
Lightweight Bug Localization with AMPLE
— Demo paper —

Valentin Dallmeier Christian Lindig Andreas Zeller
Saarland University

Department of Computer Science
Saarbrücken, Germany

{dallmeier,lindig,zeller}@cs.uni-sb.de

ABSTRACT
AMPLE locates likely failure-causing classes by comparing
method call sequences of passing and failing runs. A differ-
ence in method call sequences, such as multiple deallocation
of the same resource, is likely to point to the erroneous class.
Such sequences can be collected from arbitrary Java pro-
grams at low cost; comparing object-specific sequences pre-
dicts defects better than simply comparing coverage. AM-

PLE comes as a plug-in for the Java IDE Eclipse that is
automatically invoked as soon as a JUnit test fails.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids, Tracing

General Terms
Algorithms, Languages

1. INTRODUCTION
One of the most lightweight methods to locate a failure-

causing defect is to compare the coverage of passing and
failing program runs: A method executed only in failing
runs, but never in passing runs, is correlated with failure
and thus likely to point to the defect. Some failures, though,
come to be only through a sequence of method calls, tied to
a specific object. For instance, a failure may occur because
some API is used in a specific way, which is not found in
passing runs.

To detect such failure-correlated call sequences, we have
developed AMPLE1, a plugin for the development environ-
ment Eclipse that helps the programmer to locate failure
causes in Java programs. AMPLE works by comparing the
method call sequences of passing regression test cases with
the sequences found in the failing test (Dallmeier et al.,

1Analyzing Method Patterns to Locate Errors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AADEBUG’05,September 19–21, 2005, Monterey, California, USA.
Copyright 2005 ACM 1-59593-050-7/05/0009 ...$5.00.

2005). As a result, AMPLE presents a class ranking with
those classes at the top that are likely to be responsible for
the failure. A programmer looking for the bug thus is ad-
vised to inspect classes in the presented order.

Figure 1 on the following page presents AMPLE in action.
The programmer is working with Eclipse on the source code
for the AspectJ compiler; AspectJ is an open-source com-
piler that implements the aspect paradigm for Java. Regres-
sion testing is done within the JUnit framework. Here, the
JUnit view shows two test cases, one of which has passed
and one that has failed, as reported in AspectJ bug report
#30168. By default, AMPLE kicks in automatically as soon
as a test fails, comparing the failing run with all passing
test runs; however, the programmer can also select related
passing tests manually.

To compute its diagnosis, AMPLE instruments these pass-
ing and failing test cases on the bytecode level and runs them
again. Each run computes for each class the sequences of
method calls. Next, AMPLE compares for each class the
call sequences in the failing and in the passing run, and
computes the class ranking shown in the Deviating Classes
view. Classes ranked at the top differed substantially be-
tween their passing and failing runs. In Figure 1, the defect
was fixed in the class at position #10, out of 2,929 classes
in AspectJ from which 542 were actually executed—that is,
AMPLE has automatically pointed the programmer to the
most suspect classes.

The main value of AMPLE is that it easily integrates with
existing workflows: After some JUnit test fails, AMPLE can
be directly invoked to guide the search for the defect. At
the same time, AMPLE is lightweight, meaning that running
it requires no more resources that computing coverage; and
finally, it brings a higher precision than simply comparing
coverage. In this paper, we briefly describe how AMPLE

works, and then give an overview of our demonstration.

2. HOW AMPLE WORKS
AMPLE works on a hypothesis first stated by Reps et al.

(1997) and later confirmed by Harrold et al. (1998): faults
correlate with differences in traces between a correct and a
faulty run. A trace is a sequence of actions observed over
the lifetime of a program. AMPLE traces the control flow
of classes by observing what methods their objects call. To
rank classes, it compares the method call sequences from
multiple passing runs and one failing run. Those classes
that call substantially different methods in the failing run

Weight of class. A
heavy class in a
failing test initiates
many calls that are
absent in a passing
test.

JUnit
Regression Tests

Failed JUnit test case
for AMPLE to analyze

Classes AMPLE
considers suspects
for the failure,
ranked by weight.

