and symbols
for this:

Value domain V
Contains mappings from Firm elements (graph nodes or field identifiers)
with added context information to sets of typestates.

Context
A snapshot of the call stack as the attached Firm element was encountered.

⊥ , >
The empty set and the set of all possible mappings, respectively.

>typename

The set of all typestates valid for an object of type typename

Transfer function τ : B × V → V
Contains the analysis logic. It takes a block and its input set and gives
its resulting output set.

Merge operation t
Needed at joining points in the analysis. It performs a merge of all map-
pings in its inputs.

Partial order for V : v
For a, b ∈ V , a v b iff for every mapping ((context, element), states) in a
there is a mapping ((context, element), states′) in b with states ⊆ states′.

In the remainder of this thesis, we will use the short form elementc instead of
(c, element) to identify an element with attached context information.

5.1 Allocation sites and references

During analysis, an abstract object is identified by a Firm node alloc, which
represents the allocation site creating the object. If this object has typestate
tstate at one point in the program, the corresponding value set contains the
pair (allocc, {tstate}). If the set mapped to allocc contains multiple entries, the
object could be in any one of the contained typestates at this point. The least
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precise information for an object of type type is given by (allocc,>type), while
(allocc, ∅) expresses that no valid state is known for allocc. The state of an
object is therefore defined as the set of all its currently mapped typestates. If
we want to talk about single elements of an object’s state, we refer to them
explicitly as typestates.

We do not only store states for allocation sites. As mentioned in Section 3.2.4,
multiple definitions of a variable still exist even in SSA program representations
(PHI nodes). To improve analysis precision, we also introduce references to
model the effects of multiple variable definitions. Unlike allocations sites, these
do not represent distinct abstract objects, but group already existing ones to-
gether. By assigning typestate information to a reference, it is possible to ac-
curately reason about the state of the one object from the group that actually
reaches the current location. This is comparable to the focus-operation intro-
duced by Fink et al [FYD+08]. References are therefore always connected to a
set of allocation sites with whom they also share state updates. We discuss this
in detail in Section 5.3. During analysis, references are used at all places where
a variable cannot be replaced by a dependency edge because it has multiple live
definitions at this point. So we use references to store the state of PHI nodes
as well as static and member fields.

5.2 Graph traversal

As typestate is defined as the states of an object’s member fields, the algorithm
must identify operations which might have effects on the memory state and con-
sider them in the right order for flow-sensitivity. In terms of Firm, these are all
operations which read and/or produce a MEM node. All other operations can-
not have side effects and can thus be safely ignored (e.g. arithmetic operations,
branch instructions). Remember that operations with side effects are ordered
by their dependencies on the MEM variable (cf. Section 3.2.3). Therefore, the
transfer function τ must follow the chain of MEM definitions, beginning at the
user of the first definition. Irrelevant operations are automatically ignored, as
they will neither use nor produce a MEM and thus will never be seen by τ .

The analysis is performed top down, beginning with the designated first
block (later referenced to as “block zero”) of the method’s jFirm graph and
with all typestate information set to >. It represents the context from which
the method was called: There is a PARAM node for every method parameter,
a CONST node for each constant used in the entire method and one MEM node
representing the heap state prior to the method invocation. Apart from those,
block zero only contains an unconditional branch with exactly one control flow
successor, which is the block containing the first real instruction.

Block zero is jFirm’s solution for modeling the “world” in which the method
is executed. The fact that jFirm builds intraprocedural EDGs makes every
method graph have its own block zero. If the program was represented inter-
procedurally by one single (potentially huge) graph, the methods’ PARAM nodes
would be replaced by dependency edges and their first instructions would de-
pend on the last MEM created prior to their invocation. There would only be one
block zero for the whole program containing the argv parameter of the main

method, all constants used in the program and the very first MEM (representing
the empty heap).
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Block 0 - BZ

GOTO

Loop Body - LB

Loop Body instruction

GOTO

Loop Head - LH

IF

PROJ TRUE PROJ FALSE

Post-Loop - PL

Post-Loop instruction

0

1 0

00

0

Worklist — block — Effect on input sets

1 [BZ] -> BZ -> init LH
2 [LH] -> LH -> init PL,BL
3 [PL,LB] -> PL -> nothing
4 [LB] -> LB -> change LH
5 [LH] -> LH -> change PL,LB
6 [PL,LB] -> PL -> nothing
7 [LB] -> LB -> nothing
8 [] fixpoint reached

Figure 5.1: An extremely simplified example demonstrating the worklist algo-
rithm. The order shown here is an example for non-optimal suc-
cessor selection, because the PL block (including all of its possible
successors) is visited twice.

The traversal of the Firm graph is realized as a worklist algorithm. Initially,
the worklist only contains block zero. The following steps are then repeated as
long as the list is not empty:

1. Get next block b from the worklist

2. Set the output set of b to the transfer function’s result: out(b) := τ(b)

3. For every control flow successor b′ of the branch instruction of b:

(a) Propagate the values from the the output set of b to the input set of
b′: in(b′) := in(b′) t out(b)

(b) Add b′ to the worklist only if this changed in(b′).

The condition for adding a block to the worklist in step 3b is needed for detection
of reaching the fixpoint of the algorithm, as described in Section 2.3. If c = atb,
it will always hold that a v c and b v c. Thus, the input set of a block can
never become smaller (with respect to v) as a result of a merge operation. It
cannot grow infinitely large either, because the sets of typestates, Firm nodes
and contexts are finite – under the assumption that the program’s call graph
does not contain paths of infinite length (e.g. recursion). As this would be an
unacceptable limitation, we limit the maximal context depth to a fixed number
k. We discuss the effect of this limitation in Section 5.7.4. With this setup,
the merge operations must eventually reach a fixpoint at which the resulting
mappings are equal to the previously stored ones.

Note that the order in which the control flow successors are added to the list
is not specified. Although it does not affect the correctness of the algorithm, this
can be a performance issue. If a program contains a loop, the block containing
the loop condition has two successors: One representing the branch into the loop
body and the other one branching to the post-loop code. If the code following
the loop is analysed first, the whole remaining program will be processed without
considering the effects of the loop instructions. When the loop body block then
is eventually analysed, it can cause a change affecting the entry set of the post-
loop block, which is then put back to the worklist. So it and all subsequent
blocks are re-evaluated (see Figure 5.1). Considering that, as mentioned in

25



the previous paragraph, an input set can never lose information as result of an
update operation, all information in the first analysis iteration is also contained
in the second one. Therefore, the first one could be skipped without affecting
the correctness. So the loop body should be analysed before the post-loop block.
Information giving an order for the execution of successor blocks can be gained
by running a loop detection algorithm prior to the actual analysis. One example
for this would be the loop detection algorithm of Robert Tarjan [Tar73]. We
will not investigate this any further at this point.

5.3 Typestate manipulation

Some instructions in Java will cause an object to change its typestate, and
these changes must be simulated by the transfer function. Depending on the
situation in which typestate information is updated, this task is of varying
complexity. Care must be taken when determining which abstract objects are
affected by the update, because variable aliasing must be resolved and reference
targets must be found if not updating allocation sites directly. Furthermore,
the precision of the update operation may suffer from the existence of multiple
targets. Depending on such circumstances, a state update can either overwrite
or only add typestates to previous state information. While the former can
sharpen the known information by reducing the amount of possible typestates,
the latter usually blurs it (i.e. can only add but not remove any states). We
speak of strong and weak updates, respectively.

An update consists of two main steps. The first one performs the requested
update operation on the object itself. Depending on whether a strong or weak
update must be performed, previously known state information is either merged
with or overwritten by the new one. In the second step points-to information
and potential aliasing is handled: a reference is only a place-holder for one out of
the set of allocation sites it points to. Therefore, updating a reference effectively
means updating one of its targets in real program execution. This one target
is obviously known if the reference just points to a single allocation site, which
enables us to perform a strong update on it. This knowledge is missing if the
points-to set contains two or more elements, which is why the update must be
propagated to all of them and must only be performed weakly.

Resolving reference aliasing means updating all references pointing to the
same allocation site whenever this site’s state is changed – either directly or as
result of a reference update. In this case, the exact object causing the change
in those references is the allocation site whose state was just updated. So
the affected references must not1 propagate this update back to their other
allocation sites again.

Our resulting update algorithm is given in Figure 5.2 as well as a simple
example in Figure 5.3.

1Expressed so strongly because doing so would unnecessarily blur the results, even though
it would not affect the correctness of the algorithm.
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Algorithm: update(nodec, state, strong/weak)

1. If there is a previous mapping (nodec, oldstatenodec
):

• Strong update Replace it with (nodec, state).

• Weak update Merge both into (nodec, oldstatenodec
∪ state).

If not, create a new one as (nodec, state).

2. Determine if nodec is an allocation site or a reference.

• Allocation site For every reference rc ∈ alias(nodec):

(a) If pointsto(rc) = nodec and a strong update was requested, re-
place any old mapping for rc with state (like the strong update
in step 1).

(b) In any other case, merge state into the existing mapping for rc.

• Reference

(a) If pointsto(nodec) contains only one allocation site and strong
update was requested, then recur on it with a strong update to
state.

(b) In all other cases, recur with weak update to state for all
allocc ∈ pointsto(nodec) which will also handle updating all
ref ∈ alias(nodec).

