
Mining Object Behavior with ADABU

Valentin Dallmeier · Christian Lindig · Andrzej Wasylkowski · Andreas Zeller
Dept. of Computer Science, Saarland University, Saarbrücken, Germany

{dallmeier, lindig, wasylkowski, zeller}@cs.uni-sb.de

ABSTRACT
To learn what constitutescorrect program behavior, one can start
with normal behavior. We observe actual program executions to
constructstate machinesthat summarize object behavior. These
state machines, calledobject behavior models,capture the rela-
tionships between two kinds of methods:mutators that change
the state (such asadd() ) and inspectorsthat keep the state un-
changed (such asisEmpty() ): “A Vector object initially is
in isEmpty() state; afteradd() , it goes into¬isEmpty()
state”. OurADABU prototype forJAVA has successfully mined
models of undocumented behavior from the AspectJ compiler and
the Columba email client; the models tend to be small and easily
understandable.

1. INTRODUCTION
When some object uses the services of another object, it must sat-
isfy a number of constraints—for instance, it can only invoke public
methods, and it must provide appropriate arguments. Some con-
straints, though, are of atemporalnature: for instance, the method
Vector.add() must be called beforeVector.remove() .

Temporal constraints are often undocumented—but implicit in a
correct interaction between a client and an object. This observation
led several researchers tomine temporal constraints dynamically
from method-call traces; applications include program understand-
ing and error detection (Weimer and Necula, 2005; Whaley et al.,
2002). Mining learnssyntacticallya finite-state automaton whose
transitions are labeled with method names. Such an automaton ap-
proximates all legal method-call sequences and serves as a tempo-
ral specification.

Mined specifications have two major drawbacks: they arelarge,
since learning a minimal automaton isNP-complete (Gold, 1978),
and their states areunlabeled,which makes them hard to under-
stand. In this paper, we address both problems with a newsemantic
mining approach that dynamically captures the effect ofmutator
methodson the observable state of an object. State is observed us-
ing statically identifiedinspector methods. Object behavior mining
leads to small automata with labeled states that express abstractions
provided by inspector methods, which is our main contribution.

isEmpty() ¬isEmpty()

add()

remove()

<init>()

clear()

add()

clear() remove()

Figure 1: An object behavior model for theJAVA Vector class.

Figure 1 shows an example of such anobject behavior model,
describing the behavior of aJAVA Vector object in the execution
of Columba, a modern email client whose implementation com-
prises more than 500 classes (Stich and Dietz, 2005). After con-
struction (<init> ), a Vector object is empty, as indicated by
the inspector methodisEmpty() returning true. After adding el-
ements using theadd method, the state changes to¬isEmpty() .
By removing elements, the state can become empty again.

A model expresses the relationship between mutator and inspec-
tor methods: calling a mutator changes the state of the object as
it is observable through its inspector methods. For instance, a call
to theclear() method always ends up in theisEmpty() state.
A model also expresses which sequences of mutator calls are pos-
sible: an invocation ofremove() in isEmpty() state has not
been observed. Therefore, it is uncommon (and in fact, incorrect) to
invoke remove() right after initialization or a call toclear() .
Like other dynamic analyses, we build on the observation thatcom-
mon behavior is often correct behavior;our models thus are likely
to representuniversal invariants—which gives them a great poten-
tial for documenting and validating program properties.

How do we obtain object behavior models? Our approach takes
the following steps, which are detailed in Section 2:

1. For each class, we statically identify itsinspectors—public
methods that do not change state (such asisEmpty() ).
Any public non-inspector is amutator(such asadd() ).

2. While executing the program, weinvoke all inspectors before
and after each mutatorto retrieve the object’s state—a vector
〈x1, . . . , xn〉 of concrete values. For theVector class, this
is 〈size() , isEmpty() , capacity() 〉.

3. We abstractfrom concrete values by mapping them to small
finite domains such as positive/negative/zero for integers. We
thus obtain a vector of abstracted values like〈size() >
0,¬isEmpty() , capacity() > 0〉 for the state of a
Vector object.



4. Each abstract vector becomes a state which is reached by the
mutator. In theVector class, there are two such states: an
empty state

isEmpty() ∧ size() = 0 ∧ capacity() > 0

and a nonempty state

¬isEmpty() ∧ size() > 0 ∧ capacity() > 0 .

