
Gordon Fraser, University of Sheffield, UK
Andrea Arcuri, Simula Research Labs, Norway

Gordon Fraser, University of Sheffield

An Introduction to Search-based Testing  
and the Test Generation Tool

Outline

1. What is Search Based Software Testing?

2. Building an SBST Tool is Easy!

3. Generating Unit Tests with EvoSuite

4. When to use and not to use EvoSuite

5. Extending EvoSuite

6. Ideas for future work in unit test generation

Outline

1. What is Search Based Software Testing?

2. Building an SBST Tool is Easy!

3. Generating Unit Tests with EvoSuite

4. When to use and not to use EvoSuite

5. Extending EvoSuite

6. Ideas for future work in unit test generation

Source code Tests

Automated test generation

Random Test Data
Generation

Input

Generating vs Checking
Conventional Software Testing Research

Write a method to construct test cases

Search-Based Testing

Write a method  
to determine how good a test case is

Generating vs Checking
Conventional Software Testing Research

Write a method to construct test cases

Search-Based Testing

Write a fitness function 
to determine how good a test case is

Fitness-guided search

Input

Fi
tn

es
s

Fitness-guided search

Input

Fi
tn

es
s

Search Operators

Components of an SBST Tool

Search Algorithm

Representation

Test ExecutionInstrumentationFitness Function

def testMe(x, y):
 if x == 2 * (y + 1):
 return True
 else:
 return False

Components of an SBST Tool

Meta-heuristic algorithm

Measure how good a candidate solution is

Execute tests

Search Algorithm

Representation

Search Operators

Test Execution

Instrumentation

Fitness Function

Encoding of the problem solution

Modifications of encoded solutions

Collect data/traces for fitness calculation during execution

Outline

1. What is Search Based Software Testing?

2. Building an SBST Tool is Easy!

3. Generating Unit Tests with EvoSuite

4. When to use and not to use EvoSuite

5. Extending EvoSuite

6. Ideas for future work in unit test generation

Outline

1. What is Search Based Software Testing?

2. Building an SBST Tool is Easy!

3. Generating Unit Tests with EvoSuite

4. When to use and not to use EvoSuite

5. Extending EvoSuite

6. Ideas for future work in unit test generation

def testMe(x, y):
 if x == 2 * (y + 1):
 return True
 else:
 return False

Components of an SBST Tool

Hill-climbingSearch Algorithm

Representation

Search Operators

Test Execution

Instrumentation

Fitness Function

Hill Climbing

1. Select Random
Value

Hill Climbing

2. Explore
Neighbourhood

Hill Climbing

3. Choose better
neighbour

Hill Climbing

4. Repeat until
optimum is found

Components of an SBST Tool

Hill-climbingSearch Algorithm

Representation

Search Operators

Test Execution

Instrumentation

Fitness Function

(x, y) (x+1, y)(x-1, y)

(x-1, y+1) (x, y+1) (x+1, y+1)

(x-1, y-1) (x, y-1) (x+1, y-1)

def testMe(x, y):
 if x == 2 * (y + 1):
 return True
 else:
 return False

Components of an SBST Tool

Hill-climbingSearch Algorithm

Representation

Search Operators

Test Execution

Instrumentation

Fitness Function

Tuple (x, y)

Neighbourhood of (x, y)

Components of an SBST Tool

Hill-climbingSearch Algorithm

Representation

Search Operators

Test Execution

Instrumentation

Fitness Function

Tuple (x, y)

Neighbourhood of (x, y)

SUTInput Output

SUTInstrumented
SUT

Input

Output

Trace
} FitnessTest Data

def testMe(x, y):
 if x == 2 * (y + 1):
 return True
 else:
 return False

Components of an SBST Tool

Branch distance

Call method

Search Algorithm

Representation

Search Operators

Test Execution

Instrumentation

Fitness Function

Global variable

Hill-climbing

Tuple (x, y)

Neighbourhood of (x, y)

100 1 2 3 4 5 6 7 8 9

9

0

1

2

3

4

5

6

7

8

Input Value

Fit
ne

ss

9

0

1

2

3

4

5

6

7

8

Input Value

Fit
ne

ss

-(231) 231-10

9

0

1

2

3

4

5

6

7

8

Input Value

Fit
ne

ss

-(231) 231-10

9

0

1

2

3

4

5

6

7

8

Input Value

Fit
ne

ss

-(231) 231-10

Evolutionary Testing

Mutation

Crossover

Selection

Insertion

Fitness Evaluation

End?