Figure 5.2: The algorithm for performing a strong/weak update to state on the
typestate for node nodec.

1. strongUpd(s)

alloc_1

{a,b,c}

ref_1

{a}

ref_2

{b,c}

alloc_2

{b,c,d}

alloc_1

{s}

ref_1

{s}

ref_2

{b,c,s}

alloc_2

{b,c,d}

pointsto

update
propagation

typestate
information

{a,b,c}

Figure 5.3: Simplified example of typestate update propagation.
Left: A strong update is triggered on reference ref1 (1.). It only
points to alloc1 and thus propagates a strong update to it (2.). As
ref2 aliases ref1 but also points to the different site alloc2, it is only
weakly updated (3.). Note that alloc2 does not receive an update
because ref2 is updated indirectly.
Right: The typestate information after the update.
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5.4 The transfer function

τ must be defined for every jFirm2 node which can read or produce a MEM,
because every one of those might be encountered while walking down the chain
of memory definitions. Changes will be performed on a copy of the given input
set to which we will refer to as the intermediate set . This will be returned as
the new output set after processing the last instruction in a block. We describe
the various effects below, using the variable nodec for the current jFirm node.

5.5 Starting at block zero

As already mentioned, block zero must be treated differently from the other,
regular blocks. It contains nodes for parameters and constants, which are not
part of the MEM-chain, and which must therefore be handled explicitly.

Constants (CONST) Constants can only be primitive values, Strings or
null. All of them are immutable; and as primitive values and null do not
represent objects, typestate is not even defined. While String-constants are in
fact objects, type and typestate are identical for them: On a String object,
every method is enabled no matter which string it represents. The only kind of
violation possible are exceptions thrown by some methods if invoked with illegal
arguments. As those cannot be detected by our analysis, String constants are
also ignored completely, and their state is simply defined as ∅.

Parameters (PARAM) For each method parameter, there is a PARAM node
representing the referenced object. For the first method in the call hierarchy,
those objects and their states are unknown, because there is no calling context
from which this information could be taken. In this case, the PARAMs are treated
as allocation sites, as from the analysis’ perspective, they “generate” these un-
known objects. Due to the pessimistic nature of the dataflow analysis, we must
assume that an unknown parameter may be in every possible typestate. As a
result, its state is stored as (nodec,>type) in the intermediate set. However, in
interprocedural analysis, the calling context of most methods is available. In
this case, the i-th PARAM node is substituted by the node connected to the i-th
input of the CALL node belonging to the respective calling context.

After processing all nodes in block zero, τ returns the intermediate set which
then contains all parameters. The state of all other objects (e.g. values of static
and member fields) is still unknown. We could initialise them to >type as well,
because we can get a list of all fields of an object from jFirm, but this will only
blow up the in- and output sets in the algorithm. We decide to store their states
implicitly: Whenever a field is read and the intermediate set does not contain
any information about it, the state >type is assumed. Like this, the existence
of fields is only discovered when they are first read or written. An entry for the
field will explicitly be created the first time it is written.

CONST and PARAM nodes are not allowed in any other blocks. Control flow
can never return to block zero from the method body, so τ will only find blocks
which contain actual program instructions after the first step. Those always

2We explicitly refer to jFirm instead of Firm here because the former models the features
which are specific to Java.
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take a MEM node as input zero and generate a new one as output (PROJ mem).
In the following subsections, only the inputs with indices > 0 are considered,
such that speaking of the “first” input refers to input one and not zero.

5.6 Object creation

NEW nodes represent new statements in Java and thus are the source for ob-
jects. Every time this instruction is executed at runtime, a new object in the
state starttype(NEW) is created (cf. Section 4.1). Therefore, we classify nodec

as an allocation site and assign it the state start by adding the mapping
(nodec, {start}) to the intermediate set. When the analysis encounters this
NEW node for the first time this is straight forward.

It is more complicated if this allocation site is part of a loop, as its re-
evaluation means that it creates another object distinct from the one(s) created
earlier. For path-sensitive analyses, this distinctness must be maintained pre-
cisely as the results of pointsto and alias will depend on the current path.
Instead of directly pointing to an allocation site, they will point to different
instances stemming from it. As our algorithm is path-insensitive, it is not able
to distinguish between single objects because it requires knowledge about the
program paths taken. For this reason, it is sufficient to simply overwrite the
allocation site’s state with start but leave all references untouched. Like this,
the state of objects previously created by this NEW node is still maintained in
the references using them, but operations directly accessing the allocation site
only see the last one created. Big imprecision is however caused by alias. As it
cannot distinguish between users of the old and new objects, they will always
influence each other, leading to a lot of weak updates.

5.7 Method invocation

The actual typestate transitions are fired by method invocations. If the target
method meth is called in a non-static context, it fires a typestate transition
on its first argument (this). The transition’s effect on this is given by the
typestate specification for the object’s type, in terms of providing a list of all
possible typestates reached by invoking meth. If the outcome of this invocation
is unspecified, we can either interpret this as an error transition or assume
that the state did not change at all. While the first policy leads to a lot of false
positives, the latter might result in false negatives. Which one is selected should
depend on the quality (i.e. completeness) of the specification and the desired
degree of correctness.

5.7.1 Typestate violations

In the case that meth is disabled, the list of states will contain ex to indicate
the illegal invocation (see Section 4.1). Depending on whether the transition
led to typestates other than ex or not, we differentiate between may- and
must-violations.

A may-violation indicates that meth was disabled in some but not all source
states. This can occur by merging multiple paths together, of which some fail
to prepare thisc for meth. The may-violation then in fact indicates a program
flaw. However, it is also possible that, due to over-approximation in the analysis,
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the source state contains typestates which would never be included during real
execution. If only those typestates lead to ex, this is actually not a real problem
but a false positive . This motivates us to avoid over-approximation whenever
possible, because it increases the amount of unneeded typestates in the analysis.
The more false positives are returned, the less usable the analysis is for the
programmer, because it means spending more time checking for errors in places
where there are none.

Invoking meth on an object in >type state will therefore always produce
a may-violation if meth is disabled in at least one possible typestate. As a
result, when a method is analysed, nearly every first invocation on an unknown
parameter will produce a may-violation. For this reason, we added an extra
rule for those cases which ignores may-violations resulting from objects being
in >state state. This rule obviously makes the algorithm unsound, so it can be
deactivated if desired.

The situation is different for must-violations. As the name suggests, a
must-violation is encountered if the only state reached by a transition is the error
state. If a must-violation is detected, we know for sure that meth is disabled
as there is no alternative valid outcome of the transition. Thus, as long as
the specification is correct, calling meth will result in a program failure, which
is obviously always valuable information for the programmer. Must-violations
cannot be false positives, as over-approximation might only degrade them to
may-violations by adding superfluous states in which meth is enabled.

5.7.2 Fixing suggestions

When a violation is detected, the fix to the solution will likely be one of the
following:

1. Prior to calling meth, call another method methpre such that meth be-
comes enabled, meaning that methpre is a prerequisite for meth. For
example, open() is often a prerequisite for some read() method.

2. Instead of calling meth, a different method methalt must be called. This
implies that meth is simply the wrong method for this situation, as it
would be the case for the second of two consecutive calls to File.open().

Both kinds of fixes require the programmer to think about what other methods
are available for the object, which of these are enabled in the current state,
and what possible outcomes they have. This normally involves looking up the
type’s specification and identifying appropriate methods. This can be done by
the analysis as well, because all of this information is encoded into the typestate
specification of the type. So whenever a violation is generated, the analysis finds
the set of all methods enabled for every typestate in the state set of thisc. If
this set is not empty, it offers them to the programmer, while it rates solutions
for the first case (methods enabling the initially requested meth) higher than
those for the second one (methods simply not causing a violation).

To take the fuzziness of the analysis into account, the programmer is also
presented with a third category of methods: Those which will cause a may- but
not a must-violation. For the same reasons discussed earlier, such a method
might always be enabled and never fire a runtime exception. However, this
certainty has to be validated by the programmer, which is why suggestions

30



from this third category should always be selected with care. Another downside
of this solution lies in the analysis always producing violations for it. To avoid
this, the programmer should have the possibility to manually tune the analysis
in such situations.

5.7.3 Explicit typestate definitions

We enable the programmer to actively manipulate the intermediate state set
to help the analysis where needed. Superfluous violations can then be avoided
by manually removing invalid states resulting from over-approximation. This
is especially needed in cases where dynamic state checks are used to ensure
typestate compliance because the analysis is unable to interpret them. For
this, the programmer can insert special method calls into the target program
resulting in CALL nodes which the analysis recognises as typestate directives.
Their first input is connected to the node objc whose state information is to be
altered, and the second takes a String-constant giving the name tstate of a valid
typestate for the object’s type. τ identifies those special nodes by the class and
name of the called method, which must be unique to prevent misinterpretation
of real method invocations. Depending on the method’s name, tstate will be
added or removed from the state set of objc. In addition, the programmer can
add directives to instruct the analysis to ignore may-violations for calls which
she verified to only produce false positives. She must use two special begin and
end directives which enclose the wanted CALL node as it cannot be used as a
parameter due to Java language restrictions.