5. The result is afinite state model, such as the one shown in
Figure 1. The transitions occur between (abstract) object
states, summarizing normal object usage.

We have built a prototype calledADABU1 which realizes the above
approach. During a program run (or a set of program runs),ADABU
first obtains a model for each individual object; then, it merges
these models for all objects of a single class. We thus end up with
one model per class, summarizing the normal object usage across
all observed runs.

The remainder of this paper details our notion of object behav-
ior models and how we obtain them (Section 2), discusses models
that we found (Section 3), surveys related work (Section 4), and
concludes with an outlook (Section 5).

2. EXTRACTING MODELS
The process of extracting models from a run consists of two steps:
First, a static analysis identifies all side-effect free methods in the
program. A subset (defined below) of these methods constitutes
the set of inspectors for the program. During the second phase, the
program is executed and inspectors are called to extract information
about an object’s state.

2.1 Inspectors And Mutators
For the purpose of extracting models, we partition the methods of
a class intoinspectorsandmutators. An inspector returns informa-
tion about the state of an object. A method that is to be used as
inspector must meet the following criteria:

• Not Void. We expect inspectors to pass information to the
caller in the returned value, and thus require a return type
other thanvoid .

• No Parameters.An inspector must not take parameters. The
reason for this is that if an inspector takes an argumenta, the
return value may depend not only on the state of the object
itself, but also on the state ofa. This requirement also makes
it much easier to call inspectors at runtime.

• No Side Effects. The execution of an inspector must not
have side-effects on the state of the program. This ensures
that calling an inspector has no impact on the execution of
the program.

The first two criteria can be checked with a straightforward static
analysis, whereas identification of side-effect free methods (also
referred to as purity analysis) requires a static whole-program anal-
ysis as described by Rountev (2004).

ADABU currently uses the purity analysis provided by Salcianu
and Rinard (2005). This analysis classifies a method as pure if
it does not modify objects that existed prior to the invocation of
that method. This definition is precise enough for our purposes
and, at the same time, allows an inspector the creation of temporary

1ADABU Detects All Bad Usages. “Adabu” is also the Swahili
word for “good behavior”.

objects, which may be also returned to the caller. Thus, when we
call an inspector to extract an object’s state, we can be sure that this
has no effects on the program state.

Methods that are not free of side-effects are calledmutator meth-
ods. Invoking a mutator method on an object may change the ob-
ject’s state. Thus, an invocation of a mutator method represents
a transition in an object’s model, whereas inspector methods are
called to extract the state of an object.

2.2 Instrumentation
After static analysis, each method of the program is classified either
as an inspector or as a mutator. This information is used by the
instrumentation to enframe the body of every mutator with code to
extract and store the state of the object.

For instrumentation,ADABU uses theJAVASSIST framework by
Chiba and Nishizawa (2003). Instrumentation occurs before execu-
tion by rewriting theJARfiles of the investigated program. Figure 2
demonstrates instrumentation of theVector class. (We actually
instrument the bytecode of a program; the figure shows the equiva-
lent source code instrumentation.)

public class Vector {
...
public State extractState () {

State s = new State();
s.add("isEmpty", isEmpty());
s.add("size", size());
s.add("capacity", capacity());

}
...
public void add (Object o) {

State pre = extractState() ;
try {

〈body ofadd 〉
} finally {

State post = extractState();
model.addTransition(pre, post, "add");

}
}
...

}

Figure 2: Instrumentation for Vector.add() . The instru-
mentation happens at the byte-code level but for clarity an
equivalent source code instrumentation is shown.

As a first step, a methodextractState() is generated and
added to the class. As implied by its name, this method extracts
the state of an object: it invokes every inspector and stores the re-
sult together with the name of the inspector. For demonstration we
use only three out of nine inspector methods forVector , namely
isEmpty() , size() andcapacity() . The results of these
three inspectors are encapsulated in aState object and returned
by the method.

TheextractState() method is invoked by the code injected
into every mutator method, such asadd() . Methodadd() is a
mutator because it stores its argument in a field ofVector , thus
changing state. Prior to the execution of the original method body,
the state of the vector is extracted by callingextractState()
and the result is stored in a local variable. After the execution of the
method body, the state is extracted again and a transition is added
to the model for this object. The body ofadd() is surrounded
by a try-finally block to capture the state at both regular and
exceptional method exits.