Test cases

Monitoring

Execution

Crossover

a b c
10 10 20 40

d

a b c
20 -5 80 80

d

c
80 80

d

a
20

b
-5

a
10

b
10

c
20 40

d

d
40

Mutation

a b c
10 10 20 20

d
40

da
20

• Selective pressure:  
The higher, the more likely the fittest are chosen

• Stagnation:  
Selective pressure too small

• Premature convergence: 
Selective pressure too high

• Standard algorithms:  
Rank selection, tournament selection, roulette wheel
selection

Selection

Outline

1. What is Search Based Software Testing?

2. Building an SBST Tool is Easy!

3. Generating Unit Tests with EvoSuite

4. When to use and not to use EvoSuite

5. Extending EvoSuite

6. Ideas for future work in unit test generation

Outline

1. What is Search Based Software Testing?

2. Building an SBST Tool is Easy!

3. Generating Unit Tests with EvoSuite

4. When to use and not to use EvoSuite

5. Extending EvoSuite

6. Ideas for future work in unit test generation

@Test

public void test()
{

}

int x = 2;
int y = 2;
int result = x + y;
assertEquals(4, result);

@Test

public void test()
{

}

DateTime var3 = var1.toDateTime(var2);

DateTime var4 = var3.minus(var0);

TimeOfDay var2 = new TimeOfDay();

YearMonthDay var1 = new YearMonthDay(var0);

int var0 = 10

DateTime var5 = var4.plusSeconds(var0);

DateTime var3 = var1.toDateTime(var2);

DateTime var4 = var3.minus(var0);

TimeOfDay var2 = new TimeOfDay();

YearMonthDay var1 = new YearMonthDay(var0);

int var0 = 10

DateTime var5 = var4.plusSeconds(var0);

Crossover

Mutation

Mutation

Fitness

public int gcd(int x, int y) {
 int tmp;
 while (y != 0) {
 tmp = x % y;
 x = y;
 y = tmp;
 }
 return x;
}

Components of an SBST Tool

Sum of branch distances (and others)

Java reflection

Search Algorithm

Representation

Search Operators

Test Execution

Instrumentation

Fitness Function

Java bytecode instrumentation

Genetic Algorithm (+Archive, Seeding, Local Search, DSE)

Sets of sequences of Java statements

Standard GA operators implemented for test suites

Stats

• 6,865 commits

• 229,889 LOC

• 2,420 tests

Acknowledgements
Andrea Arcuri
José Campos
Benjamin Friedrich
Florian Gross
Juan Pablo Galeotti
Alessandra Gorla
Mat Hall
Fitsum Meshesha Kifitew
Merlin Lang
Yanchuan Li
Eva May
Phil McMinn

Andre Mis
Daniel Muth
Annibale Panichella
David Paterson
Jeremias Roessler
Jose Miguel Rojas
Kaloyan Rusev
Sina Shamshiri
Sebastian Steenbuck
Andrey Tarasevich
Mattia Vivanti
Thomas White

Does it work?

Bu
gs

 fo
un

d

0%

25%

50%

75%

100%

JFreeChart Closure Math Lang Joda Time
0

0.1

0.2

0.3

0.4

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Defects4J: 357 real bugsSF110: 23,886 Classes 
6,628,619 LOC

G. Fraser, A. Arcuri. “A Large Scale Evaluation of Automated
Unit Test Generation with EvoSuite” TOSEM 24(2), 2014.

Shamshiri et al. "Do Automatically Generated Unit Tests Find Real
Faults? An Empirical Study of Effectiveness and Challenges” ASE, 2015

Coverage

0

25

50

75

100

Option Rational DocType ArrayIntList

EvoSuite Manual

G. Fraser et al. "Does automated unit test generation really help
software testers? A controlled empirical study." TOSEM, 2015

Time Spent on Testing

0

6.5

13

19.5

26

FilterIterator FixedOrderComparator ListPopulation PredicatedMap

Assisted Manual

J. Rojas et al. "Automated unit test generation during software development: A
controlled experiment and think-aloud observations." , ISSTA 2015

Fault Detection

0

0.5

1

1.5

2

Option Rational DocType ArrayIntList

EvoSuite Manual

G. Fraser et al. "Does automated unit test generation really help
software testers? A controlled empirical study." TOSEM, 2015

