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ABSTRACT
AMPLE locates likely failure-causing classes by comparing
method call sequences of passing and failing runs. A differ-
ence in method call sequences, such as multiple deallocation
of the same resource, is likely to point to the erroneous class.
In this paper, we describe the implementation of AMPLE as
well as its evaluation.

1. INTRODUCTION
One of the most lightweight methods to locate a failure-
causing defect is to compare the coverage of passing and
failing program runs: A method executed only in failing
runs, but never in passing runs, is correlated with failure
and thus likely to point to the defect. Some failures, though,
come to be only through a sequence of method calls, tied to
a specific object. For instance, a failure may occur because
some API is used in a specific way, which is not found in
passing runs.

To detect such failure-correlated call sequences, we have de-
veloped AMPLE1, a plugin for the development environment
Eclipse that helps the programmer to locate failure causes
in Java programs. AMPLE works by comparing the method
call sequences of passing JUnit test cases with the sequences
found in the failing test (Dallmeier et al., 2005). As a re-
sult, AMPLE presents a class ranking with those classes at
the top that are likely to be responsible for the failure. A
programmer looking for the bug thus is advised to inspect
classes in the presented order.

Figure 1 presents a programmer’s view of AMPLE as a plu-
gin for Eclispe. The programmer is working on the source
code for the AspectJ compiler for which a JUnit test case
has failed, as was reported in AspectJ bug report #30168.
AMPLE instruments the classes of AspectJ on the byte-code
level and runs the failing test for observation again, as well
a passing test case. As a result, it presents a class ranking
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Figure 1: The AMPLE plugin in Eclipse: based on
one passing and one failing JUnit test case, AM-

PLE presents a class ranking in the view Deviat-
ing Classes. High-ranking classes are suspect be-
cause their behavior deviated substantially between
passing and failing runs. The AspectJ bug #30168
shown was fixed in the class at position #10, out of
2,929 classes. Our improved ranking algorithm now
places the class at position #6.

in view Deviating Classes; each class is associated with a
weight—its likeliness to be responsible for the failure. The
actual bug was fixed in class ThisJoinPointVisitor, ranked
at position 6, out of 997 classes.

While such anecdotal evidence for the predictive power of
AMPLE is nice, we had to evaluate AMPLE in a more system-
atic way. In this paper, we briefly describe the implementa-
tion of AMPLE (Section 2), before discussing its evaluation
(Section 3) as well as related work (Section 4). In Section 5,
we describe our experiences from the evaluation, and make



suggestions for future similar evaluations.

2. AMPLE IN A NUTSHELL
AMPLE works on a hypothesis first stated by Reps et al.
(1997) and later confirmed by Harrold et al. (1998): faults
correlate with differences in traces between a correct and a
faulty run. A trace is a sequence of actions observed over
the lifetime of a program. AMPLE traces the control flow
of a class by observing the calls invoked from within its
methods. To rank classes, AMPLE compares the method
call sequences from multiple passing runs and one failing
run. Those classes that call substantially different methods
in the failing run than in a passing run are suspect. These
are ranked higher than classes that behave similarly in both
runs.

AMPLE captures for each object the sequence of methods
it calls. To gather such a trace, it instruments the program
on the byte-code level using BCEL (Dahm, 1999). However,
capturing the trace of calls for every object in a program is
unfeasable for a number of reasons: the amount of trace data
would lead to a high runtime overhead (Reiss and Renieris,
2001). While objects initiate calls they have no source-code
representation, only classes do. We therefore rather need
a characterization for classes. And finally, the differences
between traces need to be qualified, just comparing traces
for equality would be too coarse.

AMPLE’s solution to these issues are call-sequence sets. A
call-sequence set contains short sequences of consecutive calls
initiated by an object. A call-sequence set is computed from
a trace by sliding a window over it: given a string of calls
S = 〈m1, . . . , mn〉 and a window width k, the call-sequence
set P (S, k) holds the k-long substrings of S: P (S, k) = {w |
w is a substring of S ∧ |w| = k}. For example, consider a
window of size k = 2 slid over S and the resulting set of
sequences P (S, 2):

S = 〈abcabcdc〉 P (S, 2) = {ab, bc, ca, cd, dc}

Call-sequence sets have many advantages over traces: (1)
they are compact because a trace typically contains the
same substring many times; (2) call-sequence sets can be
aggregated: we obtain a characterization of a class by ag-
gregating the call-sequence sets of its objects; and (3), call-
sequence sets are meaningful to compare, in particular the
call-sequence sets from different runs of the same class.

