Mining Input Grammars from Dynamic Taints

Matthias Höschele
Saarland University
Saarland Informatics Campus
Saarbrücken, Germany
hoeschele@cs.uni-saarland.de

Andreas Zeller
Saarland University
Saarland Informatics Campus
Saarbrücken, Germany
zeller@cs.uni-saarland.de

ABSTRACT

Knowing which part of a program processes which parts of an input can reveal the structure of the input as well as the structure of the program. In a URL http://www.example.com/path/, for instance, the protocol http, the host www.example.com, and the path path would be handled by different functions and stored in different variables. Given a set of sample inputs, we use dynamic tainting to trace the data flow of each input character, and aggregate those input fragments that would be handled by the same function into lexical and syntactical entities. The result is a context-free grammar that reflects valid input structure. In its evaluation, our AUTOGRAM prototype automatically produced readable and structurally accurate grammars for inputs like URLs, spreadsheets or configuration files. The resulting grammars not only allow simple reverse engineering of input formats, but can also directly serve as input for test generators.

CSC Concepts

• Software and its engineering → Input / output; Dynamic analysis; • Theory of computation → Grammars and context-free languages; • Social and professional topics → Software reverse engineering; • Applied computing → Document analysis;

Keywords

Input formats; context-free grammars; dynamic tainting; fuzzing

1. INTRODUCTION

Since the invention of the Turing machine, a program is typically described as a machine that input and output a string of symbols. The set of such strings that the machine accepts or produces is called a language. The field of formal language theory long has studied the structural aspects of such languages, using formal languages like regular expressions or context-free grammars to exactly specify the language. The practical importance of such formal languages cannot be overstated. In programming languages, software systems, computer networks, or general software development, formal languages (and equivalent automata diagrams) are among the most frequently used methods to specify inputs and outputs, and consequently, regular expressions and grammars are an essential part of computer science curricula.

In this paper, we present a novel practical method that, given a set of program runs with inputs, automatically produces a context-free grammar that represents the language of the inputs seen. The resulting grammar facilitates understanding of the input structure; can serve as a base for automated test generation by feeding it into a producer; and can be used by a computer to parse, decompose, and analyze other inputs.

Here is an example. java.net.URL is a Java class that parses a Uniform Resource Locator (URL) into its constituents. Assume a program p that uses java.net.URL to parse the URLs given in Figure 1. Given the program p and these inputs, our AUTOGRAM prototype automatically produces the grammar shown in Figure 2, which pretty accurately reflects the structure of the URLs processed.

How do we obtain this grammar? The key idea is to dynamically observe how input is processed in a program. We instrument the program with dynamic taints that during execution, tagging each piece of data with the input fragment it comes from. Now, if some function of the program processes only a part of the input, or if a part or a value derived from it is stored in a variable, then this part becomes a syntactical entity.

In our example, the method java.net.URL.set() eventually stores the URL components as parsed in the java.net.URL class. Figure 3 shows the taints from the original input as its parts are being passed as arguments to java.net.URL.set().
The contributions of this paper are as follows. To the best of our knowledge, the present work is the first to automatically derive a context-free input structure from given inputs, making use of a provided processing program to derive lexical and syntactical structure as well as entity names. This is in contrast to related work Section 2, which does not make use of existing programs, and therefore has to rely on additional lexical or structural hints.

Minor contributions include our method to associate processed data with positions in the program input Section 3, as well as our grammar synthesis from jointly processed entities, including deriving entity names from variable and function identifiers Section 4. Section 5 evaluates our AUTOGRAM prototype in terms of accuracy and completeness, where we use it to parse and produce yet unseen inputs, respectively, on a set of common input formats. We close with conclusion and future work in Section 6.

2. BACKGROUND

AUTOGRAM joins three areas: language induction, tracking input origins, and data tainting.

