
From Code Via Builds to Tests and Back
to Capture the Full Picture

Kim Herzig (Software engineer & Researcher)

kimh@microsoft.com
www.research.microsoft.com/people/kimh
www.kim-herzig.de

Visual Studio
Team Services

 Tools for
 Software Engineers

1

Visual Studio
Team Services

 Tools for
 Software Engineers

Visual Studio
Team Services

 Tools for
 Software Engineers

3

When I joined Microsoft

4

From Code Via Builds to Tests and back
to Capture the Full Picture

Kim Herzig (Software Engineer & Researcher)

kimh@microsoft.com
www.research.microsoft.com/people/kimh
www.kim-herzig.de

Visual Studio
Team Services

 Tools for
 Software Engineers

5

MINING SOFTWARE ARCHIVES

6

“The Mining Software Repositories (MSR) field analyzes the

rich data available in software repositories to uncover

interesting and actionable information about software

systems and projects” [MSR website]

Data Thinking Idea Solution!

DO YOU KNOW WHAT YOU DO?
 What is the problem you are trying to solve?

 Hypothesis

 Research Questions

 Is the data appropriate?
 How should the data look like?

 What do you expect?

 What’s the return of investment
of your solution?

7

DON’T GET LOST IN DATA

Mining @Microsoft

 Source code

 Bug report / crashes / stack traces

 Organizational structure

 Releases

 Test executions

 Code reviews

 Builds

 Desktop tracking / telemetry

 … 8

MINING SOFTWARE ARCHIVES

9

Thinking Idea Solution!Data

10

MSR @ MICROSOFT (CODEMINE / CLOUDMINE)

Measuring & benchmarking the entire development process:
from change to deploy.

 Code velocity

 Code quality

 Code/test ownership

 Legacy code

 Branching structures

 …

11

C
ze

rw
o

n
k
a

e
t. a

l. , 2
0
1
4
, IE

E
E
 S

o
ftw

a
re

, 2
0
1
3

https://www.bing.com/search?q=papers+by+Jacek+Czerwonka

INNER & OUTER DEVELOPMENT LOOP

Pre-check-in Integration process
12

HIGH EFFORT/COST

Pre-check-in
13

MOST RESEARCH

What you can do with mining …

14

<video removed>

15

0 Data Scientist Play-Book
Pre-Phase

16

Know your problem
• There is a difference between symptoms and problems

Do not trust data
• Iterate over data with engineers

• Engineers claiming wrong data: 99% chance of wrong assumptions

Write down your assumptions
• We all make assumptions and it is important to make them explicit

• Share them with engineers.

Engineers are humans
• They game the system

• Validate their statements with data and confront them with reality.

You will never get it right
• Accuracy of 80% is good. 100% is impossible.

• If you reach 90% do not trust you assumptions / data / results.

1 Code Churn
The source of all evil

18

Version Control <> Version Control
Centralized

+ Data on server

+ Full data control

+ No loss of information

- Dev needs to be on network

- All commits “public”

- Limited isolation

19

Distributed

+ Great work isolation

+ Fully developer controlled

+ More dev satisfaction

- Local dev data lost

- Historic data might be
inaccurate

- Hard to mine entire dev
process

The Basics

20

Thanks to Sascha Just (just@st.cs.uni-saarland.de)

Getting all changelists and their meta-data in the repository in efficient, machine readable format.

We are completely avoiding regular expressions. There is no need for it and in some languages (like Java) the implementation tends to be horrendously slow.

> git log --branches --remotes --tags --topo-order --find-copies --raw --numstat --no-abbrev --reverse --format=%n%H%n%T%n%an%n%ae%n%at%n%cn%n%ce%n%ct%n%s%n%b%n

Pretend as if all the refs in refs/heads are listed on the command line as <commit>.
This basically tells git to look at all HEAD pointers in the repository.

--branches

Pretend as if all the refs in refs/remotes are listed on the command line as <commit>.
This tells git to also take all remote HEAD pointers into consideration.