To find classes whose behavior differs between passing and
failing runs, AMPLE computes a call-sequence set for each
class in the failing and passing runs. Looking at all call
sequences observed for a class, it finds some call sequences
common to all runs, some that occurred only in passing
runs, and others that occurred only in failing runs. Each
call sequence is weighted such that sequences that occur in
the failing run, but never or seldom in passing runs, are
assigned a larger weight than common call sequences.

Given these weights for sequences, a class is characterized by
its average call-sequence weight. Classes with a high average
sequence weight exhibit many call sequences only present
in the failing run, and thus are prime suspects. As a re-
sult, classes are ranked by decreasing average call-sequence
weight, as shown in Figure 1.

Version Classes LOC Faults Tests Drivers

1 16 4334 7 214 79
2 19 5806 7 214 74
3 21 7185 10 216 76
5 23 7646 9 216 76

total 24971 33

Table 1: Four versions of NanoXML, the subject of
our controlled experiment.

Call-sequences sets can be computed directly, without cap-
turing a trace first. The resulting runtime and memory over-
head varies widely, depending on the number of objects that
a program instantiates. We measured for the SPEC bench-
mark (SPEC, 1998) a typical runtime-overhead factor of 10
to 20, as well as a memory-overhead factor of two. While this
may sound prohibitive, it is comparable to the overhead of
a simpler coverage analysis with JCoverage (Morgan, 2004).
We also believe that statistical sampling, as proposed by Li-
blit et al. (2003), can reduce the overhead for programs that
instantiate many objects.

3. EVALUATION
For the systematic evaluation of AMPLE, we picked Nano-
XML as our test subject. NanoXML is a small, non-valida-
ting XML parser implemented in Java that Do et al. (2004)
have pre-packed as a test subject. It is intended for the eval-
uation of testing methods and can be obtained2 by other
researchers directly from Do and others, which ensures re-
producibility and comparability of our results.

The package provided by Do et al. includes the source code
of five development versions, each comprising between 16
and 22 classes (Table 1). Part of the package are 33 defects
that may be individually activated in the NanoXML source
code. These defects were either found during the develop-
ment of NanoXML, or seeded by Do and others.

The NanoXML package also contains over 200 test cases. Re-
lated test cases are grouped by test drivers, of which there
are about 75. Test cases and defects are related by a fault
matrix, which is also provided. The fault matrix indicates
for any test, which of the defects it uncovers. Because de-
velopment version 4 lacked a fault matrix, we could only use
the other four versions listed in Table 1 for the evaluation
of AMPLE.

3.1 Experimental Setup
The main question for our evaluation was: How well does
AMPLE locate the defect that caused a given failure? To
model this situation, we selected test cases from NanoXML

that met all of the following conditions:

• We let AMPLE analyze a version of NanoXML with one
known defect, which manifests itself in a faulty class.

• As failing run, we used a test case that uncovered the
known defect.

2from http://csce.unl.edu/~galileo/sir/



• As passing runs, we selected all test cases that did not
uncover the known defect.

• All test cases for passing and failing runs must belong
to the same driver. This limits the number of pass-
ing runs to those that are semantically related to the
failing run.

Altogether, we found 386 such situations, which therefore
lead to 386 class rankings. Each ranking included one class
with a known defect.

Note that AMPLE also works for test cases whose failure is
caused by a combination of bugs or bugs whose fix involves
more than one class. However, we did not evaluate these
settings.

3.2 Evaluation Results
To evaluate a class ranking, we consider a ranking as advice
for the programmer to inspect classes in the presented or-
der until she finds the faulty class. In the experiment, the
position of the known faulty class reflects the quality of the
ranking: the higher the faulty class is ranked, the better
the ranking. More precisely, we took the search length as
the measure of quality: the number of classes atop of the
faulty class in the ranking. This is the number of classes a
programmer must inspect before she finds the faulty class.

Table 2 shows the average search length values over 386
rankings for various window sizes k. The numbers in row
Object present the search length computed from sequence
sets as discussed in Section 2. For example, with a window
size k = 7, a programmer would have to inspect 1.98 classes
in vain before finding the faulty class.

The numbers in row Class stem from an alternative way
to compute sequence sets: rather than computing sequence
sets per object and joining them into one sequence set per
class, one sequence set per class is computed directly. This
should be problematic for threaded programs (which Nano-
XML isn’t)—details can be found in Dallmeier et al. (2005).

