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ABSTRACT
A method is pure if its invocation does not cause externally visible
side-effects. We describe a new approach to dynamic purity analy-
sis based on the observation of side-effects at runtime and compare
our results to a state-of-the art static purity analysis. In our ex-
periments with a large open-source project, 35% of the methods
statically classified as impure never show side-effects in more than
600 regression tests. We use the results of our analysis as input
to ADABU, a dynamic tool for mining object behavior models. Our
experiences show that dynamic analyses do not require static purity
classification but also work well with the results of a dynamic anal-
ysis. Our tool JPURE is publicly available so that other researchers
can benefit from our work.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifications—Ob-
ject-oriented languages; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—Classes and objects; Procedures,
functions, and subroutines

1. INTRODUCTION
In object-oriented languages, the execution of a method can have

side-effects, i.e. the method modifies an externally visible object or
the global state (the values of all static fields). A pure method is
a method that never has side-effects, whereas an impure method
may have side-effects. As an example consider the two methods in
Figure 1: n is impure because it modifies v and w. m however is
pure, because it only modifies objects that are not visible externally.

A purity analysis classifies methods as either pure or impure.
This classification is used in many different areas: Several program
analyses benefit from knowing if the execution of a method may
change the visible state [10, 15]. It is also useful for program under-
standing and documentation [8], verification [4] and specification
[3]. Previous work has employed static [17, 18, 19] and dynamic
[22] techniques to analyze method purity.

Parameter mutability analysis is closely related to purity anal-
ysis. It classifies all complex (i.e. non-primitive) parameters of a
method as either immutable or mutable. In the example in Figure 1,
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1 public void m(Object o) {
2 Vector v = n(new Vector());
3 v.add(2);
4 }
5 public Vector n(Vector v) {
6 v.add(1);
7 return new Vector();
8 }

Figure 1: Method n is impure because it modifies v. m is pure
because all modified objects are created during the invocation
of m.

o is immutable and v is mutable due to the modification in line 6.
Mutability information is useful for dynamic detection of invariants
[9], program slicing [8] and program comprehension [21]. Previ-
ous work [1] has employed both static and dynamic techniques to
analyze parameter mutability.

This paper presents a new approach to dynamic purity analysis
based on the observation of side-effects at runtime. The approach is
simple and can easily be extended to analyze parameter mutability.
Our work is the first to evaluate the precision of a dynamic purity
analysis by comparing the results to a state-of-the-art static purity
analysis. We make the following contributions:

• The description of a simple and effective way to compute
dynamic purity information following a well-established pu-
rity criterion [19] (Section 2). With small adjustments, our
approach is also able to compute object immutability infor-
mation for parameters (Section 3).

• An evaluation of the soundness of both analyses. To the best
of our knowledge, our work is the first to provide an eval-
uation of the precision (how many methods were classified
as pure although they may have side-effects) of a dynamic
purity analysis (Section 4). Our results indicate that 35% of
the methods statically shown to be impure never have side-
effects at runtime.

• An implementation of our approach in a tool called JPURE.
The tool is capable of analyzing programs as large as ECLIPSE
with acceptable overhead. JPURE is publicly available so that
other researchers can benefit from our work.

• We discuss our experiences with ADABU (Section 5), a tool
that invokes side–effect free methods to for state inspection.
By using JPURE as purity analysis, ADABU was able to an-
alyze programs as large as ECLIPSE without errors, suggest-
ing that dynamic purity information is sufficient for dynamic
analysis techniques.



2. PURITY ANALYSIS
Our approach uses the same purity criterion as [19]: A method

m is pure if it never modifies an object that existed prior to it’s in-
vocation. Thus, m can create and modify temporary objects and
invoke impure methods as long as the side-effects of these invoca-
tions only alter objects created during the invocation of m. This is a
more flexible criterion than the one used by previous analyses such
as [4] that disallow any modifications to the heap. An example that
illustrates the purity criterion is depicted in Figure 1.