This extension is very similar to other typestate analysers where the whole
specification is encoded into the programs using annotations. We cannot use the
annotation framework for jFTA because jFirm graphs currently do not contain
annotation information. There are both advantages and disadvantages to using
method invocations instead of annotations. The main advantages are:

1. The parameters are sanity-checked because the compiler treats the direc-
tives as regular method calls. This means that the first parameter must
be a valid variable/object reference, and it must have been initialized.

2. The directives are usable in Java code written for Java versions earlier
than 5.0 which do not have built-in annotation support.

On the other hand, there are also considerable disadvantages compared to an-
notations:

1. On normal program execution, the directives are executed like normal
methods. Although their bodies are empty, this could affect the programs
performance if, for example, many directives are put into a loop with
many iterations. Furthermore, method invocations manipulate the stack
and could also affect the efficiency of caches.

2. Depending on the degree of optimization performed by the compiler, calls
to empty methods might perhaps be dropped. Typestate directives would
then be lost.

Independent from their actual implementation, typestate directives are static
and do not automatically adjust themselves when the surrounding code changes.
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Code snippet with Typestate directives

/* s = Stack with unknown state */
while (!s.isEmpty()) {
/* dynamic check not detected */
Typestate.remove(s,"isEmpty");
s.pop();

}
Typestate.remove(s,"!isEmpty");

state(s) after execution of line

TOP = [!isEmpty,isEmpty]
[!isEmpty,isEmpty]
[!isEmpty,isEmpty]
[!isEmpty]
[!isEmpty,isEmpty]
[!isEmpty,isEmpty]
[isEmpty]

Figure 5.4: An example for a situation where explicit typestate definitions are
required. Without them, the pop() in the loop body would cause a
may-violation. After the loop, the stack is guaranteed to be empty,
which is ensured by another directive.

They should always be used with caution, because obsolete directives might
unexpectedly remove or add typestates or suddenly address different objects in
the case that a variable’s name changed. An example situation where explicit
typestate definitions considerably help the analysis is given in Figure 5.4.

5.7.4 Interprocedural context-switching

The typestate specification only gives information about the effect of the method
on thisc. As static methods are not called on any object and we do not con-
sider typestate for classes, the steps mentioned so far are all skipped for them.
However, the effect on meth’s formal parameters must be reproduced for both
types of methods. This is achieved by either analysing the body of the called
method in the current typestate context (as given by the intermediate set) or by
safe over-approximation. The former results in context-sensitive, interprocedu-
ral analysis, yielding better precision but also higher cost than intraprocedural
estimation algorithms. To some extent, our algorithm performs interprocedural
method analysis to achieve much better results. However, this can quickly be-
come extremely expensive, because the length of the paths in a program’s call
graph is generally unlimited and can also be infinite in case of recursion. To
avoid the problem of infinite descent one could perform loop detection on the
call graph. Paths can then still be of arbitrary length with unpredictably high
costs. We address both these problems by simply limiting the maximum path
length to some comparably small number dmax. Effectively, this means that the
simulated call stack cannot grow bigger than dmax during analysis.

If the call stack has depth < dmax when τ finds a CALL meth node, it will
perform an interprocedural context-switch to meth and analyse it using the
state information from the current intermediate set. Considering the structure
and semantics of jFirm graphs, this is fairly straightforward. As mentioned
earlier, the PARAM nodes of meth’s graph can be replaced by dependency edges
to the nodes connected to the respective inputs of the CALL node nodec. Apart
from this, a context-switch is equivalent to reaching the end of the current block.
As the parameters need not be analysed anymore, meth’s block zero is skipped
and the analysis can directly continue at its first successor block. Afterwards,
the return value (if any) of meth is treated similarly: If the return type of
meth is non-void, nodec produces a PROJ data node for it. As a method
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BLOCK  0
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Figure 5.5: An example showing the modified jFirm graph when performing a
context switch to a called method. Its PARAM-nodes are replaced
by dependency edges (thick dashed edges), its returned value(s) are
directly connected to the old projection nodes which are now used
as PHI (thick dotted edges), and the block containing the CALL in
the parent method has been split (new control flow by thick solid
edges). Note that the PHI are only contained for clarity, as they
would normally be replaced by dependency edges when they select
from only one input. Greyed-out edges, blocks and nodes would
be present if the graph was not modified, and are only given for
comparison.

can have more than one RETURN instruction, there is possibly more than one
value which is returned. So simply reconnecting all of the PROJ data node’s
users does not work. Instead, the node is treated as a PHI which is connected
to all nodes referenced by a RETURN. Independent from the return value, the
same is applied to the PROJ mem which then selects the appropriate memory
state belonging to the RETURN instruction taken. When meth has been fully
analysed, the analysis switches the context back to the next instruction in the
parent method. A modified jFirm graph representing the changes is given in
Figure 5.5.

In the case that the call stack has reached its maximum depth, no context-
switch will be performed. Instead, as meth could arbitrarily manipulate the
states of all its visible variables, the state information of all its parameters and
return value is set to the respective >type. Furthermore, it is also necessary to
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set the states of all member and static fields to >type as well, because meth could
also change their states either directly or by invoking other (static) methods.
Obviously, a lot of information may be lost every time this happens, which is
why we expect the setting of dmax has a strong impact on the quality of the
analysis results.

5.7.5 Applying typestate changes

The new state for thisc is applied last, overwriting possible state changes which
occurred during the context switch. It is safe to do so because the specification
ensures us that thisc will definitely end up in this state after calling meth on
it. Note that this also means that thisc still has its old state during interpro-
cedural analysis of the called method. We consider working with the new state
nonsensical at this point because the sole invocation of meth does not change
anything yet. It is the method’s body which probably changes some of thisc’s
fields and, as a consequence, its state.

The handling of CALL nodes is the core part of our algorithm. To sum up
the ideas it incorporates, we present its description in Figure 5.6.

5.8 Object references: Fields and arrays

Apart from local variables, which can be replaced by dependency edges and PHI
nodes, objects can also be referenced by fields or arrays. Both are different from
local variables: The visibility of fields is not limited to the method itself and
arrays can contain more than one object. While these properties do not have
a direct effect on the state of the stored objects, it is important to correctly
capture how object references flow through the program. We account for this
by adding or modifying references accordingly.

We must differentiate between static and member fields. As the former
belong to classes, there is only one instance of the field which exists throughout
the whole program execution. On the contrary, member fields are defined,
created and destroyed along with their respective parent object instance. As a
consequence, fields cannot be identified only by their name: For static fields, the
parent class must be specified; while member fields must specify the allocation
site and context at which their parent object was created. Using these field
identifiers, we can add references carrying typestate information for fields to
our analysis state.

5.8.1 Writing fields

Depending on whether the target field field is static or not, PUTSTATIC or
PUTFIELD nodes are generated to indicate a writing operation. For both types,
the node itself contains the field name and its member class, as well as an input
connected to the item to store in the field (itemc). The PUTFIELD has another
input connected to the jFirm node determining its parent object (target). When
τ encounters a put-operation, it gathers all allocation sites in pointsto(itemc)
and creates a reference connected to them with statef := state(itemc). If field
is static, there is exactly one instance of it. So a strong-update can always
be performed by putting the mapping ((fieldname, fieldclass), statef ) into the
intermediate set.
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Algorithm: τ(statesinterm, CALL(meth,memc, param1,c, . . . , paramn,c) )

1. If meth is a non-static method: (param1,c is this)

(a) Get the current state for param1,c from statesinterm, which is
stateold.

(b) Prepare a new empty set statenew.

(c) For every tstate ∈ stateold:

• Add all typestates reachable from tstate by invocation of meth
(as given by the specification for the type of param1,c) to
statenew.

(d) If statenew contains the error state:

i. Generate a violation giving stateold, statenew and meth.
• If statenew contains no other state, mark it as a must-

violation.
• If it contains other (non-error) states, it is only a may-

violation.
ii. Generate propositions to avoid the violation, if possible.

2. Consider the effect of invoking meth for all parami,c, i ≥ 2 and global
variables in memc.

• If the maximum call stack depth has not yet been reached and the
jFirm graph for meth is available:

(a) Acquire the jFirm graph for meth.
(b) Link each of its PARAM i nodes to the respective parami,c.
(c) Recursively analyse meth using statesinterm, starting at the suc-

cessor block of its block zero.
(d) Transform the PROJ mem node of nodec into a PHI selecting

from all memories used by a RETURN in meth’s jFirm graph.
(e) If meth returns a non-void value, turn the PROJ data node of

nodec into a PHI selecting from all values used by a RETURN in
meth’s jFirm graph.

• If the maximum depth is reached or the jFirm graph is not available:

(a) Set the states of all parami,c to {>type(parami,c)}.
(b) Similarly, set the states of all fields to their respective >type, too.
(c) If meth returns a non-void value, create an allocation site for the

PROJ data node of nodec and set its type to >type(meth).

3. If meth is a non-static method, apply the new state for the this param-
eter: Put (param1,c, statenew) into statesinterm (overwriting any changes
from step 2).

Figure 5.6: Complete algorithm for handling CALL instructions in jFirm.
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In case of PUTFIELD, this cannot be assumed, as target could refer to more
than one object. Therefore, in addition to creating the reference as in the static
case, τ must also get all allocation sites allocc ∈ pointsto(target) and update
field for each one separately. At this point, we face the same problem as for
PHI nodes: Of all candidate fields, only one will actually be updated in an
actual program run, while all others remain untouched. Again, this candidate
cannot be determined, allowing only weak updates to be performed on the
fields by merging their old state information (fieldname, allocc), stateold) with
statef . Strong updates are only enabled if pointsto(target) contains exactly one
allocation site.