The overhead of instrumentation is neglegible: instrumenting
version 1.1b4 of AspectJ (2382 classes) takes only 177 seconds
and increases the code size from 5.5 to 12 megabytes. We observed
similar values for other applications.

2.3 Model Construction
After instrumentation has finished, we can execute the instrumented
program and learn behavior models.

Concrete states. For an object, we define itsstateas a vector
v = (x1, . . . , xn), where eachxi is the return value of an inspector.

For simplicity, let us assume aJAVA Vector object has just
three inspectorsx1 = isEmpty() , x2 = capacity() , and
x3 = size() . A newVector of capacity 20 might thus have a
statev = (true , 20, 0), reflecting the inspector values.

Traces. A trace for an object becomes a sequence of triplest =ˆ
(v1, m1, v

′
1), (v2, m2, v

′
2), . . .

˜
, where eachvi andv′

i is the state
before and after invocation of a mutatormi.

Here is an example trace of aVector object, including its ini-
tialization:

t =

266666666664

`
(⊥,⊥,⊥) 〈init 〉() , (true , 20, 0)

´
,`

(true , 20, 0), add() , (false , 20, 1)
´
,`

(false , 20, 1), add() , (false , 20, 2)
´
,`

(false , 20, 2), remove() , (false , 20, 1)
´
,`

(false , 20, 1), remove() , (true , 20, 0)
´
,`

(true , 20, 0), add() , (false , 20, 1)
´
,`

(false , 20, 1), clear() , (true , 20, 0)
´
,`

(false , 20, 0), clear() , (false , 20, 0)
´

377777777775
Abstract states. If we used the plain return values for inspectors,
the model would have a very large number of states. As an exam-
ple, consider the inspectorsize() of the Vector class. If the
concrete value ofsize() was used to characterize the state of a
vector, the resulting model would have at least as many states as
the maximum size of the vector. Therefore, we useabstractions
over the return values of inspectorsrather than the concrete values
themselves.

Formally, we use astate abstraction functionnamedabswhich
maps concrete valuesv to abstract statess as follows:

• Concrete numerical valuesxi (of type int , double , etc.),
are mapped to three abstract statesxi < 0, xi = 0, and
xi > 0.

In the Vector example, for instance, the values returned
by thesize() inspector are mapped to two abstract states
“size() = 0” and “size() > 0”.

• Object referencesxi are mapped either to the abstract state
xi = null , or to the abstract statexi instanceOf c for
each classc of the object referenced byxi.

If the Vector from Figure 1 containedFile objects, the
values returned by thefirstElement() inspector would
be mapped to two abstract states “firstElement() =
null ” and “firstElement() instanceOf File ”.

• Enumerations and boolean valuesxi are mapped to one sin-
gleton abstract state for each single value.

In Figure 1, this is how theisEmpty() method induces two
abstract states.

AspectJ Columba

Version 1.1b4 1.0
Classes 2382 1513

mutators (avrg) 7.7 4.1
inspectors (avrg) 8.0 3.2
states (avrg) 11.0 4.1
transitions (avrg) 17.7 5.2

Table 1: Statistics for our subjects and their models.

For theVector trace, above, we would thus obtain three abstract
statess0, s1, s2:

isEmpty() capacity() size()
s0 ⊥ ⊥ ⊥
s1 true > 0 = 0
s2 false > 0 > 0

—that is, the three states of the model in Figure 1.

Models. The abstract states, as determined in the previous step,
form the statess of object behavior models. A transitione =
(s, m, s′) occurs between two statess, s′ and is labeled with a
mutatorm. A transitione is part of the model if and only if the
tracet contains a transition between two concrete statesv andv′

abstracted bym and m′, respectively (formally,∃(v, m, v′) ∈
t · abs(v) = s ∧ abs(v′) = s′ must hold).

For theVector trace, we would obtain seven abstract transi-
tions between the statess0, s1, s2, as described above:

T =

8>>>>>>><>>>>>>>:

(s0, 〈init 〉() , s1),
(s1, add() , s2),
(s2, add() , s2),
(s2, remove() , s2),
(s2, remove() , s1).
(s2, clear() , s1),
(s1, clear() , s1).