--remotes

Pretend as if all the refs in refs/tags are listed on the command line as <commit>.
This tells git to also take all tag pointers into consideration. This is important to catch changelists which are referenced by a tag, but not by any branch (e.g. if the branch was deleted).

--tags

Show no parents before all of its children are shown, and avoid showing commits on multiple lines of history intermixed.
This is not actually required, but makes sense when looking at the mining process. Especially if you have to debug stuff.

--topo-order

Detect copies as well as renames.
You can also use --find-copies-harder, but this is terribly expensive on large repositories. Please use with caution and read the git-log documentation first.

--find-copies

Generate the raw format.
This will give you information about the changed files in a good machine-readable format:
:100644 100644 462a352... 5301619... M some_file.txt
:000000 100644 0000000... 03064d7... A some_other_file.png
Which has the format:
:${OLD_FILE_MODE} ${NEW_FILE_MODE} ${OLD_FILE_HASH} ${NEW_FILE_HASH} ${CHANGE_TYPE} ${FILE_PATH}
In case of copies or renamings this is followed by a space and another file path. Notice the abbreviated hashes!

--raw

Avoids abbreviation of hashes.
This is obviously required for our mining process as we do not care for short hashes.

--no-abbrev

Similar to --stat, but shows number of added and deleted lines in decimal notation and pathname without abbreviation, to make it more machine friendly. For binary files, outputs two - instead of saying 0 0.
It’s funny that machine friendly is mentioned here. Because this is exactly what this format is not, when it comes to renamings.
Here is how the output looks regularly:
123 123 my/file/path/file.txt
Which has the format:
${LINES_ADDED}\s+${LINES_REMOVED}\s+${FILE_PATH}
Now, renamings happen, this is an example of what you get:
123 32 my/file/{foo/bar => buzz}/path/file.txt
The file has been moved to a different folder of different depth.
Here is the good news. The output of --numstat will be presented after the output of --raw and the revision data will be in the exact same order as with the --raw command. Don't parse the file names here and use a

counter to map them. This is ways faster and much less error prone than the string magic with the file paths.

--numstat

Does what it says, reverses the list of changesets, starting at the ROOT rather than the HEAD.
This is again optional, but helps during debugging.

--reverse

Using a custom format string gives you more control over the data that is being accessed an guarantees for efficient access.
Since there is no delimiter on revision/changelist data, you should add some unique tag at the end and the beginning of the f ormat string. We went for >>>#$@#$@>>> and <<<#$@#$@<<<.
%H: commit hash-

%T: tree hash (the hash of the content of the repo)-

%an: author's name (the one who created the patch)-

%ae: author's email address -

%at: authored timestamp (when the patch was created)-

%cn: committer name (the one who commits the patch)-

%ce: committer email address-

%ct: commit timestamp (when the patch was committed)-

%s: subject, in good practice typically not more than 50 characters, but not limited -

%b: remainder of the commit message-

--format=…

1da198d551de42c41fe96810152274387daed102
914f79e0cc22a4fdcc11a84f4cac4781099bd0aa
Kim Herzig
kimh@microsoft.com
1454546288
Kim Herzig
kimh@microsoft.com
1454546288
Fixing argument conflict

:100644 100644 6c5a8f04126020b4726821601817230415b6d951 ad0b15c296ec10ae22aabd7c4034a1aef39febae M src/CloudBuildMiner/Configuration/Configuration.cs
:100644 100644 bf53ccf35bf761d166d9a3071fcf51ebe9dc0cf7 125ca8f4dc853060ee8821d443134fb2618c90d8 M src/CloudBuildMiner/Program.cs
59 3 src/CloudBuildMiner/Configuration/Configuration.cs
12 4 src/CloudBuildMiner/Program.cs

DB Schema

21

Advanced Mining

22

How long did it take to release this commit?
Which branches / quality gates had this commit to pass?

Finding shortest paths Thanks to Sascha Just (just@st.cs.uni-saarland.de)Navigation graph usage: generally we run queries against that graph to check properties

within the same, or connect integration points.