The idea behind the analysis is as follows: For each invocation
of a method m, we record the IDs of all objects created during that
invocation. This information is used to calculate a set of allocated
objects for each method invocation. In addition, we capture all field
write operations and trace the ID of the object that was changed by
this operation (static field writes are recorded as changing a spe-
cial object that represents all static variables). This information is
used to calculate the set of modified objects for each method in-
vocation. At the end of each invocation, we compare these two
sets. Whenever an invocation of a method modifies an object that
was not created during that execution, we know that the invocation
changed externally visible state. Our analysis classifies a method m
as pure if it was executed at least once and no execution of m mod-
ifies externally visible state. If at least one execution of m modifies
externally visible state, m is classified as impure. The output of our
analysis consists of a set of pure and a set of impure methods.

We have implemented our analysis for Java programs in a tool
called JPURE. The tool works in two phases: In the first phase, one
or more executions of the program to be analyzed is monitored (see
Section 2.1) and trace data is written to a file. In the second phase
(explained in Section 2.2) the trace files are analyzed and purity is
calculated.

2.1 Tracing
This section explains how we record the information needed for

the analysis. JPURE uses the ASM [11] instrumentation framework
to rewrite the byte code of the subject program. Table 1 lists all
events handled by JPURE and the information that is recorded for
each event. In addition to that, our tool handles some special cases
as follows:

Multithreading If more than one thread is active at the same
time, events triggered by different threads may spoil the results of
the purity analysis. To avoid this, every event records an identifier
for the thread that triggered the event.

Method Start/End We record the begin and end of each method
invocation to allow the analysis to determine the currently active
method. We instrument the beginning of each method (except con-
structors) to record a event. Method end events are recorded before
every return instruction. In addition, every method is surrounded
by a try-finally block to trace exceptional method exits.

Constructors Every constructor modifies fields of the object it is
invoked on. Technically, an object is created before the invocation
of the constructor, which is why our analysis would classify every
constructor as impure. To avoid this, we add an additional object
creation event with the ID of the this object.

Arrays Single-dimensional arrays of non-primitive types are trea-
ted the same way as fields. Multi-dimensional arrays are processed
recursively: For each dimension of the array, we trace OBJECT

_NEW events for all values in this dimension.
Events are written sequentially into a single trace file. In order to

increase the responsiveness of the application, we use a producer-
consumer buffer and a dedicated thread to write data to the file.
Upon shutdown of the virtual machine, buffered data is flushed to
the disk.

Event Traced Instrumentation
Data Sites

METHOD_START ThreadID,
MethodID

Start of each method

METHOD_END ThreadID,
MethodID

ARETURN, DRETURN,
FRETURN, IRETURN,
LRETURN, RETURN

OBJECT _NEW ThreadID,
ObjectID

NEW, NEWARRAY,
ANEWARRAY,
MULTIANEWARRAY

FIELD_WRITE ThreadID,
ObjectID

PUTFIELD,
PUTSTATIC,
AASTORE, BASTORE,
CASTORE, DASTORE,
FASTORE, IASTORE,
SASTORE

Table 1: Events traced by JPURE.

2.2 Analysis
In the second phase, the trace file is analyzed to compute the

set of pure methods. Algorithm 1 shows the key elements of the
computation. For each method invocation we manage a set of ob-
jects created during the invocation (newObjects) and a set of ob-
jects modified during the invocation (modifiedObjects). At the end
of each invocation we check for objects that were modified but not
created during that invocation (lines 14–15). If at least one such
object is found, the method is marked as impure. Otherwise, the
method is marked as pure unless it was marked as impure in previ-
ous invocations. The last step at the end of each invocation (lines
20 and 21) propagates the sets of new and modified objects into the
corresponding sets for the calling method.

For a given invocation of method m, algorithm 1 computes me-
thod purity according to the criterion described in Section 2. Side–
effects due to field writes in m itself are detected because we trace
all field writes and instantiations of objects. Side-effects that occur
in methods called by m are detected because the analysis propa-
gates the sets of new and modified objects from all methods invoked
by m. The algorithm also allows for m to call an impure method
n (cf. Figure 1), as long as all externally visible side-effects of n
modify only objects created during the invocation of m.

Our algorithm also handles field writes to transitively reachable
objects correctly. For example, suppose that a method m changes
field o.x.f where o was not created by m (and thus the side-effect
is externally visible), and x currently points to object l. If l was not
created by m, l is not in the set of objects created by m and thus
the algorithm correctly classifies m as impure. If l was created by
m, there must have been a field write that set o.x = l before. Our
algorithm classifis this field write as externally visible side-effect
since o was not created by m.