9>>>>>>>=>>>>>>>;
—that is, the transitions of the model in Figure 1.

Summarizing models. As a last step, we merge all object models
for all models into a single model that summarizes the behavior of
all instances of a class. Merging automata is easy, because each
state of the automaton is uniquely identified by the object state it
represents. The resulting model consists of the union of all states
and transitions of all observed object behavior models.

3. EXPERIENCES
We have implemented our approach forJAVA programs and used
it to extract models for some classes of theJAVA API, the AspectJ
compiler (Kiczales et al., 2001) and the Columba email client (Stich
and Dietz, 2005). Table 1 provides some statistics for our subjects.

3.1 Overhead
In order to instrument a program for model extraction, we first need
to know which methods we may use as inspectors. Currently, we
use the purity analysis provided by Salcianu and Rinard (2005),
which is the only scalable implementation we are aware of. It is
based on theFLEX compiler infrastructure, which unfortunately
restricts analysis to programs compiled against theGNU Classpath
API 0.08. Besides this limitation, the analysis is sufficiently fast and
produces reliable results. Analyzing version 1.1b4 of the AspectJ



mutex:truemutex:false

<init>() [107]

lock() [717]

release() [719]

lock() [2]
lock!E [1]

Figure 3: An object behavior model for the Mutex class. A
number in square brackets denotes a transition’s frequency.

compiler, for example, takes about 22 minutes. Since the identifi-
cation of inspectors needs to be done only once and prior to mining,
this does not pose a problem.

We have successfully extracted models from about 100 test runs
of AspectJ. UsingADABU , a run of the instrumented version of
AspectJ takes about 5 times longer than the original version. While
we believe that there is still room for optimizations, a large part
of the runtime overhead is unavoidable as we have to extract state
twice for every method invocation in the original program run.

Our second test subject, Columba, is an email client with a graph-
ical frontend. We ran an instrumented version of Columba, browsed
through several folders of anIMAP account, created and deleted
folders, and sent an email using anSMTPserver. As it is difficult to
measure the precise execution time forGUI programs, we can only
report that the instrumented version was sufficiently fast to remain
usable.

3.2 Models
Altogether, we have mined models for 589 classes of AspectJ and
538 classes of Columba. Unfortunately, the purity analysis failed to
analyze parts of Columba. To address this problem, we introduced
artificial inspectors that simply return object attributes.

The bottom of Table 1 summarizes the models we have mined
from our test subjects. The average model has 11 states and 22 tran-
sitions. The largest model, recorded for theAjParser class, has
1500 states and 4975 transitions (each state consists of the values
for more than 50 integer inspectors). As a first example, we already
discussed theVector class in Section 1. In the remainder of this
section we present three more models in detail.

3.3 Mutex
Figure 3 shows an object model for theMutex class implemented
in Columba. A mutex gives a thread exclusive access to a resource.
It is used in Columba to ensure the integrity of data transmitted via
IMAP andSMTP protocols. Internally, the Mutex class uses a flag
namedmutex which is true whenever the resource is locked and
false otherwise. Before a thread may access the shared resource, it
must call thelock() method. If another thread is currently using
the resource,lock() waits until the resource is free and locks it
for the thread. When a thread has finished accessing the resource,
it must callrelease() to release the lock again.

The behavior model has three states. Right after instantiation,
the object is in an undefined state. The first method invoked on the
new instance is the constructor (<init> ). After construction, the
mutex flag is initially set to false. This is reflected in the model
by a transition from starting state to statemutex:false labeled
<init> [107] . The number in square brackets denotes how
often a method caused a transition.

The model reveals that synchronization is almost never needed
since the resource is unlocked. We know this becauselock was
called 717 times when mutex was false, while we observed only

host: java.lang.String
socket: java.net.Socket

state:= PLAIN

host: java.lang.String
socket: null

state:= NOT_CONNECTED

<init>() [1]

openPort() [1]

quit() [1]

ehlo() [1]
mail() [1]
sendCommand() [5]
ensureState() [3]

Figure 4: An object behavior model for SMTPProtocol .

two invocations oflock when mutex was true. We also observe
that the number oflock() andrelease() invocations is equal.
This strongly suggests that the mutex is used correctly throughout
the program. (We cannot say this for sure as the model was learned
from multipleMutex instances.)