Language Induction. Languages play a crucial role in software, both in programs as in data. The Wikipedia page on file formats lists more than 1,300 commonly used file formats—which is likely only a small fraction of the many proprietary data formats used by programs all across the world. Given these many languages, it is only natural that researchers have thought about how to reverse engineer languages from given inputs. The field of language induction has provided a multitude of approaches to infer languages and patterns from (mostly natural language) text; for a comprehensive overview, we recommend the textbook by de la Higuera [4]. The vast majority of approaches, however, focuses on regular languages. The single exception is the work by Sakakibara [5] [6], which infers context-free grammars from given strings if given “skeletons”, i.e. some form of structural hints. By leveraging program executions, AUTOGRAM is able to construct such hints and decompose the input into its structure.

Input Origins. To the best of our knowledge, relating input fragments to code fragments that process it was first suggested by Clause and Orso for their PENUMBRA work [3]. Their idea is to track inputs as they propagate during execution, and if some function fails, they would be able to identify those inputs that the function uses and therefore would be responsible for the failure. PENUMBRA computes such origins only

Figure 3: Dynamic tainting in AUTOGRAM. At the end of URL parsing, java.net.URL.set() is invoked with parameters such as protocol = "http", host = "www.google.com", or port = 80. AUTOGRAM instruments the program such that each input character is associated with its position in the input. This taint propagates to derived values and variables as the input is processed: As java.net.URL.set() stores its arguments in object attributes, their taints propagate along.
Data Tainting. AUTOGRAM relies on dynamic tainting to identify the origins of data fragments and track their flow during program execution. Dynamic tainting allows us to precisely identify which parts of a programs input are read, stored and processed at any point in time. The dynamic tainting as implemented in AUTOGRAM is inspired by Phosphor [1], a portable implementation of dynamic taint analysis based on bytecode instrumentation of all classes including the Java API. In contrast to Phosphor, however, AUTOGRAM can taint arbitrary values (including primitives and internalized strings) with string origin descriptions, which consists of arbitrary long lists of input regions.

All in all, we are not aware of an approach that would use a mapping between input and locations processing them to derive structural input descriptions, let alone context-free grammars, as with AUTOGRAM.

3. TAINTING INPUT CHARACTERS

The tainting framework of AUTOGRAM is inspired by the Phosphor [1] work. It is based on bytecode instrumentation that in contrast to Phosphor does not modify method signatures and uses separate shadow memory to store taint information for local variables, stack values and arrays. This separation and the usage of an unmodified version of ASM [2] make it easier to combine it with additional instrumentation and to make it interoperable with uninstrumented code. Our implementation can also add shadow information to references. This special feature enables us to handle features like Java String internalization that returns a canonical reference for equal String objects. The current implementation supports multiple taint sources based on system resources like files or sockets and represents the taint information for each taint source as bit sets. The implementation is currently restricted to single threaded programs and leaves a lot of room for performance optimization which was not the focus of this work. Since the Java HotSpot VM does not permit the modification of certain core classes using a Java agent, the Java API needs to be instrumented offline and included as bootstrap classes. All other instrumentation is applied by a Java agent. The agent supports caching root

4. SYNTHESIZING GRAMMARS

4.1 Identifying Entities

We now describe how we identify individual entities to produce a grammar. Our method works along the following steps, each illustrated by the URL example in Figure 1 and Figure 2.

Intervals. Since parsing breaks down the input to fragments of decreasing size, this can be observed during program execution. Induced by the dynamic call tree and the corresponding taint information, we can derive the set of intervals $I \subseteq \{[i,j]|i,j \in \{0,\ldots,n-1\}, i \leq j\}$ where n is the number of characters of the input, such that for each interval $i \in I$ there is either

- a function that processes the input fragment corresponding to the interval i, or
- a variable or parameter that stores the same input fragment, or
- the input fragment or a value derived from it is returned by a function.

Figure 1 shows the interval set I for our URL example. When calling `java.net.URL.set()`, the protocol parameter is associated with the leading "http" string, or the interval $i = [1,4]$ of the original input. The `URL.set()` function processes all values given as parameters, and thus is associated with the intervals $i_1 = [1,4]$ "http", $i_2 = [8,44]$ "user.../command", etc., as depicted in Figure 1.