2.3 Multiple Program Runs
JPURE allows a user to provide more than one run as input to the

purity analysis. We use this feature in the evaluation in Section 4 to
analyze how much the soundness and completeness of our analysis
benefits from additional data. If multiple runs are available, our
tool analyzes them successively and updates the classification as
follows:



Algorithm 1 Compute purity information
Input: Trace File f
Output: List of impure and pure methods
1: procedure PURITY(File f)
2: /* Initialize Datastructures */
3: for all event e ∈ f do
4: if e == METHOD_START then
5: newObjects.push(new Set());
6: modifiedObjects.push(new Set());
7: else if e == OBJECT_NEW then
8: newObjects.peek().add(objectId);
9: else if e == FIELD_WRITE then

10: modifiedObjects.peek().add(objectId);
11: else if e == METHOD_END then
12: Set mObjects = modifiedObjects.pop();
13: Set nObjects = newObjects.pop();
14: Set escapes = mObjects.minus(nObjects);
15: if escapes.isEmpty() then
16: /* mark method as pure unless it*/
17: /* was marked impure before*/
18: else
19: /* mark method as impure */
20: end if
21: modifiedObjects.peek().addAll(mObjects);
22: newObjects.peek().addAll(nObjects);
23: end if
24: end for
25: emit results;
26: end procedure

• If a method m was not analyzed before, we add m to the set
of classified methods.

• If m was analyzed before and the new classification is pure,
the classification of m remains unchanged.

• If m was analyzed before and the new classification is im-
pure, the classification is set to impure.

2.4 Soundness and Completeness
Deciding wether or not a method has side-effects in general is

undecidable. Thus, no analysis can be both complete (classifies all
methods) and sound (all classifications are correct). Since our anal-
ysis is a dynamic technique, completeness depends on the amount
of code covered by the execution. Purity analysis is a binary clas-
sification, so we distinguish two different types of soundness: An
analysis is p-sound if all methods classified as pure are indeed pure.
Conversely, an analysis is i-sound if all methods classified as im-
pure are indeed impure. Our analysis is i-sound, because it classi-
fies only those methods as impure that were experimentally shown
to have side-effects. However, our technique is potentially not p-
sound, since a method may contain code blocks with side-effects
that are not executed during the traced execution. The evaluation
in Section 4 measures the degree to which our analysis is not p-
sound. The type of soundness required depends on the application
that uses the results. Code optimization techniques ([16] typically
require p-sound techniques. In Section 5, we discuss an application
that actually requires p-soundness but works well with the results
provided by our analysis.

1 public void m(Vector u, Vector v) {
2 u.add(1);
3 Vector w = v;
4 w.add(1);
5 }

Figure 2: Parameter u is reference mutable, v is reference im-
mutable and object mutable.

3. PARAMETER MUTABILITY ANALYSIS
For the remainder of the paper, we will use the term parameter

instead of complex parameter, since mutability analysis only clas-
sifies complex parameters.

Parameter mutability analysis classifies each parameter of a me-
thod as either mutable or immutable. There are two types of im-
mutability: Reference immutability guarantees that a given refer-
ence is not used to modify an object, whereas object immutability
ensures that an object passed as a parameter is not modified by a
method. In the example in Figure 2, u is reference mutable due to
line 2. v is reference immutable, since the parameter reference is
not used to mutate v. However, v is object mutable: In line 3, v is
aliased to w and line 4 changes w.

In this section we show how to extend the purity analysis pre-
sented earlier to compute object immutability for all parameters
of a method. Our approach is similar to the alternative dynamic
analysis presented in [1]. However, while [1] computes reference
immutability, our tool computes object immutability.

In order to calculate parameter mutability, JPURE traces addi-
tional information for the following two events (cf. Section 2.1):

• METHOD_START At the beginning of each method invo-
cation, we also trace the IDs of all parameters.

• FIELD_WRITE For every field write to a complex field,
we trace the address of the object the field points to after the
write.