Faults Prevention

0

4

8

12

16

FilterIterator FixedOrderComparator ListPopulation PredicatedMap

Assisted Manual

J. Rojas et al. "Automated unit test generation during software development: A
controlled experiment and think-aloud observations." , ISSTA 2015

Time Spent Understanding
T

im
e

(m
in

)

0

1.75

3.5

5.25

7

Std
XMLR

ea
de

r

Attr
ibu

te

Cha
inB

ase

O
pt

ion

Fix
ed

O
rd

er
Com

pa
ra

to
r

Fil
ter

Lis
tIt

er
ato

r

Plu
gin

Rule
s

Rule
sB

ase

Cha
rR

an
ge

Ye
ar

Mon
th

Day

Default Optimised

Method Names

 @Test(timeout = 4000)
 public void testFooReturningFalse() throws Throwable {
 StringExample stringExample0 = new StringExample();
 boolean boolean0 = stringExample0.foo("");
 assertFalse(boolean0);
 }

 @Test(timeout = 4000)
 public void test3() throws Throwable {
 StringExample stringExample0 = new StringExample();
 boolean boolean0 = stringExample0.foo("");
 assertFalse(boolean0);
 }

Variable Names
 @Test(timeout = 4000)
 public void testFooReturningFalse() throws Throwable {
 StringExample stringExample0 = new StringExample();
 boolean boolean0 = stringExample0.foo("");
 assertFalse(boolean0);
 }

 @Test(timeout = 4000)
 public void testFooReturningFalse() throws Throwable {
 StringExample invokesFoo = new StringExample();
 boolean resultFromFoo = invokesFoo.foo("");
 assertFalse(resultFromFoo);
 }

Variable Names
public class Foo {
 public void foo() {
 StringExample sx = new StringExample();
 boolean bar = sx.foo("");
 }
}

 @Test(timeout = 4000)
 public void testFooReturningFalse() throws Throwable {
 StringExample sx = new StringExample();
 boolean bar = sx.foo("");
 assertFalse(bar);
 }

Getting EvoSuite

http://www.evosuite.org/downloads

• Jar release - for command line usage

• Maven plugin

• IntelliJ plugin

• Eclipse plugin

• Jenkins plugin

Testing a Class

• Demo - command line

• Main options:  
-projectCP  
-class  
-criterion

Properties
• -Dproperty=value

• Search budget (s)  
-Dsearch_budget=60

• Assertion generation 
-Dassertions=false  
-Dassertion_strategy=all

• Minimisation (length and values)  
-Dminimize=false

• Inlining 
-Dinline=false

EvoSuite Sandbox

• Demo - Nondeterministic class

• Runtime library to execute tests

Testing multiple classes

Demo:

• Target / prefix

• Continuous

• Maven

• Jenkins

• IntelliJ

Outline

1. What is Search Based Software Testing?

2. Building an SBST Tool is Easy!

3. Generating Unit Tests with EvoSuite

4. When to use and not to use EvoSuite

5. Extending EvoSuite

6. Ideas for future work in unit test generation

Outline

1. What is Search Based Software Testing?

2. Building an SBST Tool is Easy!

3. Generating Unit Tests with EvoSuite

4. When to use and not to use EvoSuite

5. Extending EvoSuite

6. Ideas for future work in unit test generation

When to use and not to use EvoSuite

• Should I use EvoSuite…

• …to test my own Java code?

• Yes, of course

When to use and not to use EvoSuite

• Should I use EvoSuite…

• …to implement my ideas on unit test
generation?

• Yes, of course

When to use and not to use EvoSuite

• Should I use EvoSuite…

• …to study developer behaviour?

• Yes, of course

When to use and not to use EvoSuite

• Should I use EvoSuite…

• …to generate unit tests for my experiment
on X?

• Yes, of course

When to use and not to use EvoSuite

• Should I use EvoSuite…

• …to build a unit test generator for a
different programming language?

• EvoSuite is 90% JVM handling code

• Would need to reimplement
representation, search operators, fitness
functions, test execution, …

When to use and not to use EvoSuite

• Should I use EvoSuite…

• …to create an Android testing tool?

• Android uses Java / Dalvik bytecode

• Can also compile to Java bytecode

• How to handle Android dependencies?