There is another mysterious transition: The labellock!E [1]
indicates that one call tolock raised an exception. An investiga-
tion of the source code revealed thatlock throws a runtime ex-
ception when the thread waiting for the lock is interrupted. This
is obviously a flaw in the method design and should be solved by
throwing a meaningful exception or a return code indicating that
acquiring the lock failed.

3.4 SMTPProtocol
Let us now examine the model for theSMTPProtocol class.
This class implements communication with a mail server accord-
ing to theSMTP protocol specification. For the sake of simplicity,
the model shows only the three most important inspectorshost ,
socket , andstate .

After a call to the constructor, the server host is set but no socket
is opened to connect to it. This is indicated by the socket be-
ing null and the attributestate being set to a constant value
NOTCONNECTED. Prior to communicating with the server, the
client must callopenPort() , which causes the socket to be cre-
ated and the state variable to be set toPLAIN . During communica-
tion (e.g.,ehlo , mail ), the automaton remains in this state until
callingquit causes a transition to stateNOTCONNECTED.

A client that uses this class must adhere to this sequence of calls.
As SMTP is not the only protocol used by Columba, there are other
classes implementing protocols which have similar requirements,
but the documentation does not mention them. Assuming that the
models capture correct usage, they do not only reveal these require-
ments but also explain them: It is only through an invocation of
openPort() that the state changes fromNOTCONNECTEDto
PLAIN .

3.5 IMAPProtocol
Columba also supports accessing emails through theIMAP proto-
col, implemented in theIMAPProtocol class. Figure 5 shows
the behavior model for this class. After the call to the constructor,
the protocol is in stateNOTCONNECTEDand theopenPort()
method has to be called to open a connection to the server, just like
in theSMTPmodel.

In order to access data on the server, the client must call the
login() method, causing a transition toAUTHENTICATEDstate.
In this state, the server may be queried for its status and capabili-
ties, but it is not yet possible to access mails on the server. This
requires the selection of a mailbox using theselect() method,
causing a transition to stateSELECTED. Now the protocol can be
used to look for mails, change the folder structure on the server or
log out again.



selectedMailbox: null
socket: null

state:= NOT_CONNECTED

selectedMailbox: null
socket: java.net.Socket

state:= AUTHENTICATED

<init>() [1]

selectedMailbox: null
socket: java.net.Socket

state:= NON_AUTHENTICATED

openPort() [1]

login() [1]

selectedMailbox: java.lang.String
socket: java.net.Socket

state:= SELECTED

logout() [1] select() [1]

status() [1]
capability() [1]
append() [1]

create() [1]
uidSearch() [1]

select() [2]

Figure 5: An object behavior model for IMAPProtocol .

Obviously, the sequenceopenPort() , login() , select()
must be executed on every instance ofIMAPProtocol before any
further email access. Again, this is not documented anywhere in the
source code of columba. The behavior model not only reveals this
requirement, but also helps to understand why it is needed.

All in all, these three examples highlight the expressiveness of
object behavior models: they associate method invocations with
changes to the state of an object. This allows for a better under-
standing of objects than previous models that only considered the
sequence of method invocations.

4. RELATED WORK
Concrete program executions as a source of abstractions have seen
enormous interest in the past years. Our approach was inspired by
concepts introduced by several seminal papers in the area.

Mining Specifications. The concept of learning models from ac-
tual program runs was first explored by Ammons et al. (2002),
applying a probabilisticNFA learner on C traces. Their approach
relies on manual annotations to relate functions to objects (such as
C sockets or X11 selections) and to distinguish object definers from
object users.

To mine a specification like the one in Figure 1 using the work
of Ammons et al., one would have to distinguish mutators and in-
spectors manually. In the set of C functions, one would also have
to identify the one parameter which denotes the actual object being
accessed. Finally, the states would not be associated with inspec-
tors likeisEmpty() , but remain anonymous—as “the state which
is reached after callingadd() ”.

Dynamic Invariants. Dynamic invariants, as conceived by Ernst
et al. (2001), express properties of data that hold at specific mo-
ments during the observed executions. Applied to theVector
class above, Ernst’sDAIKON tool could detect a dynamic invari-
ant this. size > 0 at the end ofadd() , thus modeling the
postcondition ofadd() .