3.3 Discussion
A comparison with random guessing provides a partial an-
swer for how good the numbers in Table 2 are. On average, a
test run of NanoXML utilizes 19.45 classes, from which 10.56
are actually executed. Without any tool support or prior
knowledge, a programmer on average would have to inspect
half of these before finding the faulty class. This translates
into a search length of (10.56−1)/2 = 4.78 when considering
only executed classes, or 9.22 when considering all classes.
All observed search lengths are better than random guess-
ing, even under the assumption that the programmer could
exclude non-executed classes (which is unlikely without tool
support). Hence, AMPLE’s recommendations are useful.

The search length in Table 2 is minimal for window sizes
around 4 and 5. We have not analyzed this in detail but find
the following plausible: larger window sizes in general pro-
vide more useful context than smaller window sizes, which
leads to smaller search lengths. But large window sizes re-
quire objects to be long-lived in order to fill the window.
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Figure 2: Distribution of search length for Nano-
XML. Using a window size of 7, the defective class is
pinpointed (search length 0) in 38% of all test runs.

With larger window sizes fewer such objects exist, leading
to a higher search length. These two opposing forces seem
to balance out for window sizes around 4 and 5.

For the average search length to be meaningful, the search
length must be distributed normally. Since we could not
be sure of this, we examined the actual distribution of the
search length. Figure 2 shows the distribution for selected
window sizes and confirms the usefulness of AMPLE: with a
search length of 2, the faulty class can be found in 50% to
60% of all cases, and in 38% of all cases for k = 7, the faulty
class is right at the top of the ranking.

Does AMPLE perform better than existing techniques? This
question is much harder to answer because the technique
closest to ours works on the level of statements, rather than
classes: defect localization based on coverage in Tarantula
compares the statement coverage of passing and failing runs
(Jones et al., 2002). Statements executed more often in
failing runs than in passing runs are more likely to have
caused a failure. While this technique also assigns a weight
to source code entities, it does it at a much finer granularity,
which makes a direct comparison infeasible.

We have argued in Dallmeier et al. (2005) by analogy. A
window size of one is equivalent to coverage analysis: the
sequence-call set for a window size of k = 1 holds just the ex-
ecuted methods. Since the search length for all call-sequence
sets with a window size k ≥ 2 is smaller, the extra con-
text provided by a larger window is obviously useful. This
suggests that call-sequence sets outperform pure coverage
analysis.

We admit that suggesting entire classes for inspection is
quite coarse-grained. Individual methods could be suggested
for inspection by taking into account not the class, but the
method that invokes a call. This is planned for future work.

3.4 Does it Scale?
While we were satisfied with the results from our systematic
evaluation of NanoXML, we expected critics to find Nano-
XML too small a subject. After all, AMPLE saved us only the
inspection of less than three classes on average, compared
to random guessing. We therefore recently complemented
our evaluation with the AspectJ compiler as another test
subject (Dallmeier, 2005).



Window Size Random Guess

Subject Trace 1 2 3 4 5 6 7 8 9 10 Executed All

NanoXML Object 2.53 2.31 2.19 2.17 2.04 2.00 1.98 2.12 2.15 2.14 4.78 9.22
Class 2.53 2.35 2.22 2.14 2.03 2.04 2.03 2.02 2.22 2.25 4.78 9.22

AspectJ Object 32.4 31.8 30.8 10.2 8.6 23.4 22.6 23.8 24.4 24.0 209 272
Class 32.4 32.2 34.8 12.8 12.4 25.2 24.8 25.2 25.2 25.6 209 272

Table 2: Evaluation of class rankings. A number indicates the average search length: the number of classes
atop of the faulty class in a ranking. The two rightmost columns indicate these numbers for a random ranking
when (1) considering only executed classes, (2) all classes.

Size (LOC)

Bug ID Version Defective Class Class Fix

29691 1.1b4 org.aspectj.weaver.patterns.ReferencePointcut 294 4
29693 1.1b4 org.aspectj.weaver.bcel.BcelShadow 1901 8
30168 1.1b4 org.aspectj.ajdt.internal.compiler.ast.ThisJoinPointVisitor 225 20
43194 1.1.1 org.aspectj.weaver.patterns.ReferencePointcut 299 4
53981 1.1.1 org.aspectj.ajdt.internal.compiler.ast.Proceed 133 19

Table 3: Bugs in AspectJ used for the evaluation of AMPLE.

AspectJ is a compiler implemented in Java and consists in
version 1.1.1 of 979 classes, representing 112,376 lines of
code. Unlike NanoXML, it does not come pre-packed with a
set of defects, and therefore it was not possible to use it in a
systematic evaluation. But its developers have collected bug
reports and provide a source code repository which docu-
ments how bugs were fixed. From these we could reconstruct
passing and failing test cases for the further evaluation of
AMPLE.