With this data available, we can extend the algorithm presented
in Section 2.2 as follows:

• We maintain a dynamic model of the heap in the following
way: For every object o created during the program run, and
every complex field o.f , we trace the identifier of the object
o.f points to. Whenever a field write changes the value of
o.f , the dynamic heap model is updated.

• At the end of an invocation of method m, our analysis per-
forms the following steps for each parameter p of m:

– We traverse the dynamic heap model to calculate the
set of objects transitively reachable from p.

– If p itself or any of the objects transitively reachable
from p were modified during the invocation of m, p is
marked as mutable.

• For each method m that was executed at least once, we clas-
sify as immutable all parameters that were not marked as mu-
table.

Parameter mutability analysis in general is undecidable. Follow-
ing the terminology by [1], a mutability analysis is i-sound if all
parameters classified as mutable are indeed mutable and an analy-
sis is m-sound if all parameters classified as immutable are indeed
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Figure 3: Purity results for ASPECTJ: Coverage increases from
29% at the beginning to 65% with all runs (upper graph). The
percentage of methods correctly classified as pure increases as
more runs are included (lower graph).

immutable. The analysis presented in this section is m-sound since
a parameter as only classified mutable if it has been experimen-
tally shown to be mutable. However, the analysis is not i-sound
since statically possible modifications of a parameter may not be
executed by the runs available.

The analysis handles field writes to transitively reachable objects
correctly because we process the dynamic heap model only at the
end of an invocation (cf. Section 2.2).

4. EVALUATION
This section presents the evaluation of our tool JPURE. Our anal-

ysis uses the same purity criterion as described in [19]. The au-
thors of [19] have implemented their approach in a tool called PU-
RITYKIT, which is publicly available. We use the output of this tool
as a ground truth for the purity analysis. Unfortunately, we cannot
do the same for the mutability analysis, since JPURE computes ob-
ject immutability while PURITYKIT computes reference immutabil-
ity. Nevertheless, we compared mutability results to study the dif-
ferences between the two types of immutability. Our experiments
investigate the following questions:

Soundness How unsound is the purity analysis, i.e. how many en-
tities are classified incorrectly?

Different Types of Mutability How big is the difference between
object and parameter mutability results?

Multiple Runs How do completeness and soundness improve when
more than one run of a program is used?

Runtime Overhead and Analysis Time How big is the runtime
overhead imposed by collecting trace information and how
long does it take to process the trace files?

4.1 Measuring Soundness
To measure the soundness of the purity analysis, we calculate

the precision values for correct classifications into pure and impure
methods (similar to [1]):

imp-prec = ii
ii+ip

pure-prec = pp
pp+pi

ii is the number of methods correctly classified as impure, ip
is the number of impure methods incorrectly classified as pure, pp
is the number of methods correctly classified as pure and pi is the
number of pure methods incorrectly classified as impure. imp-prec
measures the percentage of methods correctly classified as impure,
and pure-prec measures the percentage of methods correctly clas-
sified as pure. Ideally, both precision values should be 1.0.

For all experiments with the purity analysis, pi was always equal
to zero and thus pure-prec = 1. This is due to the fact that all
entities classified as impure by our analysis were experimentally
shown to be impure (cf. Section 2). On the other hand, our analysis
misclassifies impure methods as pure if side-effects are statically
possible but never occur at runtime. The discussion in Section 4.3
therefore uses imp-prec to measure soundness.

4.2 Evaluation Subjects
The following subjects were used in our experiments:

JOLDEN [13] is a suite of 10 computationally intensive bench-
mark programs, which we included because [19] also studies
them. We did not include the power benchmark in our evalu-
ation since our tool ran out of memory when performing the
analysis. power creates a large number of temporary objects
and our tool tracks data for all of them, even after they are
deleted, which eventually exhausts main memory. One way
to improve on this would be to trace deletion of objects.

ASPECTJ [7] is a large program with 75k lines of code which
we used as the main subject to evaluate soundness and com-
pleteness of our tool. We study version #29934 of ASPECTJ
as provided by the iBUGS [7] repository. We analyzed all
630 test runs available in the regression test suite that comes
with the program. In order for PURITYKIT to be able to fully
analyze ASPECTJ, we changed one line in the main class to
directly instantiate a type rather than using reflection to do
so.