Dynamic invariants, as mined byDAIKON , could be used to char-
acterize states in an automaton, and we may end up in a model
like the one shown in Figure 1; the invariants would also charac-
terize whether a method serves as mutator or inspector. The dif-
ference is that the states would refer to internal attributes such as
this. size . In contrast toDAIKON , we do not check a set of pre-
defined abstractions on internal data, but rather rely on abstractions
as given by public inspectors. In this way, we do not only reflect
the user’s view, but can also express more high-level properties.

Permissive Interfaces. Henzinger et al. (2005) learn finite state
automata that describe legal method call sequences for anAPI. Their
approach is based on repeatedly generating candidate graphs and
checking them against an abstract program representation. Each
state in the candidate graph corresponds to an internal state of an
object.

In contrast to mining object behavior models, their approach
works purely static on aJAVA subset. Henzinger et al. (2005) only
present interfaces learned from 4 classes of theJAVA API. They also
need to manually specify the set of predicates needed to track the
state of an object. In contrast, our approach relies on purity analysis
to identify inspectors and mutators.

Mining Object Interfaces. Whaley et al. (2002) suggest to learn
automata that capture observed sequences of method calls for an
object. These automata are then sliced by the fields each method
accesses during its execution, thus creatingsubmodelsdescribing
call sequences of methods that affect the same attribute of a class.

While we use side-effect free methods to extract the state of an
object, Whaley et al. (2002) ignore them in order to avoid pollution
of the automata. Unlike object behavior models, their automata
do not provide information about the state of the object and thus
cannot relate state transitions to method calls.

State Abstraction. Finding useful abstractions over state is a
challenge in itself. Our approach has been inspired by the work
of Liblit et al. (2005), who characterized runs according to, among
others, functions returning positive, negative, or zero values.

Applied to theVector class, Liblit’s approach could determine
that program failures correlate withisEmpty() being true. Es-
tablishing such correlations is orthogonal to our approach.

Method Call Sequences. In own earlier work (Dallmeier et al.,
2005), we showed thatsequencesof method calls could be used
to characterize sets of executions, thus helping in defect localiza-
tion. In contrast to this earlier work, we now mine full-fledged
finite state automata rather than fixed-length sequences—automata
which have many more potential uses.

Applied to theJAVA Vector class, our earlier approach could
determine that program failures correlate with a sequence of three
method calls〈clear() , isEmpty() , remove() 〉. Establish-
ing such correlations is possible for models as well, and orthogonal
to the work presented in this paper.

5. CONCLUSIONS AND CONSEQUENCES
Object behavior models are finite-state automata that capture the
effect of methods on their object’s state. The key ingredient is the
distinction between mutator and inspector methods. We use muta-
tors to label transitions, as in prior work, and results returned from
inspectors to describe states, which is new. Inspectors are a source
of abstraction provided by the object’s programmer that we are first
to leverage.

A state in an object behavior model has an observable semantic
connection to an object’s memory state. This is unlike a state in a



model learned from a call trace; such a state represents a syntactic
state in the regular structure of the trace. Consequently, object be-
havior models tend to be small while syntactically derived models
need to be trimmed manually to be useful (Ammons et al., 2002).

Mining object behavior models is a hybrid approach: We identify
inspectorsstaticallyto bracket mutator calls inJAVA bytecode with
calls to inspectors. At runtime, wedynamicallycapture the effect
of mutators by calling the inspectors to build the model. This works
for real applications like the Columba email client and is efficient:
We can mine models for the 538 classes in Columba at once, all
while the application is still usable.

Object behavior models seem to be practical, meaningful, and
scalable. However, as with every technique there are also some
risks. The identification of inspector methods critically relies on
purity analysis, a static whole-program analysis. With currently
just one scalable implementation available, we deem that purity
analysis is still in its infancy. Our notion of inspectors demands
them not to take arguments. We have not yet gathered statistics
how widely these are provided by programmers. Furthermore, the
size of our models depends on our abstraction functionabswhich
we apply to values returned by inspectors. We are currently using
a coarse abstraction and it is not clear yet whether this is adequate.
And finally, like all dynamic approaches, we rely on test data to
capture all possible state transitions.