Figure 1: The AMPLE plugin in Eclipse while working on the source code for AspectJ. Based on one passing
and one failing JUnit regression test, AMPLE presents a class ranking in the view Deviating Classes. High-
ranking classes are suspect because their behavior deviated substantially between passing and failing runs.
The AspectJ bug #30168 shown was fixed in the class at position #10, out of 2,929 classes.

than in a passing run are suspect. These are ranked higher
than classes that behave similarly in both runs.

Comparing the behavior of classes using method calls is
not as straight-forward as may seem. In our work, we have
met the following challenges:

1. Method calls are issued by objects, while we would like
to rank classes. While a class represents the implemen-
tation of objects, it is not active at run time. We thus
have to abstract from the calls initiated by objects to
the behavior of their class.

2. An application may initiate many calls. An uncom-
pressed trace of these is unmanageable and leads to an
unacceptable overhead (Reiss and Renieris, 2001). We
thus need a more abstract representation of traces.

3. A trace is just a sequence of calls. Two traces become
already different when a trace contains one additional
call:

X = 〈aabcacdeda〉
Y = 〈aabca deda〉

Trace X and Y are the same, except for one missing
call in trace Y . Just calling them different would be
too coarse, hence we need a method to quantify the
difference.

Our solution to these issues are call-sequence sets. A call-
sequence set contains short sequences of consecutive calls
initiated by an object; it is a much more compact represen-
tation than a trace. Because of their set nature, sequence
sets for objects may be aggregated into one sequence set per
class, which then characterizes the class’ behavior. Also,
because of their set nature, sequence sets are meaningful to
compare across several runs of the same class.

2.1 Computing Call-Sequence Sets
Let’s suppose for a moment that we already have a method

to obtain for each object the trace of methods it invokes.
Such a raw trace is a long sequence of calls, where each call
is characterized by its class, name, and signature (to resolve
overloading).

A call sequence set is obtained by sliding a window over
a raw trace. The contents of the window characterize the
trace, as demonstrated in Figure 2: a window of width two
is slid over a raw trace of an object that calls InputStream

(IS) and OutputStream (OS) objects.
The observed window contents form a set of character-

istic call sequences. Note that the call sequence 〈IS.read,
OS.skip〉 appears twice in the raw trace, but only once in
the call-sequence set.

Formally, a trace S is a string of calls: 〈m1, . . . , mn〉.
When the window is k calls wide, the set P (S, k) of observed
windows are the k-long substrings of S: P (S, k) = {w | w is

IS.mark IS.read OS.skip OS.read IS.read OS.skip
Trace for anObj

Sequence Set
 for anObj

IS.mark IS.read
IS.read OS.skip

OS.skip OS.read
OS.read IS.read

IS.read OS.skip

IS.mark IS.read

IS.read OS.skip

OS.skip OS.read

OS.read IS.read

Figure 2: A raw trace of calls is abstracted to a set of
characteristic call-sequences using a sliding window
of width 2.

a substring of S∧|w| = k}. For example, consider a window
of size k = 2 slid over S and the resulting set of sequences
P (S, 2):

S = 〈abcabcdc〉 P (S, 2) = {ab, bc, ca, cd, dc}

Obviously, different traces may lead to the same set: for
T = 〈abcdcdca〉, we have P (T, 2) = P (S, 2). Hence, going
from a call trace to its call-sequence set entails a loss of
information. The equivalence of traces is controlled by the
window size k, which models the context sensitivity of our
approach: in the above example a window size k > 2 leads
to different sets P (S, k) and P (T, k).

AMPLE lets the programmer control the window size k,
where typical values range between 5 and 10. The window
size is set as a preference and may be changed any time.

The size of a call-sequence set may grow exponentially
in theory: With n distinct methods, up to nk different se-
quences of length k exist. In practice, sequence sets are
small, though, because method calls do not happen ran-
domly. They are part of static code with loops that lead to
similar sequences of calls. This underlying regularity makes
a call-sequence set a useful and compact abstraction—one
could also consider it an invariant of program behavior.