Interval Trees. This set I of intervals also induces a tree T^I of intervals where the root $r = [0,n-1]$ and $\forall i, j \in I, j$ is a child of i if and only if $j \subset i$ and $\exists k \in I, j \subset k$. In Figure 1 the root r would be the entire input (shown on top); its child would be the interval of `java.net.URL.set()`, since it is no subset of another interval. The intervals of the protocol, authority, path, query, and ref parameters would be the next direct children (Figure 4).

Computing Interval Trees. The interval tree T^I can be computed by applying depth first search to the dynamic call tree and merging the sets of processed input fragments of all children.

Figure 4: Interval tree for the interval set from Figure 1

The resulting event traces allow us to reconstruct the dynamic call tree as well as the input fragments that were processed during a method call. Input fragments processed by callees as well as field and array accesses are attributed to the initiating method. To extract this information from the trace, we sequentially read the events from the trace, and merge the input fragments of callees to the caller on encountering the exit event of the callee.
on exiting a node. Our goal is to derive an interval tree free of conflicting overlaps \(T \) such that for all nodes \(i, j \in T \subseteq I, i \cap j \neq \emptyset \iff i \cup j \subseteq i \). In the following, we call such trees `pure` interval trees.

We assume the tree \(T \) corresponds to a parse tree such that the leaves correspond to terminal symbols, and inner nodes to productions of nonterminal symbols. \(T' \) does not necessarily satisfy the additional constraints given for \(T \). Parser implementations that make use of lookahead for instance will usually result in nodes with overlapping children.

From Intervals to Entities. We associate each interval with the derive a replacement interval

4.2 Lookahead and Terminals

remove all children \(c \)

assumes left to right processing of the input. For each node should the final quotation mark be attributed to?

on the next symbol to parse. As an example, consider a JSON

cally decide language membership and derive a parse tree based

\`JsonParser.endCapture()\`

method

processes the mark after calling \`JsonParser.endCapture()\`

parent, where

\`JsonParser.readStringInternal()\`

\`getChar\`

of the input. For each node \(n \in I \) with children \(i = [i_1, i_r], j = [j_1, j_r] \in I \) such that \(i_1 < j_1 \), we derive a replacement interval \(i' = [i_1, j_r - 1] \). We also recursively remove all children \(c = [c_1, c_r] \) of \(i' \) if \(c \subseteq j \) or replace them with intervals \(c' = [c_1, j_r - 1] \).

In our case, we attribute the terminating quotation mark to the method \`JsonParser.readStringInternal()\`, which also processes the mark after calling \`JsonParser.endCapture()\`. We can thus remove it from the \`JsonParser.endCapture()\`

interval corresponding to \`foo\`. The contained string is finally consumed in a second method \`JsonParser.endCapture()\` including the terminating quotation mark due to lookahead, as in \`foo"`. Which method should the final quotation mark be attributed to?

To resolve possible ambiguities, we apply a simple heuristic that assumes left to right processing of the input. For each node \(n \in I \) with children \(i = [i_1, i_r], j = [j_1, j_r] \in I \) such that \(i_1 < j_1 \), we derive a replacement interval \(i' = [i_1, j_r - 1] \). We also recursively remove all children \(c = [c_1, c_r] \) of \(i' \) if \(c \subseteq j \) or replace them with intervals \(c' = [c_1, j_r - 1] \).

In our case, we attribute the terminating quotation mark to the method \`JsonParser.readStringInternal()\`, which also processes the mark after calling \`JsonParser.endCapture()\`. We can thus remove it from the \`JsonParser.endCapture()\`

interval corresponding to \`foo\` to obtain the replacement that rep-

4.3 Readable Entity Names

Most parsers require some form of lookahead to deterministically decide language membership and derive a parse tree based on the next symbol to parse. As an example, consider a JSON parser, where \`JsonParser.readStringInternal()\` reads a string including the quotation marks and a line break character, as \`"foo"\` in a string including the quotation marks and a line break character, as \`JsonParser.readStringInternal()\`

parser, where \`JsonParser.endCapture()\`

method invocations, parameters, return values, field accesses).