ECLIPSE [14] is a large IDE for JAVA programs which we in-
cluded to show how our tool performs on large interactive
programs. We collected data from a run where we created a
new class, typed in the body of a main method, compiled and
executed the program and closed the workbench. Section 4.5
describes the runtime impact of our tool on the execution
time.

The following sections discuss the results for the purity analysis
(Section 4.3) and the mutability analysis (Section 4.4). The runtime
overhead of our method is discussed in Section 4.5.



4.3 Purity Analysis Results
We used the JOLDEN programs and ASPECTJ as subjects for our

evaluation. The graphs in this section present results for ASPECTJ.
The precision values for JOLDEN were slightly better than those
for ASPECTJ, but coverage was much higher. We focus on AS-
PECTJ because it is a far more realistic subject than the JOLDEN
programs. As mentioned in Section 2.3, our tool can analyze data
from more than one run. We take advantage of this feature to per-
form a cumulative analysis of all tests in the test suite of ASPECTJ.
The X-axis of all graphs in this section is the number of runs used
by the analysis.

The results for the purity analysis are depicted in Figure 3. The
upper graph compares the number of methods analyzed by PURI-
TYKIT and JPURE. When run on ASPECTJ, PURITYKIT classifies a
total of 6464 methods. The coverage values for JPURE range from
29% (one run) to 65% (all runs), meaning that JPURE classifies
roughly two thirds of the methods classified by PURITYKIT. The
precision evaluation uses only methods classified by both tools.

The lower graph in Figure 3 shows the effect of including more
runs on the precision of the analysis. With data from one run,
JPURE achieves a precision of 0.61. If all runs are included in the
analysis, precision is 0.65, which means that our analysis incor-
rectly classifies 35% of the methods statically shown to be impure
as pure. We investigated a sample of these methods. In many cases,
the mutating statements are either part of an if-else construct or be-
long to a method that is the possible target of a dynamically bound
call. We also investigated how many times the classification of a
method changes from pure to impure when adding data from an-
other run. We found 171 methods where this was the case, which
is a small number compared to the total number of classified meth-
ods (4231).

To summarize, 35% of the methods classified as impure by the
static analysis show no side-effects at runtime. Using more than
one run has a positive effect on the precision of our analysis, but
the increase is not very strong (0.61 vs. 0.65).

4.4 Mutability Analysis Results
Coverage of parameters increases from 19% with one run to

42%, which is comparable to the increase in coverage of the pu-
rity analysis. As already mentioned, PURITYKIT investigates refer-
ence immutability while JPURE reports object immutability. Thus
the results are not directly comparable. However, we can use the
results of both tools to compare object immutability with reference
immutability.

For each parameter p classified by both tools, the following four
cases are possible:

1. If both tools classify p as immutable, p is reference immutable
but potentially object mutable.

2. If both tools classify p as mutable, p is reference and object
mutable.

3. If PURITYKIT classifies p as mutable and JPURE classifies
p as immutable, p is reference and object mutable. For AS-
PECTJ, the precision of the mutability classification (cf. Sec-
tion 4.1) is 0.54, which is less than the precision for the pu-
rity analysis.

4. If PURITYKIT classifies p as immutable and JPURE classifies
p as mutable, p is reference immutable but object mutable.
For ASPECTJ, we found a total of 48 parameters for which
this is the case (cp. Figure 4, lower graph) and a total of 2496
reference mutable parameters. These numbers indicate that
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Figure 4: Mutability results for ASPECTJ: 2% of the parame-
ters classified as reference immutable by PURITYKIT are clas-
sified as object mutable by JPURE.

in 98% of all cases where a method modifies a parameter, it
uses the parameter reference to do so.

To summarize, our results indicate that the difference between
reference and object immutability is very small, as only 2% of the
paramters that are reference immutable are modified at runtime.
Since our analysis is not i-sound, the actual number of such param-
eters may be higher. However, given that our analysis reaches a
precision of 0.54, we expect that less than 4% of the parameters
are reference immutable but object mutable.