When to use and not to use EvoSuite

• Should I use EvoSuite…

• …to create a GUI testing tool?

• If you want to test Java/Swing
applications…

• But a GA may not be the right choice

When to use and not to use EvoSuite

• Should I use EvoSuite…

• …to create a web app testing tool?

• If it’s based on JEE, unit testing already
works (JEE support is not complete yet)

• System testing…see GUI testing

When to use and not to use EvoSuite

• Should I use EvoSuite…

• …to implement a non-test generation SBSE
tool?

• GA implementation is quite test specific

• Using for other purposes would need
refactoring 
But then, is it better than using existing generic GA
libraries?

• If the tool uses Java, why not?

When to use and not to use EvoSuite

• Should I use EvoSuite…

• …to implement a tool that requires tests?

• E.g., specification mining, fault localisation,
program repair, GI, …

• Sure, integrating EvoSuite should be easy

Outline

1. What is Search Based Software Testing?

2. Building an SBST Tool is Easy!

3. Generating Unit Tests with EvoSuite

4. When to use and not to use EvoSuite

5. Extending EvoSuite

6. Ideas for future work in unit test generation

Outline

1. What is Search Based Software Testing?

2. Building an SBST Tool is Easy!

3. Generating Unit Tests with EvoSuite

4. When to use and not to use EvoSuite

5. Extending EvoSuite

6. Ideas for future work in unit test generation

Building EvoSuite

• Git repository:  
git clone https://github.com/EvoSuite/evosuite.git

• Maven 
mvn package  
(mvn -DskipTests package)

• Where is EvoSuite now?  
master/target/evosuite-master-1.0.4-SNAPSHOT.jar

• Why is the jar file so huge?

Module Structure

• master

• client

• runtime

• standalone-runtime

• plugins

• generated

• shaded

Extending EvoSuite

• (Artificial) Example: Middle point crossover

Extending EvoSuite

• (Artificial) Example: Middle point crossover

Outline

1. What is Search Based Software Testing?

2. Building an SBST Tool is Easy!

3. Generating Unit Tests with EvoSuite

4. When to use and not to use EvoSuite

5. Extending EvoSuite

6. Ideas for future work

Outline

1. What is Search Based Software Testing?

2. Building an SBST Tool is Easy!

3. Generating Unit Tests with EvoSuite

4. When to use and not to use EvoSuite

5. Extending EvoSuite

6. Ideas for future work

1. SBST is Slow

• Fitness evaluation means executing tests

• Executing tests is slow

• How to reduce the number of fitness
evaluations?

• How to improve search operators?

• Can we use ML to predict test execution
results?

2. OO Guidance

• Object oriented code has a terrible search
landscape

• Complex dependency objects are a problem

• Include dependency objects in fitness
functions?

• Better testability transformations?

• Better fitness functions?

3. New Features

• Integration testing

• Concurrent code

• GUI handling code

• Database dependent code

• Prioritising tests

4. SBST Usability

• Assertion/contract testing code?

• Coverage isn’t a great objective

• Usability as optimisation goal

• Study developers using SBST tools

Outline

1. What is Search Based Software Testing?

2. Building an SBST Tool is Easy!

3. Generating Unit Tests with EvoSuite

4. When to use and not to use EvoSuite

5. Extending EvoSuite

6. Ideas for future work

Outline

1. What is Search Based Software Testing?

2. Building an SBST Tool is Easy!

3. Generating Unit Tests with EvoSuite

4. When to use and not to use EvoSuite

5. Extending EvoSuite

6. Ideas for future work

Online Tutorials

• Using EvoSuite on the command line:  
http://www.evosuite.org/documentation/tutorial-part-1/

• Using EvoSuite with Maven:  
http://www.evosuite.org/documentation/tutorial-part-2/

• Running experiments with EvoSuite:  
http://www.evosuite.org/documentation/tutorial-part-3/

• Extending EvoSuite:  
http://www.evosuite.org/documentation/tutorial-part-4/

2. Corner Cases

• Constant Seeding: +5%

• Virtual FS: +1.4%

• Mocking +4.7%

• JEE support: +3%

• DSE: +1.2%

3. Developers

public class Example {

 private Example() {}

 // …
}

4. Testing

EvoSuite uses one central random number
generator

Any change will affect something at a
completely different part of the program

Change seeds frequently during testing to find
flaky tests