5.8.2 Reading fields

Similar to writing fields, there are two different jFirm instructions for reading
static or member fields. Both types again carry the field’s name, and only
GETFIELD has an additional input to a target jFirm node. Both produce a
PROJ data node for the value they read from the field. In the static case, τ
just creates a new reference linked to the allocation sites pointed to by field,
carrying the state currently stored for field and assigns it to the PROJ data
node. In Section 5.5, we defined the state of field as >type(field) if it has not
been written prior to the first reading access. In the non-static case, all affected
fields are determined the same way as for PUTFIELD, and the union of all their
states is assigned to a reference linked to all participating allocation sites. This
is then stored for the PROJ data.

With a small extension of our update algorithm from Figure 5.2 we can con-
siderably improve the precision when working with references from GETSTATIC
and GETFIELD. So far, the fields themselves are only updated by receiving
updates from their respective allocation sites, even if an update is directly per-
formed on a GETSTATIC’s or GETFIELD’s reference. As soon as more than one
allocation site is connected to the field, it will only receive weak updates. We
circumvent this problem by enhancing the returned references with extra con-
nections to the fields themselves. In the case that the referenced field is unique
(i.e. has only one potential parent object), the update algorithm will perform a
strong update on it instead of waiting for the weak one to be propagated. This
is always the case for static fields.

5.8.3 Creating, reading and writing arrays

The array-handling in our analysis is very simple because arrays are hard to
handle precisely in static contexts. While in principle they work similarly to
fields, they can store an arbitrary large amount of different objects. Our analysis
cannot differentiate between those objects, as every read or write operation on
arrays also contains an integer address for the position inside the array which
the analysis ignores. Thus, the analysis can never know if an existing object is
overwritten or not when a new one is added via ASTORE, or which item will be
retrieved by an ALOAD. So all operations carried out on elements of the array can
only produce weak updates. For this reason as well as the fact that we do not
maintain states for arrays, τ does not keep extra typestate information for them.
Instead, whenever an ALOAD is encountered which refers to an array arrayc, it
creates and returns a reference linked to all allocation sites in pointsto(arrayc)
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with the union of their states. As a consequence, NEWARRAY and ASTORE nodes
which create arrays and store objects in them are simply ignored by τ .

5.9 Unsupported or ignored nodes

In this version of our algorithm, there are some jFirm nodes which do not have
an effect when they are encountered. The reasons for this are either that they
do not provide any relevant information for the analysis, or that the operations
are not supported at the moment. We briefly present those nodes and explain
the reasons for ignoring them.

• Exceptions (THROW) Although one of the advanced features of jFirm
(see Section 3.2.5), our algorithm currently does not handle those nodes
because they are not implemented in the version of jFirm used in this
thesis. This will be one of the major improvements for future development
of the algorithm.

• Typecasts (CAST) In its current version, the algorithm can only handle
static type information. Therefore, type casts are completely ignored at
the moment.

• Return (RETURN) As we resolve the passing of return values to the parent
method by re-linking the nodes when context-switching back to the parent
node (see Section 5.7.4), no action must be taken when τ finds a RETURN.

• Memory synchronization(SYNC) The Firm language specifies splitting
of MEM nodes to represent distinct memory areas. Whenever an operation
might work on areas which are split, they must be merged (synchronised).
As support for this is not implemented in jFirm, we also ignore this feature
for now. It will however be a valuable addition for future work, because
it can limit the amount of necessary overestimation.

• Memory-phi (PHI) When multiple paths lead to the same jFirm block,
the MEM chain will contain a memory-type PHI node. We account for
those by performing the merge operation t whenever we update the input
set of a block. For this reason, τ just skips them and continues with the
next node in the chain.

In this section, we presented the concepts of our analysis algorithm. In
the following one, we present our implementation of the algorithm as a Java
application named jFTA.
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6 Implementation

In our tool jFTA, we implemented the algorithm discussed in Section 5 as a
Java application. In this section, we want to describe the challenges and deci-
sions taken during the implementation. After briefly presenting its interface, we
focus on performance and correctness aspects, as speed is one of our main goals.
Therefore, we talk in detail about how we handle points-to and aliasing infor-
mation with support of external libraries [Boe09], and how we try to keep the
introduced overhead small. Lastly, we discuss aspects of the algorithm which
are not covered in jFTA yet, therefore affecting the performance and validity of
the results.

6.1 Analysis interface

The core of jFTA can be executed from the command line. As input, it requires
pointers to directories containing specification FSA in GraphML [GML] format
and compiled bytecode of all Java classes possibly visited during analysis (this
includes classes which might be referenced by interprocedurally analysed method
calls, field accesses and the like). This data will be used to analyse either all
or just selected methods from the given classes. The results of the analysis are
returned to the console in plain text format. This interface is mainly designed
for externally benchmarking the analysis or checking programs which are not
under development.

As the main purpose of jFTA is to support the programmer during devel-
opment of an application, it also provides interfaces suitable for customized
IDE-integration. We intended to develop a sample Eclipse plug-in to demon-
strate the integrability of jFTA but could not finish it due to time restric-
tions (see Appendix A for a preview). Instead of reading the input data from
files, specification FSA are read in JUNG-format [OFWB03] and the needed
bytecode will be dynamically acquired from the program’s classpath. Analy-
sis results, comprising found violations and the fixing suggestions mentioned in
Section 5.7.2, are returned after termination and can be further processed by
the calling context. Like this, it is possible to run the analysis automatically
in the background, display found violations directly in the source code via the
Eclipse Marker-facility [mrk] and embed the fixing suggestions into the QuickFix
mechanism. The usability of such an integrated approach heavily depends on
how much time and memory continuous background analysis consumes. While
the current implementation can be relatively fast depending on the parame-
ters (see evaluation in Section 7), we expect this to change when it becomes
more complete in the future. So instead of performing analysis after each auto-
mated compile, it might be reasonable to only run it after several compiles or
a minimum amount of time to not interfere with the normal work-flow of the
programmer.

6.2 Optimizing runtime performance

When implementing the analysis algorithm, there are a lot of choices to make
which affect both speed and accuracy of the analysis, and often trade one off
for the other. In this subsection, we want to explain where we had to make
such decisions and which effect we expect to arise from them. Our intention is
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to make the analysis as fast as possible, so that it does not become unusable
because evaluation takes too much time. So when implementing the algorithm
discussed in the previous section, we kept this requirement in mind and, as an
example, generally accepted trading off memory for speed.

6.2.1 Problems with analysis results caching

As the level of interprocedurality in jFTA is limited, it does not always begin
in the main method and crawl through the whole program. Instead, the user
must specify either single methods, or entire classes whose methods will then
all be checked. Analysis of each method is run independently such that no
information from the previous run is passed over to the next one. Initially,
as the analysis was expected to work purely intraprocedurally, we planned to
implement a simple caching facility to reuse results from previous runs. The
bytecode of the requested method would be loaded and compared to the last
version seen in the analysis to detect if it has been changed. For this purpose,
it would need to store a hash value or similar snapshot of the method and its
most recent analysis results. If the information in the cache was found to be
still valid, the results would be loaded from the cache and the actual analysis of
the method would be skipped. In any other case (cache miss or if the method
was changed) the analysis would be performed normally.

Caching is only implemented as a stub at the moment, as with the inter-
procedural analysis extensions it is insufficient to just check the method itself
for changes. If referenced classes or methods changed, the stored results for all
methods using them must be invalidated. To find these dependencies, the call
graph of the program must be inspected. In addition, the different calling con-
texts from which the method was called need to be considered for maintaining
context-sensitivity. Depending on the context-sensitivity depth, we consider it
probable that maintaining such a caching structure can quickly become very
complex, possibly slowing down the analysis considerably. However, we are cur-
rently unable to investigate this further, because jFirm does not support call
graph construction yet. In addition, as caching techniques are not the focus of
this thesis, they are completely disabled right now.

6.2.2 Fast points-to and aliasing resolution

In the discussion of our algorithm, we used the functions pointsto(nodec) and
aliases(nodec) in our design without considering how they are actually calcu-
lated. For the implementation, we obviously need to address these problems
properly.

Statically finding all possible targets a reference or pointer points to is
a very hard problem in static program analysis. It has been investigated for
nearly thirty years [Wei80] and thus even longer than typestate analysis itself.
The problem of determining which variables all point to the same (alias an)
object is strongly related to this and thus of similar complexity. Handling those
problems explicitly would by far exceed the scope of this thesis, which is why
we decided to use an external library for resolving points-to information and,
based on the information gathered from it, at least approximate the variable
aliasing. We chose an interprocedural, context- and flow-sensitive points-to
analysis library created by Klaas Boesche [Boe09] because it is written in Java
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and also uses jFirm as program representation, allowing for shared use of jFirm
graphs and derived data. In addition, it does not simply analyse the whole
program and then keep all of the data in memory like most approaches, but it
is demand-driven . This means that jFTA can query it for single items, which
then gradually builds up points-to information and thus only processes items
which are really needed, reducing the amount of time and memory needed for
points-to handling. As the library is in early development itself as of writing
this thesis, its results most likely are less accurate than those of other, well-
established points-to analyses. We willingly accept this limitation in favour of
the aforementioned reasons and expect that further development will reduce the
drawbacks in the future. The library is currently unnamed, for which reason we
invent the name jPTS to refer to it for the remainder of this thesis.