Set of corresponding elements in the dynamic call tree (i.e., field names can always be extracted from classes and provide good

4.3 Readable Entity Names

Since we are working with Java bytecode we do not have to resort to derive random names for nonterminal symbols. Method and field names can always be extracted from classes and provide good candidates for descriptive symbol names. If the bytecode includes debug symbols our approach is also able to derive symbol names from method parameter names. AUTOGRAM implements simple heuristics that define a order in which names of functions (including constructors), parameters, and fields are considered.

Certain names like \`getChar\` or similar common functions can also be ignored since they will be called for most characters and offer limited help in finding descriptive symbol names. As further improvement, we implemented simple heuristics for simplifying candidate names by discarding common prefixes to names like \`parse, read, skip, get, or set.\`

\[1\] https://commons.apache.org/proper/commons-csv/

\[2\] http://ini4j.sourceforge.net/

\[3\] https://github.com/ralfstx/minimal-json
Table 1: Test Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Data Format</th>
<th>Format Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>java.lang.URL</td>
<td>URL</td>
<td>Uniform Resource Locators; used as Web addresses</td>
</tr>
<tr>
<td>Apache Commons CSV</td>
<td>CSV</td>
<td>Comma-separated values; used in spreadsheets</td>
</tr>
<tr>
<td>INI4J</td>
<td>INI</td>
<td>Configuration files consisting of sections with key/value pairs</td>
</tr>
<tr>
<td>Minimal JSON3</td>
<td>JSON</td>
<td>Human-readable text to transmit nested data objects with attributes and values</td>
</tr>
</tbody>
</table>

Note that the generalization occurs much more at the lexical rather than at the syntactical level; an effect we have frequently observed in our subjects.

In our experiment, the AUTOGRAM grammar accepted all inputs produced by the reference grammar; it is thus 100% complete. However, it does overgeneralize and thus is not entirely accurate: Of 10,000 strings it produces, 1,772 are rejected by the java.net.URL parser; all because of the same overgeneralization as already detailed in Section 5.1.1. We thus compute its accuracy as (10,000 – 1,772)/10,000 = 82.3%.

5.2.2 Comma-Separated Values

Our next subject is the simplest in terms of grammars, namely comma-separated values as processed by Apache Commons CSV. Comma-separated values are frequently used as data exchange format, notably between spreadsheet applications.

The AUTOGRAM grammar inferred from Apache Commons CSV is shown in Figure 6; we see that a csv file consists of sequences of record values (strings) separated by either commas or newlines. Since Apache Commons CSV performs no further processing of the strings read, AUTOGRAM leaves them as general as they are. Of note is that in the grammar, a token is preceded by a newline or a comma; a human-written grammar would make these separators between tokens and place them after a token and assign the newline symbol to records instead of tokens. In terms of accuracy and completeness, the AUTOGRAM grammar scores 100% in both.

5.2.3 INI Configuration Files

INI files have a similar key/value format as Java property files; they are mostly used on the Windows platform to store configuration parameters. Applied on the INI4J framework, AUTOGRAM returns the grammar in Figure 7. We see that on top of key/value options, INI files also have section titles in square brackets (SECTIONLINE) as well as comments (COMMENT) starting with semicolons ‘;’. Of special note is the LINESKIPCOMMENT line, which is unnecessarily complex due to whitespace processing. In our future work (Section 6), we want to derive general lexical rules such as all whitespace between items being skipped, making the grammar both more general and simpler. The learned grammar does not describe an INI file as a sequence of sections, though, and thus allows options at the beginning of a file without defining a section first. This is due to reading options, sections and comments in a single loop, making the grammar only 64.6% complete.