2.2 Aggregating Call-Sequence Sets
Since objects have no source-code representation, only

classes do, we like to rank classes rather than objects. We
therefore need to abstract from one call-sequence set per ob-
ject to one call-sequence set per class. We obtain such a set
by aggregating the sequence sets of all its objects into one.

Just like going from a raw trace to a sequence set entails
some loss of information, so does going from many sequence
sets to one. This is demonstrated by the following call traces
of two objects:

P (〈abcddc〉, 2) = {ab, bc, cd, dd, dc}
P (〈abcaa〉, 2) = {ab, bc, ca, aa}

The union of the two call-sequence sets is {aa, ab, bc, cd, dd,
dc, ca}, and therefore representation of their class. The calls-
sequence set of a hypothetical sequence U = 〈cabcdd〉 is
P (U, 2) = {ca, ab, bc, cd, dd}. As such it is a subset of the
class representation, although it contains call sequences that
we never observed over the lifetime of a single object. Again,
the amount to which this can happen is controlled by the
window size k.

2.3 Ranking Classes
After running a passing and a failing JUnit test case, AM-

PLE has two sequence sets for each class: one from the pass-
ing and one from the failing run. We consider sequences
observed only in the passing or failing run as suspect, and
assign them a higher weight than those that occur in both
runs. Missing or extra sequences (relative to the other run)
are treated symmetrical because either of them could cause
a failure.

Given a class C, let us assume we have a failing run c0 and
a passing run c1 and their associated sequence sets P (c0) and
P (c1), all for some fixed window width k. We assign to a
sequence p that we observed in both runs a weight w(p) = 0,
and to a “new” or “missing” sequence a weight of w(p) = 1.

w(p) =

(
1 if p /∈ P (c0) ∩ P (c1)

0 otherwise

The average weight W (C) of the sequences belonging to
class C now reflects how much the behavior of C differs
between the runs c0 and c1:

W (C) =
1

|PC |
X

p∈PC

w(p) where PC = P (c0) ∪ P (c1)

The AMPLE plugin in Figure 1 shows the average sequence
weight next to each class in view Deviating Classes. Telling
from the average weight of 0.818 in the top-ranking class,
almost all sequences in its failing run were either new or
missing.

AMPLE can take several passing runs into account, not
just one. It lets the user select several passing runs and
uses a slightly more general formula to compute the weight
of sequences. The details can be found in Dallmeier et al.
(2005).

3. EXPERIENCES
We have described our experiences with AMPLE in a sep-

arate paper (Dallmeier et al., 2005). Our experiences can
be summarized as follows:

1. For bytecode instrumentation, we use the Bytecode
Engineering Library (BCEL, Dahm (1999)). This re-
quires just the program’s class file and works with any
Java virtual machine. The instrumentation rate on
a 3 GHz x86/Linux machine is about 100 kilobyte of
class file per second. On-demand instrumentation, to-
gether with small class files, ensures that even large
applications are instrumented within seconds.

2. The runtime overhead of tracing varies widely. A com-
putationally intense application—like a ray tracer—
that instantiates an extreme number of objects, can
be slowed down by a factor of 100 or more. A fac-
tor between 10 and 20 is more typical for applications

that also perform some I/O operations. The mem-
ory overhead is typically below a factor of two, except
for applications that instantiate many (small) objects.
While the runtime overhead may sound prohibitive,
it is comparable to a simpler coverage analysis with
JCoverage (Morgan, 2004).

3. To evaluate our rankings, we studied them in a con-
trolled experiment, with the NanoXML parser as our
main subject. In this experiment, we found that

(a) In NanoXML, the defective class is immediately
identified in 36% of all test runs. On average,
a programmer using our technique must inspect
21% of the executed classes (10% of all classes)
before finding the defect.

(b) Comparing sequences of passing and failing runs
is noticeably better than random rankings. That
is, AMPLE is effective in locating defects.

(c) Comparing sequences of length 2 or greater al-
ways performs better than sequences of length 1.
That is, comparing call sequences is better than
comparing coverage.