In addition to general issues such as performance or ease of use,
our future work will concentrate on the following topics:

Dynamic checking. In addition to learning models at runtime,
ADABU could also check behavior models dynamically—
thus flagging or even preventing uncommon behavior. This
may be especially interesting for security checkers, such as
malware scanners.

Deep models.Some inspectors return objects. Instead of just us-
ing its class name as a value, we could inspect the returned
object recursively. This would allow to express an object’s
state as the state of its constituents, and lead to models where
states are characterized by tree-structured values.

Error detection. Weimer and Necula (2005) have shown the value
of models for error detection, which we would like to verify
for our models.

Statistical analysis. We hope to gain more insights into the behav-
ior of objects by using more advanced frequency counts. In
particular, we expect statistical information to rank anoma-
lies.

Static analysis. We would like to check programs statically against
mined models and thus find deviations from those, which—
under the assumption that models capture correct behavior—
may point to incorrect usage of anAPI.

All in all, we find that program executions offer a wealth of data
that can be mined for recurring patterns and rules. With object
behavior models, we hope to contribute to the understanding of how
a program behaves, and how to characterize this common behavior.

For future and related work regarding object behavior models, see

http://www.st.cs.uni-sb.de/ample/

Acknowledgments. Silvia Breu provided valuable comments and
helped to improve the presentation of this paper.

References
Glenn Ammons, Rastislav Bodı́k, and Jim Larus. Mining speci-

fications. InConference Record of POPL’02: The 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 4–16, Portland, Oregon, January 16–18, 2002.

Shigeru Chiba and Muga Nishizawa. An easy-to-use toolkit for
efficient java bytecode translators. InProceedings of the 2nd In-
ternational Conference of Generative Programming and Com-
ponent Engineering, pages 364–376, 2003.

Valentin Dallmeier, Christian Lindig, and Andreas Zeller.
Lightweight defect localization for Java. In Andrew Black,
editor,European Conference on Object-Oriented Programming
(ECOOP), pages 528–550, 2005.

Michael D. Ernst, Jake Cockrell, William G. Griswold, and David
Notkin. Dynamically discovering likely program invariants to
support program evolution.IEEE Transactions on Software En-
gineering, 27(2):1–25, February 2001. A previous version ap-
peared inICSE ’99, Proceedings of the 21st International Con-
ference on Software Engineering, pages 213–224, Los Angeles,
CA, USA, May 19–21, 1999.

E. M. Gold. Complexity of automaton identification from given
data.Information and Control, 37:302–320, 1978.

Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Permis-
sive interfaces. InProceedings of the Symposium on the Foun-
dations of Software Enginnering, 2005.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William G. Griswold. An overview of AspectJ. In
Jorgen Lindskov Knudsen, editor,Proceedings of the 15th Euro-
pean Conference on Object-Oriented Programming (ECOOP),
volume 2072 ofLecture Notes in Computer Science, pages 327–
353, 2001.

Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and
Michael I. Jordan. Scalable statistical bug isolation. InProc.
ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 15–26, June 2005.

Atanas Rountev. Precise identification of side-effect-free methods
in java. In Panos Linos, editor,20th IEEE International Confer-
ence on Software Maintenance (ICSM ’04), pages 82–91, 2004.

Alexandru Salcianu and Martin Rinard. Purity and side effect anal-
ysis for java programs. InProceedings of the 6th International
Conference on Verification, Model Checking and Abstract Inter-
pretation, number 3385 in LNCS, pages 199–215, January 2005.

Timo Stich and Frederik Dietz. Columba. http://
columbamail.org/ , 2005. Open-source email client, im-
plemented in Java.

Westley Weimer and George C. Necula. Mining temporal specifi-
cations for error detection. In Nicolas Halbwachs and Lenore D.
Zuck, editors,Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2005), pages 461–476, Edinburgh,
UK, April 4–8 2005.

John Whaley, Michael Martin, and Monica Lam. Automatic ex-
traction of object-oriented component interfaces. In Phyllis G.
Frankl, editor,Proceedings of the ACM SIGSOFT 2002 Interna-
tional Symposium on Software Testing and Analysis (ISSTA-02),
volume 27(4) ofSOFTWARE ENGINEERING NOTES, pages
221–231, New York, July 22–24 2002. ACM Press.