5.2.4 JSON Objects

Strictly speaking, the grammars of all our past examples could also have been expressed by an (albeit pretty complex) regular expression. That is because they do not contain recursive structures, which can only be properly expressed with context-free grammars. JSON (JavaScript Object Notation) is a data interchange format for primitive and structured objects commonly used on JavaScript platforms, but available for several languages. The Minimal JSON library provides central JSON parsing and processing capabilities for Java programs.

In Figure 8, we see the grammar as inferred from AUTOGRAM through dynamic analysis of Minimal JSON. We can clearly distinguish the individual value types, from primitive types (TRUE, FALSE, NUMBER, ...) to recursively structured types (ARRAY, JSONOBJECT). Of special note is JSONOBJECT, in which a human grammar designer would probably factor out key/value pairs into a separate entity, and thus simplify the grammar. However, the rule reflects the way Minimal JSON processes JSON objects, namely in a single loop, appending key/value attributes to an object as it sees them. In our future work, we will borrow from existing language learners to identify structural repetitions and factor these out into (anonymous) entities. In our experiments, the JSON grammar proved to be 100% accurate and complete.
Table 2: Evaluation Results

<table>
<thead>
<tr>
<th>Subject</th>
<th>Accuracy</th>
<th>Completeness</th>
</tr>
</thead>
<tbody>
<tr>
<td>java.lang.URL</td>
<td>82.3%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Apache Commons CSV</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>JNI4J</td>
<td>64.6%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Minimal JSON</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

5.3 Evaluation Summary

All our results regarding accuracy and completeness are summarized in Table 2. Altogether, the grammars produced by AUTOGRAM proved to be 100% complete: They accepted all strings produced by the reference parsers. This indicates a high usefulness of the resulting grammars for reverse engineering purposes.

On the other hand, not all parsers were 100% accurate, indicating that it may be necessary for humans to make adjustments before the grammars would produce syntactically valid outputs only. However, the main purpose of such outputs would typically be robustness testing; and if a certain percentage of inputs would be filtered out as invalid by the processing program, that would only hurt performance, but not functionality.

Note, though, that there also are theoretical limits to what a grammar can achieve. While it would be desirable to extract grammars that would be both 100% complete and accurate, a grammar may have to be Turing complete to achieve these levels. Descriptions of what makes a valid program, for instance, are not only governed by the program syntax, but also by semantical rules that can only be expressed in a Turing complete formalism—which typically would be the source code of the compiler or interpreter. As of now, AUTOGRAM only aims for extracting syntactical structure; and we are already very satisfied with its results.

5.4 Threats to Validity

Our evaluation is subject to several threats to validity. The most important is external validity. While we have evaluated AUTOGRAM on a small set of parsers for commonly used file formats, we make no claim that these results would generalize; rather, they are to be seen as indication for the potential usefulness of an approach such as AUTOGRAM. We see several opportunities for improvement and future research: while we regard AUTOGRAM as an achievement, it is but the first step into an exciting and wide field of program-supported grammar inference.

In our evaluation, we trained all parsing subjects from randomly generated samples. These may or may not reflect the variability seen in real-world samples and thus cannot be seen as representative. Hence, training AUTOGRAM from real-world samples is likely to result in different accuracy and completeness measures, in particular when the training set is small.

6. Conclusion

The AUTOGRAM approach provides a simple means to reverse engineer the structure of program inputs to context-free grammars, by associating parts of a program with the parts of the input that they process. The potential of this approach are clear, ranging from better understanding of inputs over better testing to creation of parsing programs, and generally opening a new field of program-supported grammar inference. Our main future work will be using the inferred grammars for systematic fuzz testing, bypassing lexical and syntactic checks to deep into the program.

AUTOGRAM and all benchmarks presented in this work are available for evaluation purposes. For details, see our Web site:

https://www.st.cs.uni-saarland.de/models/autogram/

Acknowledgments. We thank the anonymous reviewers for their constructive comments. This work is supported by the European Research Council, Grant “SPECMATE”.

7. References