From the results of the points-to analysis, we will derive information about
reference aliasing. Whenever a points-to query for a reference ref returns a set
of affected allocation sites {alloc1, . . . , allocn}, we register ref as a user to all
alloci. So each allocation site builds up its own individual “pointed-to-by” set
which can be used to propagate state updates to its users (cf. Section 5.3 and
the example in Figure 5.2). If a reference is not used any more after some point,
it must be unregistered at all its allocation sites. Otherwise it would still be
always updated and never garbage collected, wasting both time and memory.

We create similar links from references to their allocation sites, as given by
the points-to information by jPTS. As it is not path-sensitive, it will always
return the same (maximal) points-to information for a node in a fixed calling
context. Due to the path-insensitivity, it might contain allocation sites which
our analysis has not discovered yet, like sites in loop bodies which have not been
analysed so far. So we cannot link the reference to this unknown allocation site,
but we must wait until we finally find it and process the current node again. As
this can happen many times when we traverse the method graph, it is reasonable
to cache the complete points-to set and avoid repeatedly querying jPTS for the
same node. Therefore, we store the entire points-to set in the affected reference
and reuse it to find the missing allocation sites on future requests. Figure 6.1
gives an example for such late allocation site discovery.

Caching of points-to and aliasing information obviously increases the mem-
ory footprint of the internal representations of allocation sites and references.
Additionally, it requires careful bookkeeping to avoid breaking the references
between them when they are copied or merged together as necessary for per-
forming the t operation on input-sets. We willingly accept this additional work
and memory usage because we expect to save a lot of time by fewer points-
to queries. This is especially important for the aliasing information which if
not cached would be newly constructed each time it is required, which involves
expensively intersecting a lot of points-to sets.

6.2.3 Improved jFirm graph traversal with two-level worklist

As we have explained in Section 5.2, we traverse the jFirm graphs using a
worklist containing the blocks remaining to be analysed. While the order in
which multiple control flow successors of the same block are put into the worklist
does not affect the correctness of the analysis, it can immensely affect its runtime
(cf. example in Figure 5.1). Analysing the jFirm graph to find loops before
the actual analysis could give an optimal ordering, but is costly itself. We
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Figure 6.1: An example for late allo-
cation site discovery. The
points-to set for the PHI
node contains two alloca-
tion sites, of which only
one was discovered by the
analysis so far. The other
one (greyed block) will be
ignored for the first eval-
uation of the join block,
but the points-to informa-
tion will contain the de-
pendency for future itera-
tions. For clarity, parts of
the jFirm graphs have been
removed.

consider evaluating different loop detection algorithms on big graphs worthwhile
for future work, but do not address this issue for this thesis. Instead, we use
two stacks w1, w2 as worklists instead of a single one and perform a very simple
but surprisingly efficient successor prioritisation by separating blocks into two
classes S and M : Those which only have one single and those with multiple
predecessor(s). The idea is that blocks in class M are joining points after control
flow was split, which means that more than one program path will arrive at every
such block bM . We expect to reduce the amount of unneeded evaluations of bM
by allowing all other analysis paths to proceed as far as possible before actually
analysing bM . Those paths might either reach the end of the graph or stop at
different M -blocks for the same reason, until all are blocked.

To achieve this, we add S-blocks to the stack w1 and M -blocks to w2. We
traverse the graph by popping blocks from w1 as long as it is not empty, in
which case we move the first element from w2 to w1 and continue exploring as
described above. The reason for taking stacks instead of lists is that their LIFO3

behaviour leads to depth-first exploration of the graph. If the analysis reaches
a loop body, it will suspend at its “head” block hbM , which will always have at
least two predecessors, and add it to w2 if it is not already contained. The other
paths continue and either reach the end or pause at some other block b′M as
well. In the latter case, all b′M are stacked over hbM and thus processed before
it. Because we only keep one (the earliest) copy of hbM on the stack, we can be
sure that the analysis has explored every path to it from the beginning when
it is eventually popped. Thus, its input data set contains maximal information
available from those paths. This is not the case for all later encounters of hbM ,
which explains why we do not store them on the stack. Finally, we pop hbM
and continue normal exploration.

Compared to randomly selecting the next block, this queueing algorithm can
noticeably reduce the number of superfluous block explorations, but it can also

3”last in, first out”
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perform worse in other situations. It works very well when the graph contains
a lot of blocks where many paths join together (e.g. after conditionals, switch-
statements), but it does not have any information on which successor of a loop
head block to chose, for example. So it will often decide to first continue after the
loop body, and then evaluate the loop body afterwards. The optimal solution
would of course be the opposite case, and errors like this can quickly accumulate
inside nested loops and similar structures. We will analyse the efficiency of this
solution in Section 7.2.1.

6.3 Implementation limitations in jFTA

In its current state, jFTA can already detect typestate violations in programs
which only use a limited set of Java language features:

• Basic control flow patterns like conditionals, (nested) loops, switch, break,
continue

• Accesses to static and member fields

• Calls to static and member methods

• Arrays (theoretically, see evaluation results and problems in Section 7.2.2)

As exceptions currently do not work correctly in jFirm, they are not supported
by the analysis. This is considered future work and will be addressed as soon
as jFirm can build correct graphs for methods throwing exceptions. Currently,
graphs end abruptly at THROW nodes and thus prevent jFTA from analysing the
corresponding methods.

6.3.1 Lack of dynamic type information

The analysis results suffer from the fact that jFTA currently only works on
static type information. The analysis can therefore miss typestate transitions
if the target program uses polymorphism, because only the methods belonging
to the static type will be examined. To be more specific, jFTA currently does
not handle or process type information at all, except for loading the appropriate
classes when analysing method invocations. This was partly due to the lack of
support for types in jFirm when we implemented the tool, and it also would
exceed the time frame of this thesis.

This limitation obviously makes the analysis performed by jFTA arbitrarily
unsound. A possible everyday example is given in Figure 6.2, showing that this
is likely to happen in simple, common cases. We are aware that correctly im-
plementing dynamic type information can lead to an explosion of runtime and
memory usage. Instead of analysing the method meth in the class c designated
by the static type of a CALL, it is then necessary to analyse the same method
in all classes extending the type c, which can be an arbitrarily large number.
Performance results from this version of jFTA are therefore likely to be a lot
better than they will be in the future. On the other hand, if the simple version
already takes more time than would be feasible for constant background evalu-
ation, we can make assumptions on whether jFTA can ever suit the setting we
intend it to be used in or not. Implementing correct resolution of dynamic type
information is therefore considered one of the most important tasks for future
work.
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PROJ MEM 12

CALL getList 10

PROJ DATA 11

CALL add 14
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List lst = getList();
lst.add(obj);

Figure 6.2: Example situation in which dynamic type information would be
needed to correctly analyse the call to List.add(Object). The re-
turn type of getList() is the interface java.util.List. Returned
objects therefore will always be instances of a subtype, whose im-
plementations of the add(Object) method are different from each
other.

6.3.2 Unsound treatment of > points-to sets

Another problem related to not correctly maintaining type information is cor-
rectly handling > values for points-to information. If a points-to query for a
node nodec returns > because the real targets could not be exactly determined,
it means that every object with the same or a subtype could be a points-to
target of nodec. So if this query was submitted to find the targets of an up-
date operation, all allocation sites, references and fields with such type should
be updated. Failure to do so might miss targets which would be affected in
real execution. If we wanted the analysis to be sound at any cost and without
having the needed type information, we would need to carry the operation out
on every object currently in our scope. This would preserve soundness, but
of course introduce enormous imprecision. Note that this also applies to the
over-approximation we perform when we do not switch to a called method, but
instead set the state of all possibly affected nodes nodec to >type(nodec).

When we implemented jFTA, jPTS returned a lot of > values because its
results are sound but imprecise as interprocedurality and types were not sup-
ported yet. Considering this, we had to decide whether to make the analysis
sound but probably unusable by handling > correctly or not. In common terms,
this means allowing false negatives in the results in favour of considerably re-
ducing the amount of false positives or not. For this thesis, we decided to accept
the former in order to get an idea of what the results can be like when jFirm
and jPTS have improved. Note that returning > does not necessarily mean that
we do not get any targets at all, but instead only tells us that there might be
more targets affected than the ones returned.

6.3.3 Completely unsupported language features

Apart from these important basic functionalities, jFTA does not handle ad-
vanced features like synchronization or calls to native methods. In the near fu-
ture, these will remain unsupported and their effect on the results is unknown.
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7 Evaluation

For the evaluation of jFTA we want to assess its required runtime and the
achieved accuracy. As jFirm and jPTS – the core components on which we rely
for our analysis – as well as jFTA itself are still in early development stages,
these results are only first pointers to where this project might evolve.

For the runtime-assessment, we ran jFTA on a set of larger programs and
measure the time effect of different analysis parameters. We also executed the
test-suite with our two-level worklist algorithm disabled to analyse its effect on
the runtime. All timings were measured on a 2.27GHz Intel Core2Duo processor
with 3GB of RAM using 32bit Ubuntu Linux 8.10.