4.5 Runtime Overhead and Analysis Time
Table 2 lists the results of our overhead evaluation. All exper-

iments were conducted on an AMD64 machine with 2.1Ghz and
2GB of RAM. To capture the runtime overhead we divided exe-
cution times (as measured by the unix time tool) of a traced run
by the execution time of an unmodified run. The resulting values
are given in column “Overhead”. Columns “Purity Analysis” and
“Mutability Analysis” list the number of seconds it took to run the
purity analysis and the mutability analysis respectively. The values
for ASPECTJ are mean values for all 630 runs of the test suite.

Runtime overhead for the JOLDEN benchmark (except for tsp)
is generally much higher than for the other subjects (except for
tsp). We attribute this to the fact that the benchmarks are purely
memory-based and do not perform I/O-operations. The overhead
for the non-benchmark programs ranges from 260 to 420%. The
size of a trace file can be up to several gigabytes. Analysis times
range from several seconds (treeadd) up to 20 minutes (bh). Muta-



Program Overhead Mutability Analysis Purity Analysis
(factor) Time (seconds) Time (seconds)

bh 39.1 1177.38 832.22
em3d 10.2 36.13 33.12
bisort 625.2 619.61 412.92
health 60.2 622.59 155.29
mst 28.8 974.31 602.12
perimeter 41.1 588.94 533.92
treeadd 8.1 771.29 389.72
tsp 3.2 212.05 158.53
voronoi 93.1 760.46 22.25

ASPECTJ 4.3 275.12 86.00
ECLIPSE 5.2 832.46 472.91
COLUMBA 3.6 340.10 182.17

Table 2: Runtime overhead and analysis time for JOLDEN
benchmark programs (upper part) and and interactive pro-
grams (lower part).

bility analysis generally takes more time since we need to establish
a dynamic model of the heap.

To summarize, our tool induces a considerable amount of over-
head for the purely memory-based benchmark programs, whereas
the overhead for programs that perform I/O is acceptable. Section 7
presents ideas how to reduce the overhead.

4.6 Threats to Validity
Our evaluation only includes results for 10 programs, 9 of which

are small benchmark programs. However, due to technical limita-
tions of the tool it is difficult to find subjects that can be analyzed
by PURITYKIT. Our main subject ASPECTJ is a large open-source
project with several years of history which gives us reason to be-
lieve that the results hold for a large number of projects.

Another threat to validity is the use of PURITYKIT as a ground
truth. If the results of PURITYKIT were at least partly invalid, this
would affect the correctness of our precision results. However, we
manually verified a sample of the results and found no misclassifi-
cations. Besides that, [1] reports very high precision values for the
mutability analysis of PURITYKIT, which gives us reason to believe
that the purity analysis achieves similar precision.

5. EXPERIENCES
ADABU [6] is a tool that mines object behavior models from pro-

gram runs. Such models are finite state automata where states rep-
resent the state of an object as captured by the return values of ob-
server methods (methods that reveal information about the internal
state of an object, such as method isEmpty() in class Vector).
Transitions between states occur whenever a mutator method (a
method that changes the state of an object such as method add()
in class Vector) is invoked. These methods are called mutators.
Object behavior models are an elegant means to capture temporal
properties of an object’s API. Among other applications, they can
be useful for program understanding.

ADABU uses the results of a purity analysis to group methods
into observers and mutators. Previously, we have used PURITYKIT
to provide side-effect information. This severly limited the set of
programs we could use ADABU on, since PURITYKIT is not able to
analyze programs that require JDK 1.2 or above (which is true for
most programs).

To overcome these limitations, we replaced PURITYKIT with

selectedMailbox: null
socket: null

state:= NOT_CONNECTED

selectedMailbox: null
socket: java.net.Socket

state:= AUTHENTICATED

<init>() [1]

selectedMailbox: null
socket: java.net.Socket

state:= NON_AUTHENTICATED

openPort() [1]

login() [1]

selectedMailbox: java.lang.String
socket: java.net.Socket

state:= SELECTED

logout() [1] select() [1]

status() [1]
capability() [1]
append() [1]

create() [1]
uidSearch() [1]

select() [2]

Figure 5: Object behavior model for class IMAPProtocol.
JPURE is needed to mine this model as existing purity analysis
tools cannot analyze the program.