4. The window size k controls the sensitivity of AMPLE.
Large window sizes lead to many distinctive sequence
sets. On the other hand, a large window needs to be
filled before it becomes useful. With large values of
k, the number of objects increases that perform fewer
than k calls over their lifetime. We found window sizes
in the range 5 to 10 the most useful and use 5 as a
default.

5. Sequences themselves, as well as the number of se-
quences in sequence sets also increase with k. This
however, was of no practical concern. The applica-
tions in the SPEC JVM 98 (SPEC, 1998), for example,
exhibited several hundred sequences (across all classes,
for k = 5), and the large AspectJ compiler showed sev-
eral thousand sequences.

6. AMPLE captures control flow differences in passing
and failing runs and may fail to pickup algorithmic
errors in a single method. These may become visible
only as a differing data flow. But since control flow
is induced by data flow, many difference in data be-
come finally visible in method call sequences. AMPLE

therefore works best in truly object-oriented programs
where each method represents a small and well-defined
task, and otherwise relies on method calls.

4. RELATED WORK
Automating debugging is a topic of active research that

has proposed methods ranging from simple and approxima-
tive to complex and precise. Typically they exclusively an-
alyze either the control, or the data flow of an application.
Few approaches have matured into tools.

Comparing multiple runs. The work closest to ours is
Tarantula by Jones et al. (2002). Like us, they compare
a passing and a failing run for fault localization, albeit at
a finer granularity: Tarantula computes the statement
coverage of C programs over several passing and one failing
run. A statements executed more often in a failing run than

in passing runs is suspect and colored red in a visualization.
Tarantula is available for the Sparc/Solaris platform.

As the main difference, call sequences take the dynamic
execution context into account. A window size of one leads
to a sequence set that is equivalent to the class’ method cov-
erage. A larger window captures that a call only happened
in the context of the other calls captured in the window.
The different granularities of Tarantula and AMPLE make
it difficult to compare their accuracy and predictive power.
But our experiments (Dallmeier et al., 2005) suggest that
the context provided by sequences lead to better results:
window sizes of k > 1 perform better than those with k = 1.

Data anomalies. Rather than focusing on diverging con-
trol flow, one may also focus on differing data. Dynamic in-
variants, pioneered by Ernst et al. (2001), is a predicate for
a variable’s value that has held for all program runs during
a training phase. If the predicate is later violated by a value
in another program run this may signal an error. Learning
dynamic invariants takes a huge machine-learning apparatus
and is far from lightweight both in time and space. Dynamic
invariants can be detected with Daikon (Ernst et al., 2001)
for Java, Perl, and C. A related lightweight technique for
Java was proposed by Hangal and Lam (2002).

Trace-based Debugging. When a trace for an entire
program run is recorded literally, it can be used to re-exam-
ine a program run interactively after the fact. This idea is
implemented in the Omniscient Debugger by Lewis (2003)
for Java. It gives the user the ability to “travel back in time”
to find an event that lead to an error. Unlike with AMPLE,
this requires manual inspection of events.

Isolating failure causes. To localize defects, one of the
most effective approaches is isolating cause transitions be-
tween variables, as described by Cleve and Zeller (2005).
Again, the basic idea is to compare passing and failing runs,
but in addition, the delta debugging technique generates
and tests additional runs to isolate failure-causing variables
in the program state (Zeller, 2002). Due to the systematic
generation of additional runs, this technique is precise, but
also demanding—in particular, one needs means to extract
and compare program states. In contrast, collecting call se-
quences is far easier to apply and deploy. Delta debugging
and isolation of cause transition are available as a web ser-
vice2 for C programs on Linux.

5. OUR DEMO
Our demo of AMPLE will be organized as follows:

1. Introduction We give a brief motivation to the topic
and discuss the state of the art (Section 4).

2. How AMPLE works Using an ongoing example, we
show how AMPLE collects and aggregates method call
sequences, and how AMPLE ranks the suspect classes.
This will give just the general idea; people interested
in precise definitions can look at the paper.