The accuracy was measured on a set of various small methods designed to
isolate different Java language features, because some constructs are easier to
handle accurately than others. This could not be clearly traced when using
real-world examples as the effects are cumulative and not easily separated.

Additionally, to get an initial idea of how the early analysis copes with au-
tomatically extracted specification and if we already find any bugs, we analysed
the usage of the type IMAPProtocol in selected classes of the Columba [col]
project.

7.1 Test subjects

We performed the runtime evaluation using the command line interface of
jFTA on a test set consisting of five classes as shown in Table 7.1. The first
two were taken from the Columba application and make intense use of the
IMAPProtocol class. IMAPServer handles all the IMAP communication in
Columba and keeps one single instance of the protocol in a member field all the
time. IMAPProtocolTest is a JUnit test suite which creates a new protocol ob-
ject in every method. The next two are from jFTA itself and have been selected
because they use methods of many other classes, which increases the impact of
the selected maximum call stack depth. Generally, we considered these classes
to be good representatives for classes with many lines of code which also have
some amount of standard library use (subclasses of java.util.Collection;
the JUnit framework). The last one was taken from jFTA as well and can be
seen as being the equivalent to the main method of the program. Although it
has only few lines of code, it calls all the methods which basically make up the
analysis. For these reasons, we performed one single run with a high maximum
call stack depth to get an impression of the runtime when the settings are similar
to performing classical interprocedural analysis.

We performed multiple runs of jFTA on each of these classes to evaluate all
48 combinations of the following analysis parameters:

• depth ∈ {0..5} – The maximum call stack depth

• topPolicy ∈ {allStates, firstOk} – How to handle > states (Section 5.7.1)

• unknownPolicy ∈ {error, ignore} – Treat unspecified method invocations
as errors or ignore them (Section 5.7)

• oneWorklist ∈ {true, false} – Use one or two worklists
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Class LoC methods
org.columba.mail.imap.IMAPServer 1083 69
org.columba.ristretto.imap.IMAPProtocolTest 553 30
de.unisb.prog.typestate.ir.FirmWalker 309 11
de.unisb.prog.typestate.ir.MethodMemory 718 37
de.unisb.prog.typestate.AnalysisRunner 64 2

Table 7.1: Lines of code (LoC) and amount of methods in the classes used for
runtime evaluation

open()

close()

read()
isOpen()!isOpen isOpenstart

<init>()

isOpen()

EX

read()
close()
<init>()

read()
open()
close()
isOpen()

open()
<init>()

Figure 7.1: A simple specification FSA for an imaginary implementation of a
File type. For simplicity, it can be only opened, closed or read from.
It does not feature a write(Object) method or any exceptions (e.g.
to symbolise reading while at EOF).

The synthetic test methods generated for the evaluation of the result quality
contain several valid and invalid use cases of a particular language feature to
measure both false positives and negatives. We used hand-made and very sim-
plistic specification for an imaginary File implementation (see Figure 7.1) in
this phase to avoid errors arising from ambiguities and misinterpretations in the
automatically generated ones. Based on the results from this phase, we want to
discuss if jFTA is actually able to detect some sorts of typestate violations in its
current state. We divided the examined language features into two categories:

Object referencing and storing The different ways of storing and referenc-
ing objects through local variables, static and member fields, arrays or
method parameters.

Control flow manipulation Manipulating the normal sequential control flow
by using conditionals, while-loops (with break or continue statements)
or crossing method boundaries by method calls.

The test set we have created consisted of eight method pairs, each one fea-
turing a valid and an invalid sequence of operations on File objects. Five pairs
only accounted for intraprocedural scenarios and three ones were interproce-
dural. We tried to capture many common cases (e.g. nesting loops containing
break statements, moving objects back and forth between fields and variables)
but these tests are not exhaustive. Combination of different language features
easily makes tracking of points-to information harder and causes more strong
updates to be only performed weakly, resulting in an increase of falsely reported
may-violations. We investigated the amount of correctly reported must-/may-
violations, false positives and false negatives.
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7.2 Results

7.2.1 Runtime

While performing runs for all possible parameter configurations, we expected
that the call stack depth and using only one worklist would have the biggest
impact on the actual runtime. While this was proven to be the case, we also
discovered that the other options only influenced the time very marginally. This
was obvious for the classes from jFTA, because there was no specification avail-
able for them and thus the parameters did not have any effect. It was however
surprising to see that this – with one single exception – also applied to the two
Columba classes, for which a quite extensive specification was given. The dif-
ference in runtime mostly was below two per cent. For this reason, Table 7.2
only shows times for different maximum stack depths and compares between the
two- and one-worklist algorithms. Please note that these are only analysis times
which do not contain the time needed for loading jFTA and initialising jFirm.
In all our testcases, this time was between 0.5 and 0.7 seconds and was there-
fore considered insignificant. However, this will probably change when jFirm
and jPTS are further developed and provide more functionality.

The numbers show that our simple prioritisation algorithm with two work-
lists performed much better than pseudo-random successor choosing at higher
depths. The speed-up factor was in the range between 5 and 10, and in one case
it even was 45 (depth = 5, FirmWalker). For nearly intraprocedural analysis
(depth < 2) there was hardly any measurable difference in the runtime, and
there were even cases where the single worklist was slightly faster.

We did not measure the memory usage in detail, but all sample checks were
in ranges from 100 to 500MB for runs with depth between 0 and 5. It did
not grow above 820MB for the depth = 10-run on AnalysisRunner, which we
consider tolerable though not perfect.

time (s) depth
one worklist 0 1 2 3 4 5 10
IMAPServer 1.8 3.9 9.6 31.9 123.3 539.8 n/a
IMAPProtocolTest 2.0 4.2 7.8 18.0 41.2 116.4 n/a
FirmWalker 1.6 4.1 23.9 128.2 778.1 8566.4 n/a
MethodMemory 2.2 4.3 7.7 30.0 82.2 125.1 n/a
AnalysisRunner 1.0 2.5 5.2 52.1 367.9 1701.2 n/a

time (s) depth
two worklists 0 1 2 3 4 5 10
IMAPServer 2.4 3.6 7.6 17.7 38.5 96.9 n/a
IMAPProtocolTest 0.9 2.0 3.7 8.3 15.6 29.1 n/a
FirmWalker 1.4 2.4 6.2 16.2 59.5 189.8 n/a
MethodMemory 1.7 2.9 4.3 9.6 20.7 31.3 n/a
AnalysisRunner 1.1 1.9 3.3 11.2 36.9 115.9 18721.6

Table 7.2: Absolute runtimes measured for analysis runs with different param-
eters for depth and oneWorklistOnly. Others were omitted because
they had no significant effect. For time reasons, there was only one
run with depth = 10 which also only used the two-worklist algorithm.
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Existing Reported False positives False negatives
Tested feature must may must may must may must may

intraprocedural scenarios
local variables 2 – 2 – – – – –
member fields 4 – 4 – – – – –
static fields 4 – 4 – – – – –
control flow 1 5 1 8 – 3 – –
arrays 4 – – – – – 4 –
interprocedural scenarios
member fields 2 – 2 1 – 1 – –
static fields 2 – 2 1 – 1 – –
parameters 3 – 3 – – – – –

total 22 5 18 10 – 5 4 –

Table 7.3: The test cases, the number of must- and may-violations contained in
each one and the results of running jFTA on it. Except for the array
test case, which revealed severe problems with array handling both
in jFTA and jPTS, no violations were missed. Falsely reported may-
violations were results of weak- instead of strong updates (2), unhan-
dled runtime checks in the program (2) and path-insensitivity (1).

7.2.2 Analysis quality

We ran jFTA on the eight method pairs using depth = 1 because the methods
were not nested any deeper. The parameters unknownPolicy and topPolicy
did not have any effect in this setting: The test cases only used methods from
the dummy File specification and did not have unknown parameters which
would have been set to > in the beginning. We will discuss the parameter’s
effect briefly in the last step of the evaluation, when we perform different runs
on real-world examples. By choosing this simplistic test set together with the
simple dummy specification, we can analyse how well jFTA can do under nearly
ideal conditions. Therefore, the results should not be taken for granted in
real projects but merely show the highest upper bound of how good jFTA can
perform.

The results from analysing the test cases are shown in Table 7.3. Except
for methods using arrays, jFTA did not miss any violations. The problem with
arrays were due to the early development stage of jPTS, because it seemed to
be unable to track objects through arrays. As a result, a request for points-
to information for an ALOAD operation always returned > without any further
details. In combination with our incorrect handling of > results (as discussed in
Section 6.3.2), ALOAD instructions created references which were not connected
to any allocation sites, and therefore did not carry any state information either.
Therefore, jFTA was unable to do anything reasonable with arrays at that
moment.

The test set generated five false positive may-violations whose causes we
want to investigate. Two of them occurred due to weak updates on the states of
two objects, which were both accessible via a local variable and a (member or
static) field. A simplified example showing this behaviour is given in Figure 7.2.
The state of the File is updated through the field reference from a helper
method, for which reason jPTS returns > for the points-to targets of the field.
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File f = new File(); // create new file and also store it in
this.file = f; // member field. state(f)={!isOpen}

helper_method() { // in here: pointsto(this.file)=TOP
this.file.open(); // bad weak update on f after which

} // state(f)={!isOpen,isOpen}
// instead of state(f)={isOpen}

f.read(); // may-violation: read() in !isOpen

Figure 7.2: A situation in which jFTA performs a weak update due to impre-
cise points-to information, leading to a false positive may-violation.
Note that for clarity, the body of the called method has been inlined
into the code, so that it is actually not legal Java syntax.