JPURE. This requires to execute the subject program at twice: Once
to analyze purity with JPURE, and once to actually mine models
using ADABU. This is slightly problematic for multithreaded pro-
grams, as it is difficult to execute them in exactly the same way
more than once. We found this to be no problem in practice, even
with large interactive programs: In combination with JPURE, AD-
ABU has successfully mined models from ECLIPSE [14] and Colum-
ba [12] (cp. Figure 5). We found no case where the method calls
injected by ADABU had a visible impact on the program run sug-
gesting that the purity information provided by JPURE is correct.

To summarize, JPURE has successfully replaced the static purity
analysis we have used before, which greatly improves the applica-
bility of ADABU.

6. RELATED WORK
Side-effect analysis originated more than 30 years ago in the

area of compiler construction, where it is used for optimization
techniques. Early work by Banning [2] identified the problem of
side-effect analysis. Cooper et al. [5] present a flow-insensitive
side-effect analysis linear in the size of the call multigraph. These
approaches where among the first to identify the core problems and
the need for interprocedural analysis. Emerging techniques such as
object-oriented languages further complicate the analysis e.g. due
to dynamic dispatch. More recent techniques focus on the analysis
of Java programs. Milanova et al. [17] use context sensitive points-
to information to analyze each method invocation in the context of
the object the method is invoked on.

Rountev [18] proposes a static side-effect analysis that can be
parameterized by different types of class analysis. The paper com-
pares results achieved with RTA to those for a context sensitive
pointer analysis and finds roughly equivalent precision. Their pu-
rity criterion used is roughly equivalent to our criterion. How-
ever, the technique has difficulties with programs that use reflec-
tion, which holds for many modern programs such as ECLIPSE [14].

Xu et al. [22] describe a dynamic purity analysis. Their work
explores several purity criteria ranging from strong to weak, whose



definitions are strongly influenced by the proposed application, me-
moization. In contrast to their work, our analysis explores a well-
established purity criterion. They also didn’t evaluate the precision
of their approach.

Sălcianu et al. [19] have implemented a static purity and parame-
ter mutability analysis in a tool called PURITYKIT. The approach is
based on a combined pointer and escape analysis and is the first to
allow pure methods to modify objects created during an invocation.
The main weakness of their tool is that it cannot analyze programs
which require JDK 1.2 or above, while our tool has successfully
analyzed modern programs with graphical user interfaces such as
ECLIPSE [14].

Artzi et al. [1] propose a combination of static and dynamic tech-
niques for mutability analysis. The different techniques are or-
ganized in a pipeline where each analysis incorporates the results
from the previous stage. The paper explores various combinations
of different analyses to support different types of soundness (cf.
Section 3). Their approach computes reference immutability, while
we analyze object immutability.

7. CONCLUSIONS
We have presented an approach for dynamic purity analysis that

is based on the observation of mutations at runtime. The approach
is simple and can easily be extended to compute parameter muta-
bility information. We have implemented our approach in a tool
called JPURE. The implementation is stable and has been used to
analyze large interactive programs.

To measure the precision of our approach, we have analyzed 630
runs of ASPECTJ and compared the classification of JPURE to the
output of PURITYKIT, a static purity analysis tool. In our exper-
iments, 35% of the methods classified as impure by PURITYKIT
never have side-effects, suggesting that there is a huge gap between
static and dynamic purity. Our experiences with ADABU indicate
that dynamic analyses do not need a static purity analysis but can
also work well with dynamic purity information. The results for
the mutability analysis indicate that dynamically parameters are al-
most always modified through the parameter reference rather than
through aliased references.

In its current state, our tool induces a runtime overhead up to
420% for interactive programs. We have several ideas how to im-
prove the performance of our tool:

Online Analysis Instead of writing trace data to the disk, we could
analyze it on-the-fly and emit the results when the vm is shut
down. Thus we avoid both writing the trace file and reading
it again later.

Statistical Sampling The amount of trace data can be reduced by
tracking only every n-th execution of a method. Since this
technique affects the precision of the analysis, it has to be
studied carefully before it is applied.

Compression Wang et al. [20] have successfully applied the SE-
QUITUR algorithm to compress trace data for dynamic slic-
ing. This approach could also be used to compress the data
traced by JPURE.

JPURE is publicly available so that other researchers can benefit
from our work. For a detailed how-to, source-code and compiled
versions please visit

http://www.st.cs.uni-sb.de/models/jdynpur/
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