In order to obtain results comparable with our evaluation
using NanoXML, we restricted ourself to bugs whose fixes
involved only one Java class; Table 3 shows the 5 bugs that
we found, and Table 2 the observed average search lengths
for window sizes up to 10.

The average search lengths in Table 2 confirm that AM-

PLE scales to large programs and works for real-world bugs.
Again, rankings for a window size of k = 1 perform worse
than wider windows. Compared with random guessing, AM-

PLE saves the programmer the inspection of 177 classes.

4. RELATED WORK
Locating defects that cause a failure is a topic of active re-
search that has proposed methods ranging from simple and
approximative to complex and precise.

Comparing multiple runs. The work closest to ours is
Tarantula by Jones et al. (2002). Like us, they compare
a passing and a failing run for fault localization, albeit at a
finer granularity: Tarantula computes the statement cov-
erage of C programs over several passing and one failing run.
While a direct comparison is difficult, we have argued by
analogy in Section 3.3 that sequence sets as a generalization
of coverage perform better.

Data anomalies. Rather than focusing on diverging con-
trol flow, one may also focus on differing data. Dynamic

invariants, pioneered by Ernst et al. (2001), is a predicate
for a variable’s value that has held for all program runs dur-
ing a training phase. If the predicate is later violated by
a value in another program run this may signal an error.
Learning dynamic invariants takes a huge machine-learning
apparatus; a more lightweight technique for Java was pro-
posed by Hangal and Lam (2002).

Isolating failure causes. To localize defects, one of the
most effective approaches is isolating cause transitions be-
tween variables, as described by Cleve and Zeller (2005).
Again, the basic idea is to compare passing and failing runs,
but in addition, the delta debugging technique generates
and tests additional runs to isolate failure-causing variables
in the program state (Zeller, 2002). Due to the systematic
generation of additional runs, this technique is precise, but
also demanding—in particular, one needs a huge apparatus
to extract and compare program states. In contrast, collect-
ing call sequences is far easier to apply and deploy.

5. CONCLUSIONS AND CONSEQUENCES
Like other defect detection tools, AMPLE can only make
an educated guess about where the defect in question might
be located. At a very fundamental level, this is true for any
kind of defect detection: If we define the defect as the part of
the code that eventually was fixed, no tool can exactly locate
a defect, as this would mean predicting future actions of the
programmer. With AMPLE, we make that guess explicit—
by ranking source code according to the assigned probability.

Such a ranking has the advantage of providing a straight-
forward measure of the tool’s precision. The model behind
the ranking is that there is an ideal programmer who can
spot defects by looking at the code, and thus simply work
her way through the list until the “official” defect is found.
Thus, the smaller the search length, the better the tool.

To demonstrate the advance beyond the state of the art,



the ranking must obviously be better than a random rank-
ing (which we showed for AMPLE), but also be better than
a ranking as established by previously suggested techniques
(which we also showed for AMPLE, but using an analogon
rather than the real tool). This also requires that the test
suites are publicly available, and that the rankings, as ob-
tained by the tools, are fully published. This way, we can
establish a number of benchmarks by which we can compare
existing tools and techniques.

All this comes with a grain of salt: AMPLE starts with a
given failure. Hence, we know that a defect must exist some-
where in the code; the question is where to locate it. Static
analysis tools, in contrast, are geared towards the future,
and help preventing failures rather than curing them. For a
static analysis tool, the central issue is not so much where
a defect is located, but whether a code feature should be
flagged as defect or not.

Nonetheless, ranking is still a way to go here: Rather than
setting a threshold for defects and non-defects, a static anal-
ysis tool could simply assign each piece of code a computed
probability of being defective. If a caller and a callee do
not match, for instance, both could be flagged as potential
defects (although only one needs to be fixed). Again, such
a probability could end in a ranking of locations, which can
be matched against the “official” defects seeded into the test
subject, or against a history of “official” fixes: “If the pro-
grammer examines the 10% of the ranked locations, she will
catch 80% of the defects.” Again, these are figures which
can be compared for multiple defect detection tools.

While developing AMPLE, we found that such benchmarks
help a lot in directing our research—just like test-driven de-
velopment, we established a culture of “benchmark early,
benchmark often”. Comparing against other work is fun
and gives great confidence when defending the results. We
therefore look forward to the emergence of standard bench-
marks which will make this young field of defect detection
rock-solid and fully respected.
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