Integration graph usage: we use this graph to follow the path of earliest integration of a

commit, to compute the time the commit spends in a branch before it is integrated into
the next branch.

Convergence graph usage: This graph is used to efficiently assign commits to a branch/tag

and compute code velocity.

Branch structures can be complex …

Software testing is expensive
• 10k+ gates executed, 1M+ test cases

• Different branches, architectures, languages, devices, platforms, …

• Aims to find code issues as early as possible

• Slows down product development
23

Data Usage Scenarios

24

“Code Ownership and Software Quality: A Replication

Study” Greiler, Herzig, Czerwonka, MSR 2015
“Mining & Untangling Change Genealogies”, Herzig, PhD 2015

“The Impact of Tangled Code Changes”, Herzig, Zeller, MSR 2013 Code integration paths, Murphy, Czerwonka

Squash

Issue: separate commits tangled

Impact: tangled changes, e.g. code quality

Prevent: ban squash commits

Git is “lying” a matter of perspective

25

Fast-Forwards

Issue: original branch info lost

Impact: e.g. shared branches

Prevent: collect meta-data

Rebase

Issue: actual patch changes

Impact: churn metrics, e.g. code quality

Prevent: ban rebases between branches

Apply

Issue: original info lost, e.g. timestamp & author

Impact: valuable data loss

Prevent: format-patch & am

2 Issue Reports
It’s not a bug it’s a feature, isn’t it?

26

The Basics

27

API versus HTML

Using the bug tracker API

 Easier

 Often missing info e.g. history

 APIs tend to change often

28

Parse plain HTML / XML

 Access to all info

 More effort

 Will break often. Requires good
testing / automation.

DB Schema

29

30

The problem with issue reports is not the mining part,
It’s the data interpretation part. :-P

Mapping bugs to code
 Check for completeness / correctness of keywords constantly

 TIP: Monitor mapping rate. Any drop is likely a due to changes in patterns / templates.

 Timestamps are always a challenge.
 Bugs might be closed after commits (opened after the fact)

 Different server in different time zones, …

 Not all bugs get closed
 There might be hidden patterns for “closed” reports

31

Data Usage Scenarios

32

“Approximating Attack Surfaces with Stack Traces”, Theisen, Herzig,

Morrison, Murphy, Williams, ICSE 2015
“It's Not a Bug, It's a Feature — How

Misclassification Impacts Bug Prediction”,

Herzig, Just, Zeller, ICSE 2015

“Change Bursts as Defect Predictors”, Nagappan, Zeller, Zimmermann, Herzig, Murphy

ISSRE 2010

Issue Report Pitfalls
 Different tracker => different behavior

 Tracker represent data differently. Users will misuse fields or represent data differently.

 Default values
 Many issue reporters use default values: they might not know the right value, e.g. severity.

 What is a bug and what an improvement
 Philosophical question! Be aware that a bug might not be a bug for everyone.

 Ambiguous terms
 Likely to introduce noise.

 No standard field set
 Labels or tags may replace fields, e.g. Google tracker or Sourceforge

 Hard to interpret as there is no common behavior , not even within a team.

33

3 Build Data
Who cares about build? You should!

34

Why Build Data?
 Lower bound of how fast we can ship software

 Compiling complex software can take hours.
 Very expensive!

 Speedup may require componentization / refactoring.
 Very expensive!

 Catch 22: faster development usually means more builds.

 Each build failure brings the development pipeline to halt.

 Modern build systems are extremely complex!

35

CloudBuild @ Microsoft

Legend:
Source module
Test module

Build
Test execution

buddy
build

Rolling
build

CloudBuild

A

1. Build Graph Analysis

X C

B

D

E Z

A

X C

B

D

E ZY Y

2. Build/Test Execution

B1

B2

B3

B C

D

Y

Z Z

E

3. Results

Success or
Failure (log files)

Y

CloudBuild uses module-level test selection
when any dependencies of a module change, all tests inside that module are executed.

36

The Basics

37

Many aspects will rely on build telemetry data (white box)

contains / builds

build or not build?