File f = new File();
if (??) {
f.open();

} // now state(f) = {!isOpen, isOpen}
/* FAILS */
if (f.isOpen()) { // dynamic check ignored by analysis
f.read(); // may-violation: no read() in !isOpen

}
/* WORKS */
if (f.isOpen()) { // dynamic check ignored by analysis
Typestate.set // encodes effect of dynamic check

(f,"isOpen"); // state(f) = {isOpen}
f.read(); // OK: read() enabled in isOpen

}

Figure 7.3: Runtime state checks guard a possibly disabled method invocation.
Unless their effect is made clear to jFTA by typestate directives,
it will miss this information and likely generate superfluous may-
violations.

We consider this being incorrect as from the calling context, this.field cannot
possibly point to a different allocation site. So although a strong update would
be possible in this observed case, a weak update is performed which leaves the
old state in place and causes a may-violation.

Two other false positives were not surprising, as they could have only been
avoided if the analysis would have parsed branch conditions, and furthermore
have extracted the meaning of the return values of methods like isOpen()

for the object’s typestate. The actual situation is displayed in Figure 7.3: A
File.read() call is enclosed by a check for File.isOpen(). While in real
execution, the file will only be read if it is really opened, jFTA will ignore the
branch condition and also analyse the read if f could only be closed in this
situation. While this feature is considered important future work, we currently
rely on the programmer to use the typestate directive-mechanism to encode this
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[FAIL]Testclass@509, call stack [params_interproc_err]:
Error transition on variable defined in line 507:
[!isOpen] --close()-> [ex]

Methods safely enabling the wanted method: [open()]
Methods not changing state: [isOpen()]

[WARN]Testclass@396, call stack [controlflow_File_err]:
Error transition on PHI 191:
[!isOpen, isOpen] --read()-> [ex, isOpen]

Methods not changing state: [isOpen()]
Use Typestate.ignore(..) to ignore these states: [!isOpen]

Figure 7.4: Example fixing suggestions for a must- and a may-violation.

information into the program code. The last false positive occurred due to the
path-insensitive treatment of a NEW instruction in a loop which we discussed in
Section 5.6.

Apart from these exceptions, the handling of basic Java language features
worked well. As mentioned in Section 6.3, exceptions were not supported due
to problems with jFirm, so we could not test them. However, by using nested
loops and conditionals which are exited from multiple levels by continue and
break commands, we also tested jFTA on non-trivial control flow examples.

Our fix-suggestion algorithm coped very well with this simple setup. For
each must-violation, it found and suggested methods which, if called before
the disabled method, would have avoided the violation. This was not possible
in the case of may-violations because our File specification did not contain a
suitable method. Therefore, it suggested ignoring the state performing the error
transition as a last resort via the typestate directive mechanism. Examples for
both cases are given in Figure 7.4.

7.3 Case study: Usage of IMAPProtocol in Columba

Because of their different structure, we discuss the results for IMAPServer and
IMAPProtocolTest separately.

7.3.1 IMAPProtocolTest

The results of the analysis runs are given in Table 7.4. The used topPolicy
did not have any effect as each test case method created its own instance of
the protocol object. Therefore, no > states needed to be resolved. The effect
of the unknownPolicy was only marginal because the test methods only used
methods which were also contained in the specification. There were only three
situations in which this was not the case: The specification has a state with two
non-deterministically chosen successor states (see Figure 7.5), expressing the
fact that the user might be asked to provide authentication credentials or not
when logging in. As there were test cases for both situations, the first operation
in each of these cases failed for the state representing just the opposite situation.

The other 60 may-violations were reported for method invocations which
were actually valid according to the API. As IMAPProtocol relies on network
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Policy settings depth = 0 depth = 5
top unknown must may must may

allStates error 0 63 0 63
allStates ignore 0 60 0 60
firstOk error 0 63 0 63
firstOk ignore 0 60 0 60

Table 7.4: Reported violations for IMAPProtocolTest for different parameters
and depth ∈ {0, 5}. No must-violations were found, and all may-
violations occurred due to ambiguous transitions in the specification.
The analysis depth did not have any impact on the results as the test
case methods did not call each other.

NOT_CONN

AUTH

openPort()

NO_AUTH

openPort()

...

start

<init>(Str;I)

login(Str;[C)

capability()

...
noop()

Figure 7.5: Non-deterministic case distinction because the client is not neces-
sarily asked for credentials when connecting to a server. So after
establishing the connection, the analysis must assume that the pro-
tocol is in NO AUTH and AUTH at the same time. Depending on
which situation the test case targets, one of the states will perform
an error transition. As the specification does not explicitly model all
invalid invocations, those are only discovered if the unknownPolicy
is set to error. For completeness, the full state automaton is given
in Appendix B.

communication, we found that many methods can unexpectedly throw excep-
tions (e.g. time-out, connection loss). From the typestate perspective, these
exceptions could simply be ignored as they do not indicate a program flaw.
Instead, it is important to know in which state the protocol will be when an
operation fails, such that the analysis can also determine if the error handling
in the application deals with this situation correctly.

This unveils the severity of the missing exception handling in jFTA as well
as an interface problem concerning the automatically mined specification. Cur-
rently, the mined specification contains a transition to the error state as soon as
a method invocation could result in an exception being thrown, including those

50



Policy settings depth = 0 depth = 5
top unknown must may must may

allStates error 17 33 243 52
allStates ignore 0 40 (87) 0 (60) 147
firstOk error 17 5 243 5
firstOk ignore 0 3 (87) 0 (12) 99

Table 7.5: Reported violations for IMAPServer for different parameters and
depth ∈ {0, 5}. Numbers in parentheses are given where manually
removing two unreachable states from the specification changed the
analysis results.

of the kind we just discussed. As a result, some methods in the specification
also non-deterministically go to the error state. With the current limitations
in jFTA and jFirm, there is no way to circumvent this issue except for per-
haps completely ignoring certain kinds of exceptions in the specification. Once
exceptions are supported, they could be indicated as extra transitions labeled
with their name which can then be handled appropriately.

The remaining few may-violations were either caused by other ambiguities
in or limitations of the specification. As an example, it is not possible to open
another IMAP-folder after the previous one was closed according to the given
specification, although the IMAP protocol allows it [IMA].

7.3.2 IMAPServer

As mentioned before, this class keeps one instance of the protocol in a member
field which is used in all its methods. When starting the analysis of a method,
the field’s contents are unknown and therefore in state >IMAPProtocol. As a result
of this, the chosen topPolicy had a noticeable impact on the results because it
heavily reduced the amount of reported may-violations, as shown in Table 7.5.
The effect of unknownPolicy was very strong in this test case, as IMAPServer
uses many methods which are not contained in the specification. Therefore,
using the error policy lead to a lot of must-violations. Most violations also
occurred for the same reasons as for IMAPProtocolTest.

Surprisingly, setting unknownPolicy to ignore caused all must-violations
to vanish in the beginning. By examining the results we found two isolated
states in the specification which also had no outgoing edges. In combination
with our >-state handling, those two states were always added to state set
of the field containing the protocol instance because they could never perform
an error transition with the chosen topPolicy. Therefore, the state set always
contained at least these two “valid” states after any transition (note that this
did not affect the testing of IMAPProtocolTest because no > handling was
necessary there). When we manually removed the two states, a lot of must-
violations were found in the runs with higher depth (values in parentheses in
Table 7.5). They were false positives as well and occurred because every method
– to ensure that the connection is working – first calls another method which
connects the protocol if it not already done so. Obviously, this is done by a lot
of dynamic checks at runtime which the analysis does not detect. Therefore,
from the analysis’ perspective the connected protocol always connected for a
second time, resulting in a must-violation.
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7.4 Discussion

From the runtime measurements, we can see that the runtime increases drasti-
cally with the analysis depth. While the classes under test were not tiny, they
only represented a fraction of the size most projects reach during their devel-
opment time. Bearing in mind our idea of constant program checking during
development, the maximum depth should probably not exceed 1 or 2. Even if
the analysis is not run after each compilation, depths of 4 or higher will most
likely be too slow. Though the current implementation still has some potential
for improvement, this will probably not outweigh the runtime effect of correctly
handling dynamic type information, as discussed in Section 6.3.1. For the de-
sired field of application, the analysis will therefore most likely need to stay
nearly intraprocedural.

The memory usage, though still bearable, seems to be already pretty high.
However, jFTA still has a lot of potential to improve on this aspect. In its current
state, it saves a lot of unusable data, because it explicitly keeps information
about types for which there is no specification available. Without specification,
the analysis could never detect any problems for these types and might as well
ignore them. When there is only information for a small subset of the used
types, this might have a strong effect both on memory usage and runtime.
Optimizations like this are considered important future work.

While the analysis results in the optimized, small setting with handmade
and simple specification seem to be very promising, the case study on parts of
Columba showed that jFTA’s limitations are severe and make the results prac-
tically unusable in complex situations. On the other hand, the IMAPProtocol-
class may just be too complex at this early stage (988 LoC, 74 methods). Candi-
dates for the future might be classes implementing the java.util.Collections
interface (e.g. lists and queues) for they are likely to be less complex as they
do not rely on I/O. In addition, the code base on which jFTA could be tested
would be large because of the widespread usage of these classes.