3. Actual demo We run AMPLE on a real-world program
(such as the AspectJ unit test in Figure 1), and show
how AMPLE presents the ranking of suspect classes.

4. Experiences Generalizing from the demo, we present
our experiences, as summarized in Section 3.

2http://www.askigor.org/

5. Discussion. We close with a general discussion of the
approach and a number of open issues to spark discus-
sion with and within the audience.

At the time of the workshop, we plan to make AMPLE

freely available for download, such that interested researchers
and programmers can try out AMPLE for their own projects.
All material related to AMPLE can be found at the project
page:

http://www.st.cs.uni-sb.de/ample/

Acknowledgements Tom Zimmermann and anonymous
reviewers provided valuable comments on earlier revisions
of this paper.

References
Holger Cleve and Andreas Zeller. Locating causes of pro-

gram failures. In Proc. 27th International Conference
of Software Engineering (ICSE 2005), pages 342–351,
St. Louis, Missoury, USA, May 2005. ACM Press.

Markus Dahm. Byte code engineering with the JavaClass
API. Technical Report B-17-98, Freie Universität Berlin,
Institut für Informatik, Berlin, Germany, July 07 1999.
URL http://www.inf.fu-berlin.de/~dahm/JavaClass/

ftp/report.ps.gz.

Valentin Dallmeier, Christian Lindig, and Andreas Zeller.
Lightweight defect localization for Java. In Andrew Black,
editor, European Conference on Object-Oriented Program-
ming (ECOOP), 2005. To appear. A preliminary version
can be found at http://www.st.cs.uni-sb.de/papers/

dlz2004/.

Michael D. Ernst, Jake Cockrell, William G. Griswold, and
David Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE Transac-
tions on Software Engineering, 27(2):1–25, February 2001.
A previous version appeared in ICSE ’99, Proceedings of
the 21st International Conference on Software Engineer-
ing, pages 213–224, Los Angeles, CA, USA, May 19–21,
1999.

Sudheendra Hangal and Monica S. Lam. Tracking down soft-
ware bugs using automatic anomaly detection. In Proceed-
ings of the 24th International Conference on Software En-
gineering (ICSE-02), pages 291–301, New York, May 19–
25 2002. ACM Press.

Mary Jean Harrold, Gregg Rothermel, Rui Wu, and Liu Yi.
An empirical investigation of program spectra. In ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering (PASTE’98), ACM SIG-
PLAN Notices, pages 83–90, Montreal, Canada, July
1998.

James A. Jones, Mary Jean Harrold, and John Stasko. Vi-
sualization of test information to assist fault localization.
In Proc. International Conference on Software Engineer-
ing (ICSE), pages 467–477, Orlando, Florida, May 2002.

Bil Lewis. Debugging backwards in time. In M. Ronsse and
K. De Bosschere, editors, Proceedings of the Fifth Inter-
national Workshop on Automated Debugging (AADEBUG
2003), September 2003.

Peter Morgan. JCoverage 1.0.5 GPL, 2004. URL http:

//www.jcoverage.com/.

Steven P. Reiss and Manos Renieris. Encoding program ex-
ecutions. In Proceedings of the 23rd International Confer-
ence on Software Engeneering (ICSE-01), pages 221–232,
Los Alamitos, California, May12–19 2001. IEEE Com-
puter Society.

Thomas Reps, Thomas Ball, Manuvir Das, and Jim Larus.
The use of program profiling for software maintenance
with applications to the year 2000 problem. In M. Jazayeri
and H. Schauer, editors, Proceedings of the Sixth Euro-
pean Software Engineering Conference (ESEC/FSE 97),
pages 432–449. Lecture Notes in Computer Science Nr.
1013, Springer–Verlag, September 1997.

SPEC. SPEC JVM98 benchmark suite. Standard Perfor-
mance Evaluation Corporation, 1998.

Andreas Zeller. Isolating cause-effect chains from computer
programs. In William G. Griswold, editor, Proceedings
of the Tenth ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (FSE-02), volume 27, 6
of Software Engineering Notes, pages 1–10, New York,
November 18–22 2002. ACM Press.