DB Schema

38

Longest Critical Build Path (LCP)

39

• Graph structure: Directed Acyclic Graph (DAG)
 Edges define dependencies.

• LCP: Defines the lower bound on how fast we can build the DAG
 Defined with respect to build time, not target count.

You will need to break the
LCP to improve build times!

 Suggesting refactorings to cut build time (what-if-analysis)

 Predict impact of churn on build times.
 Do not commit now. Wait until …

-> Great for policy making, e.g. pre-checking

Data Usage Scenarios

40

Data Usage Scenarios (2)
 Detecting architectural build bottlenecks

 Verifying build tool SLAs

41

Common Build Data Pitfalls

 No two builds are the same (caching)

 Cluster builds based on similarity. Definition of similarity depends on scenario.

 Only compare comparable builds

 Cache hit rate, passing or failing, same code base, build type, etc.

 Cache hit rates can be misleading

 Counts versus build time.

 Build performance has many factors

 Churn, machine capacity, size, I/O, time window, caching, network, …
42

4 Test Executions
Where research and industry drift apart

43

The Basics

 Store all results of all test runs! 24/7 - 365
 Data can become large. SQL is no option.

 Record associations with builds / users / time / code base
 Comes in nearly all cases for free.

 Record details for failures, e.g. stack traces

 Record code coverage if possible
 HUGE data requirements

 Record performance info:
 How long did the test run? CPU usage.

44

Very expensive to mine after the fact. Collect telemetry!

DB Schema

45

Azure Data Lake
Test target (suite) Test case

> 1 million test case executions
per day per product.

~ 10GB per day

Data Usage Scenarios

46

“Let’s assume we had to pay for testing” Herzig, AST 2016 “Empirically Detecting False Test Alarms Using Association Rules”, Herzig,

Nagappan, ICSE 2015

“The Art of Testing Less Without Sacrificing Code Quality”, Herzig,

Greiler, Czerwonka, Murphy, ICSE 2015

Common Test Data Pitfalls
 Flaky tests: not every failure is a bug.

 In fact, most failures are false test alarms.

 Is it a flaky passing or flaky failing tests?

 Flaky tests might get re-run.

 Nobody runs all tests anymore.
 Every test event gives you an “incomplete” picture.

 Tests are run in parallel with build.
 Saving test runs may be not as beneficial as you might think.

 Consider the history and meta data.
 Owner, purpose, age, failure rate, run time, expense of a failure, who/how triggered the test …

 Code base is moving. No two test runs are the same.
 Except if you specifically control for it.

47

5 Code Reviews
“En vogue” but misunderstood

48

The Basics

49

Thanks to Kivanc Muslu <kivancm@microsoft.com>

The Basics

50

Thanks to Kivanc Muslu <kivancm@microsoft.com>

Where to collect data?

Server side (service)

• Preferred

• Not all signals/metrics available

• Instant release (no cross-over)

• Full control

51

Client side

 May come from different client
versions

 Making mistakes can be fatal
 Runtime, hard to revert, long time to fix

 Data loss due to setups
 E.g. 4500 users on service, 4000 on client

 Difficult to debug data loss or
issues

Thanks to Kivanc Muslu <kivancm@microsoft.com>

Data Usage Scenarios

52

Thanks to Kivanc Muslu <kivancm@microsoft.com>

Common Code Review Pitfalls

 In most cases: do not use data standalone.
 Combing with code, churn, tests, builds, etc.

 Often requires contextual information
 Why are taking the most complex reviews only seconds?

 Why did the comment exist?

 Why did no reviewer respond?

 Quality of review depend on human aspects
 E.g. agenda of reviewer, time of submission, engineers block one hour a day to do reviews

 Different usages of code reviews
 Gated check-in

 FYI

 Documentation

 No ground-truth available
53

Thanks to Kivanc Muslu <kivancm@microsoft.com>

If you take one message from this session …

54

Mining Software Archives

55

Thinking Idea Solution!Data

 Tools for
 Software Engineers