Due to time reasons, we did not have any specification for other types and
therefore could not inspect more real-world examples. The expressiveness of our
evaluation therefore is very limited. Nevertheless, some problems in both the
implementation as well as the general concept became apparent: While the im-
plementation suffers from the inability to handle exceptions and dynamic type
information, the concept of using FSA which are only labeled with (unnamed)
states and method signatures is insufficient as soon as transitions become non-
deterministic. In addition, the errors in the automatically mined specification
made it clear that even slight incompleteness and/or non-determinism can flood
the results with false positives. We can only say little about the general suit-
ability of mined specification from this single example. The fact that some
parts of it were malformed (isolated states) probably only exhibits bugs in
ADABU and does not unveil a conceptional problem of the mining process.
As IMAPProtocol holds references to input-/output streams and a socket, its
specification was affected by the combination of strong abstraction and non-
recursive state definition, as discussed in Section 4.3.1. We suppose that a more
detailed representation of the states would have reduced the non-determinism
contained in the specification, and thus probably reduced the number of false
positives.
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8 Conclusion

We presented jFTA, a new typestate analysis for Java which uses the inter-
mediate language jFirm as representation language for the analysed programs
and compares their behaviour against automatically mined specification. As
the main components on which we built jFTA are still in the earlier stages
of development, we could only achieve usable results on very small, restricted
and artificial test programs. For real-world test subjects, speed and especially
the precision of the analysis are unsatisfactory in the current state. We expect
future work to greatly improve on the precision, surely at the cost of speed
and memory. This cannot be avoided due to the immense complexity of the
(unsolvable) problem for which we aim to find an approximative solution.

8.1 Performance

Our primary goal was to build a fast typestate analyser suitable for constant
background execution during development. Therefore, unlike most other type-
state analysis implementations, we accepted unsoundness and unsafe assump-
tions in exchange of achieving higher speed (e.g. ignoring violations occurring
when > typestates are encountered). Also, we provide a set of parameters with
which the precision of the analysis can be configured, the most important one
being the maximal call stack depth allowed during analysis. Depending on the
setting, the analysis is performed intra- or interprocedurally. In the current
state, the increase of runtime due to higher depth is nearly unpredictable, as it
not only depends on the size of the call graph for the classes under inspection,
but is also influenced by the effectiveness of our node-scheduling algorithm (cf.
Section 6.2.3). Method-based results caching, as discussed in Section 6.2.1, could
perhaps decrease the impact of higher analysis depth, but efficiently building
such a cache is probably a very complex task itself.

So for our targeted application area, jFTA should probably be only used
with a very low level of interprocedurality and the least restrictive parameter
combination (depth ≤ 1, topPolicy = firstOk, unknownPolicy = ignore). Our
evaluation showed that here the runtime is acceptable even for larger classes,
and it – on very rough average – increases linearly to the LoC of a class. On the
other hand, the analysis is basically intraprocedural then and thus concentrates
only on violations with high locality. We could not perform any case studies to
investigate whether errors based on typestate violations are usually local to a
method or spread across the whole program. Therefore, we are unsure if this
limitation is significant or not.

From our efforts so far, we draw the conclusion that we will likely not be
able to constantly perform nearly interprocedural analysis in the background.
However, (nearly) intraprocedural analysis seems to be possible already, and
future work will hopefully increase the level to which we can at least approximate
interprocedural analysis.

8.2 Design decisions

The choice of jFirm as an intermediate language turned out to be very suitable
for our problem. Explicit dependency graphs provide a lot of simplifications
and invariants, which enabled us to clearly structure our analysis algorithm
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and keep the amount of special cases low. The used version is very fast and
does not add much overhead to our application. On the downside, the fact
that it was in the very early stages of development when we started our work
has proven to sometimes be obstructive. jFirm however noticeably matured
over time and we gave constant feedback about bugs and missing functionality.
Unfortunately, some interesting features like exceptions were not implemented
in time, but on the other hand, we are not sure if this could have then been
correctly implemented on our side with the very limited time given for this work.

Using jPTS to resolve points-to information also worked very well, and we
could almost seamlessly integrate it into our program. As development of jPTS
started at the same time as jFTA, its results were weak in the beginning but im-
proved a lot over time as well. The situation also proved to be a major advantage
for both tools, as communication interfaces for both programs were designed in
concert with the authors of jPTS. Using jFirm as a shared basis made any kind
of translation unnecessary and allowed for very precise description of points-to
information. In addition, it enabled us to use the same method graphs for both
programs, basically halving the initialisation time and memory requirements of
the program representation for each part. This will be especially useful when
dynamic type information will be handled, as the whole type hierarchy is then
only built once and can be shared as well. Lastly, jPTS is demand-driven and
will for example support multi-threading in the future, which further supports
our speed-requirements.

8.3 Suitability of automatically mined specification

We did not investigate the preparatory steps needed to build specification, but
only concentrated on the expected results of this process. The one example
we worked with showed that the mining can deliver mostly correct models but
it suffers from over-approximation. The results are not universally valid as
we only had one example for the investigation, but they suggest that some
improvement on the model detail could be necessary to reduce the amount of
non-deterministic transitions and the problems they cause. Apart from this,
the experiments suggest that for less complex types, the level of detail of the
generated models is probably sufficient.

8.4 Future work

Ongoing work on jFTA will primarily focus on implementing important missing
functionality, though some of it will have to wait for support from jFirm and
jPTS.

Exception handling should be addressed next because it allows for more de-
tailed type specification as mentioned in Section 7.3.1.

Dynamic state check detection will help to reduce the amount of impossi-
ble program execution paths that are needlessly taken by jFTA. We expect
this to prevent a lot of false positives showing up in the results, and prob-
ably also provide a noticeable speed gain due to reduced analysis space
which is to be explored.
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Dynamic type information As discussed in Section 6.3.1, we currently ig-
nore the type hierarchy and features like inheritance or overwritten meth-
ods completely. The effects of this can be bad, as the analysis could for
example try to analyse the code of an interface instead of the class imple-
menting it.

Result caching techniques Motivated by the results of the evaluation, the
idea of caching analysis results completely or in parts should be recon-
sidered. Although effective caching algorithms might be complex and
therefore expensive in terms of time, it still might pay off especially for
higher analysis depths.

Increasing model detail In Section 4.3.1 we investigated precision problems
stemming from the amount of abstraction performed by ADABU. Dif-
ferent levels of abstraction shall be evaluated in terms of model size vs.
information gain and thus improve the usability of the mined models as
specification.

Integration The Eclipse IDE plug-in, which we have already started imple-
menting, should be finished to get a first idea of how well the analysis can
really integrate into everyday work flow.

In addition, the implementation should be cleaned and optimised to achieve
smaller internal data representations, for example by implementing features like
copy-on-write.
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Firm, an intermediate language for compiler research. Technical
Report 2005-8, 3 2005.

[mrk] The eclipse marker interface. http://www.eclipse.org/
articles/Article-MarkMyWords/mark-my-words.html
as of 22-11-2009.

[NNH04] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles
of Program Analysis. Springer, December 2004.

[OFWB03] Joshua O’Madadhain, Danyel Fisher, Scott White, and Yan-Biao
Boey. The jung (java universal network/graph) framework. Tech-
nical report, University of California, 2003.

56

http://sourceforge.net/projects/columba/
http://sourceforge.net/projects/columba/
http://www.graphviz.org/doc/info/lang.html
http://www.graphviz.org/doc/info/lang.html
http://www.eclipse.org/
http://graphml.graphdrawing.org/
http://graphml.graphdrawing.org/
ftp://ftp.rfc-editor.org/in-notes/rfc3501.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3501.txt
http://www.eclipse.org/articles/Article-Mark My Words/mark-my-words.html
http://www.eclipse.org/articles/Article-Mark My Words/mark-my-words.html


[ris] Ristretto mail api, version 1.0. http://sourceforge.net/
projects/columba/files/Ristretto/ as of 22-11-2009.

[SPS99] Dale Shires, Lori Pollock, and Sara Sprenkle. Program flow graph
construction for static analysis of mpi programs. In Parallel and Dis-
tributed Processing Techniques and Applications, pages 1847–1853,
June 1999.

[SY86] R E Strom and S Yemini. Typestate: A programming language
concept for enhancing software reliability. IEEE Trans. Softw. Eng.,
12(1):157–171, 1986.

[Tar73] Robert Tarjan. Testing flow graph reducibility. In STOC ’73: Pro-
ceedings of the fifth annual ACM symposium on Theory of comput-
ing, pages 96–107, New York, NY, USA, 1973. ACM.

[Tra01] Martin Trapp. Optimierung objektorientierter Programme. Überset-
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Appendices

A Preview: Eclipse integration of jFTA

Figure A.1: A screenshot of an early version of the Eclipse plug-in for jFTA.
So far the usage of the Marker interface [mrk] is very basic, as it
can only annotate the line where the exception occurred. Fixing
suggestions do not make use of QuickFix yet. The images shows
the appearance of an example must- and may-violation.

58



B The IMAPProtocol specification automaton
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close()
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Figure B.1: The specification used for validation of the
org.columba.ristretto.imap.IMAPProtocol type. This
graph was automatically acquired with ADABU and visualised
using DOT [dot].
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